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Prefácio

Esta é a quarta e última versão de Matemática Pandêmica.
A proposta é mostrar que aritmética, cálculo diferencial e integral,
álgebra linear, geometria euclidiana e teoria probabilidades podem
ser percebidos simplesmente como o estudo de casos muito parti-
culares de conjuntos. Logo, para conhecer esses temas, é desejável
familiaridade com alguma teoria usual de conjuntos. Escolhemos a de
Zermelo-Fraenkel por ser a mais popular, além de ser suficientemente
forte para lidar com as necessidades de ferramentas elementares para
desenvolver e aplicar matemática.
Aproveitamos a oportunidade para apontar múltiplos possíveis ca-

minhos para desenvolver matemática, a qual é um dos ramos do
conhecimento mais importantes em termos de impacto social, eco-
nômico, tecnológico, cultural e filosófico. Sumário

Índice
Rede

Este livro é disponibilizado gratuitamente em formato PDF, com
diversos recursos de navegabilidade. Basta o leitor clicar nos tre-
chos em azul para ser imediatamente levado ao item citado. Mas
foi planejado para funcionar também em forma impressa, caso o
leitor escolha esta opção. Isso porque Partes, Seções, Teoremas,
Proposições, Definições e Exemplos são numerados. Além disso, há
um extenso índice remissivo para auxiliar na busca por informações.
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Este livro é aquilo que eu gostaria de ter estudado em meu primeiro
ano como aluno de licenciatura em matemática. Pena que eu não
sabia disso em 1983.
Não é um texto que trata exaustivamente sobre os temas aborda-

dos. Longe disso, apenas proponho este livro como um primeiro con-
tato com assuntos básicos indispensáveis a uma compreensão mínima
sobre matemática. Mas é necessário um primeiro contato honesta-
mente fundamentado para que o aluno tenha condições de buscar
autonomia em seus estudos. Se consigo atingir meu propósito, ape-
nas os leitores poderão responder. Mas esta é a minha intenção aqui.
A abordagem usual em aulas de matemática mais parece um pro-

cesso de doutrinação do que um exame crítico de conhecimentos cien-
tíficos. Aquele que inicia seus estudos de matemática deve perceber
que essa ciência é tema de debates acalorados. Debate e doutrinação
são incompatíveis entre si. Além disso, deve perceber também que
existem múltiplas formas de fazer matemática. Em algumas dessas
formas, por exemplo, o argumento de redução ao absurdo é legítimo,
enquanto em outras não é. Em certas formulações de cálculo dife-
rencial e integral há infinitesimais, enquanto em outras esse conceito
simplesmente não é sequer formulável. Em algumas formulações de
álgebra linear todo espaço vetorial tem base, enquanto em outras isso
não acontece. Em teorias usuais de conjuntos, funções têm nomes,
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Matemática Pandêmica Parte 1 Seção 0
como f e g. Em cálculo lambda isso não ocorre e nem pode ocorrer.
Matemática é uma área do conhecimento muito flexível e com con-
siderável tolerância para ideias novas e críticas a ideias antigas. Mas,
sem conhecimento, não há espaço para a criatividade. O estudo de
matemática deve estar focado na direção da criatividade e da análise
crítica, não de procedimentos eficazes para a aprovação em exames.
Quando nossos ancestrais contemplaram as estrelas pela primeira

vez − observando padrões de movimentos de corpos celestes, bem
como as relações entre o céu e as estações do ano − naquele mo-
mento nascia a matemática. Naqueles tempos remotos matemática
era um processo de abstração que se caracterizava pela identificação
de padrões na natureza. Ninguém olhou para o céu pensando que
aquela vastidão de complexos padrões era um ótimo ponto de partida
para a criação de vestibulares e concursos públicos.

Analema marcando a posição do Sol às 7h30, em Hong Kong
Fonte: EarthSky.

Daí a necessidade de um estudo introdutório justificado e bem
fundamentado para a matemática! O estudo criticamente funda-
mentado da matemática é imprescindível para que alunos aprendam
a não levar muito a sério professores e autores. Matemática é um
fenômeno humano que paradoxalmente transcende as idiossincrasias
humanas.
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Matemática Pandêmica Parte 1 Seção 1
Neste contexto, o presente documento é destinado àqueles que de-

sejam respostas claras, honestas e motivadoras para pelo menos al-
guns dos procedimentos elementares e usuais da matemática. Quais-
quer erros aqui cometidos são responsabilidade minha, não da ma-
temática.
Seguem algumas questões básicas tratadas neste livro.
i: Há alguma justificativa para as famosas regras de sinais da mul-

tiplicação entre inteiros? Ver Seção 30.
ii: O que é, afinal, a unidade imaginária dos números complexos?

Ver Seção 40.
iii: O que é um número? Ver início da Parte 4.
iv: O que é 5

√
2? Ver Seção 66.

v: Qual é a diferença entre equação e função? Ver Seção 43.
vi: O que são soluções de uma equação? Ver Seção 10, bem como

inúmeros exemplos importantes ao longo de todo o livro.
vii: Se o conjunto vazio não tem elementos, como pode estar con-

tido em qualquer conjunto? Ver Teorema 3.6.
viii: O que é um conjunto? Se um conjunto é uma coleção de ob-

jetos, o conjunto vazio pode ser interpretado como uma coleção
de selos sem um único selo? Se fosse o caso, qualquer pessoa
é um colecionador de selos, mesmo não tendo uma única peça
que justifique sua suposta coleção! Ver Parte 3.

ix: O que é infinito? O infinito é algo que não acaba? Qual é
o critério a ser usado para responder se algo acaba ou não?
Paciência eterna? Ver Seção 33.

x: O que tem a ver logaritmos com teoria de grupos? Ver Seção
68.

xi: O que é um ponto no plano euclidiano? Se um ponto não
tem largura, altura ou profundidade, então a cor vermelha é
um ponto? Afinal, a cor vermelha não tem altura, largura ou
profundidade. Ver Parte 7.

xii: Mais importante, o que tem a ver matemática com a vida de
cada um de nós?
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Matemática Pandêmica Parte 1 Seção 1
Seção 1

Matemática como fenômeno humano

Sumário

Índice
RedeComeçamos respondendo parcialmente à última questão da Seção

anterior. Matemática é uma das atividades de maior impacto social
na história da humanidade, independentemente de convicções políti-
cas, religiosas ou pessoais. Matemática não precisa de bandeiras,
hinos, eleições, brasões, regulamentações ou decretos para se impor.
Isso porque matemática é naturalmente uma boa ideia. Métodos
matemáticos são empregados com grande sucesso nas seguintes áreas.
a física: para uma melhor compreensão sobre o universo onde

vivemos, via geometria diferencial, espaços de Hilbert, funções
especiais e outros.

I tecnologia: para a concepção de equipamentos, métodos e
materiais.

� artes: no desenvolvimento de novas técnicas artísticas basea-
das em processos iterativos, splines, fractais e outros conceitos.

w medicina: na criação de novas drogas, equipamentos e métodos
de investigação, incluindo modelos matemáticos de proliferação
de agentes infecciosos.

ý paleontologia: via métodos de datação.
ÿþ sociologia: na concepção de modelos que permitam anteci-

par o futuro de civilizações.
Ψ psicologia: via teoria das decisões ou cognição quântica, en-

tre outros.
� linguística: através de métodos estatísticos ou gramáticas ge-

rativas.
¦ economia: via teoria dos jogos e pesquisa operacional.
� mercado de ações: via sistemas ergódicos.
X cálculo de prêmios de seguros: via matemática atuarial.
v administração de empresas: via análise multivariada de

dados.
Î sistemas de segurança civil e militar: via criptografia.
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Matemática Pandêmica Parte 1 Seção 1
Ï ciência da computação: via cálculo lambda, máquinas de

Turing, teoria de categorias e séries de Fourier, entre outros.
h guerra: via equações diferenciais, teoria das decisões, teoria

dos jogos, pesquisa operacional, criptografia e muitas outras fer-
ramentas usadas também em tempos de paz.

o muitas outras áreas: música estocástica, cinema, arquite-
tura, história, química, geografia, esportes, logística em geral,
inteligência artificial etc.

Assim como ocorre com a música, matemática é naturalmente cul-
tivada por comunistas e capitalistas, crentes e ateus, homossexuais e
heterossexuais, conservadores e liberais, vendedores e compradores,
especuladores e empresários, índios e europeus, empáticos e psico-
patas, militares e civis, nazistas e judeus, estudiosos e leigos.
No entanto, matemática não se limita a aplicações imediatas para

lidar com problemas do mundo real. A atividade matemática atingiu
um nível de amadurecimento que lhe proporcionou a qualidade de
objeto de estudo por mérito próprio. A compreensão da matemática
enquanto legítimo campo de estudos é condição indispensável para
antecipar novas aplicações no futuro. Daí a ênfase neste documento
sobre parte dos fundamentos desta ciência formal!
Compreender minimamente a atividade matemática é uma condi-

ção necessária (apesar de não suficiente) para o amadurecimento de
uma visão sensata e bem informada sobre o mundo onde vivemos.
Dois ingredientes − desde que tratados com certo cuidado − de-

finem matemática: linguagem e lógica.
Linguagem é um instrumento de comunicação [49] (ao lado de ou-

tros, como gestos e pantomimas) que serve ao propósito de veicular
ideias e sentimentos. Faz parte da natureza humana a veiculação de
ideias e sentimentos.
Lógica permite concatenar ideias veiculadas pelo emprego de lin-

guagens. Tal concatenação é realizada por meio de inferências. Faz
parte da natureza humana a concatenação de ideias.

Logo, matemática espelha dois aspectos profundos sobre a
natureza humana:

as necessidades de comunicação e de inferir consequências
a partir daquilo que é comunicado.
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Matemática Pandêmica Parte 1 Seção 1
A partir do momento em que naturalmente empregamos lingua-

gens e inferências em nosso cotidiano, isso significa que naturalmente
usamos matemática todos os dias. Mas o estudo sistemático de ma-
temática em si é algo que exige muito mais, além de experiências
cotidianas.
Em uma primeira aproximação sobre linguagens, essas podem ser

divididas em dois grupos:
i aquelas que estão naturalmente comprometidas com uma semân-
tica e

ii aquelas que não estão.

A língua portuguesa se enquadra no item i. Com efeito, para fins
de mera ilustração, o termo ‘cadeira’ é usualmente interpretado como
uma cadeira no mundo real. Mais do que isso, não é usual interpretar
a palavra ‘cadeira’ como um sorvete derretido de baunilha ou um
sentimento de repulsa a aranhas. Neste sentido, há uma certa rigidez
na dimensão semântica de uma linguagem como o português.
É claro que nem todos os termos da língua portuguesa podem ser

interpretados como objetos do mundo real. Exemplos triviais são
as palavras ‘unicórnio’ e ‘lobisomem’. No entanto, ainda permanece
invariante o compromisso de associar termos da língua portuguesa
a coisas, lugares, épocas, sentimentos, intuições ou ideias que trans-
cendem a própria linguagem, os quais são os significados dos termos.
Ainda que poetas como Fernando Pessoa consigam explorar certas
liberdades, como na frase ‘O mito é o nada que é tudo’, pessoas são
compelidas a associarem uma frase da língua portuguesa a potenciais
significados, mesmo que tais significados não sejam necessariamente
compartilhados por duas ou mais pessoas.
Neste contexto significados não podem ser confundidos com sinô-

nimos. Uma palavra da língua portuguesa pode ser um sinônimo de
outra no sentido de que, pelo menos em certos contextos de caráter
pragmático, elas compartilham um mesmo significado.
Matemática, lógica formal e ciência da computação, não obstante,

são ramos do conhecimento que demandam o emprego de linguagens
formais não comprometidas com qualquer contraparte semântica.
Em outras palavras, o emprego de língua portuguesa é, no mínimo,
insuficiente para lidar com a matemática exigida hoje em dia. Logo,
não é surpreendente que pessoas sem treino matemático percebam
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com estranheza essa atividade humana. Mas, assim como os modos
de pensar de mulheres causam estranheza diante de certos homens,
isso não muda o fato de que mulheres são seres humanos. Matemáti-
cos, com o perdão dos platonistas, são apenas criaturas que exploram
certos aspectos da natureza humana nem sempre contemplados por
não-matemáticos.
Enquanto aspectos significativos da língua portuguesa podem ser

reduzidos ao estudo de morfemas, porção significativa da matemáti-
ca pode ser reduzida ao estudo de objetos matemáticos. Os objetos
matemáticos mais amplamente estudados e usados na literatura es-
pecializada são conjuntos. Logo, a compreensão sobre teoria de con-
juntos é um passo natural para a devida apreciação da matemática,
pelo menos diante das atuais visões sobre o que é essa ciência. Isso
justifica o fato de que este livro inicia o estudo de matemática a partir
da teoria de Zermelo-Fraenkel, a mais popular teoria de conjuntos.
Para ilustrar essas primeiras considerações a respeito das lingua-

gens formais da matemática, considere a equação

x = 1 + x

2 .

Uma equação é um caso particular de fórmula de uma certa lin-
guagem formal (a qual não é comprometida com qualquer semân-
tica em particular). Fórmulas de uma linguagem formal são afir-
mações feitas (no contexto da linguagem formal) sobre certos objetos
matemáticos. Se os objetos de estudo são conjuntos, os termos x, 1, 2
e x

2 (que ocorrem na equação acima) são conjuntos. O símbolo + na
equação acima corresponde a uma operação entre conjuntos, a qual
produz novos conjuntos. Portanto, 1 + x

2 também é um conjunto.
Mas a fórmula em questão (a qual pode ser entendida como uma
afirmação sobre os conjuntos x, 1, 2 e x

2 ) é desprovida de significado.
Não há compromisso com qualquer contraparte semântica. Esse fato
confere significativa liberdade à matemática. Temos a liberdade de
interpretar a fórmula acima de várias maneiras:

i: um tijolo pesa um quilo mais meio tijolo (neste caso x é inter-
pretado como o peso de um tijolo em quilogramas);

ii: a idade de Alfredo é igual a um ano somado da metade da idade
de Alfredo (neste caso x é interpretado como a idade de Alfredo
em anos);

Página 7



Matemática Pandêmica Parte 1 Seção 1
iii: o número de pessoas na sala é igual a uma pessoa mais a

metade do número total de pessoas da sala (neste caso x é in-
terpretado como número de pessoas na sala);

entre muitos outros possíveis exemplos. Por conta disso, a matemá-
tica encontra ampla aplicabilidade em múltiplas áreas do conheci-
mento.

É justamente a renúncia da matemática ao mundo real
que a torna tão útil no mundo real.

Outra vantagem do descompromisso de linguagens formais com
semântica reside no fato de que linguagens naturais, como o por-
tuguês, são preocupantemente ambíguas para fins científicos. Por
exemplo, o verbo ‘ser’ pode expressar

uma predicação: como na frase ‘Ernst Zermelo é inteligente’;
uma identidade: como na frase ‘Ernst Zermelo é o criador do

Axioma da Escolha;
uma existência: como na frase ‘Ernst Zermelo é’;
uma inclusão de classe: como na frase ‘Ernst Zermelo é um

matemático’;

entre outras possibilidades. Observar, por exemplo, a dificuldade
para discernir predicação de inclusão de classe.
Ambiguidades são nocivas para a atividade científica, uma vez que

frequentemente a ciência se vê obrigada a lidar com situações não
familiares à maioria das pessoas. Logo, é necessária clareza de ideias,
antes de avançarmos na atividade científica.
Sem compromisso com semântica, linguagens formais não abrem

espaço para ambiguidades no sentido acima colocado. No entanto,
ainda resiste uma certa ambiguidade muito mais sutil, mesmo em
certas linguagens formais. Discutimos sobre isso na Seção 111.
Com relação à lógica, matemática emprega diferentes formas de in-

ferência, as quais viabilizam relações entre fórmulas. Lógica permite
inferir novas fórmulas a partir de fórmulas anteriormente conhecidas.
No caso da equação

x = 1 + x

2 ,

Página 8



Matemática Pandêmica Parte 1 Seção 2
é possível inferir que x = 2, desde que lógica e linguagem sejam
claramente definidas com antecedência.
Logo, seguindo os exemplos acima, o tijolo pesa dois quilogramas,

Alfredo tem dois anos de idade e a sala conta com duas pessoas.
Neste livro, porém, estamos interessado em apenas um tipo par-
ticular de inferência: as dedutivas. Detalhes são apresentados nas
próximas seções.
Para uma visão mais ampla sobre outras formas de inferência em

matemática e demais áreas do conhecimento, recomendamos o livro
de Ian Hacking [20] sobre indução e probabilidades. Na obra citada
o autor estimula o leitor com uma lista de sete problemas com enun-
ciados perfeitamente compreensíveis mesmo entre aqueles sem treino
matemático. São problemas cujas soluções desafiam aquilo que nor-
malmente se assume como senso comum. Um deles, referente a teste-
munhos de eventos extraordinários, está reproduzido na Parte 9.
Senso comum não é um bom ponto de partida para uma visão

racional de mundo. Com efeito, senso comum reflete uma visão
compartilhada entre segmentos sociais. Racionalidade, porém, não
é democrática.
Como enfatizado por Bertrand Russell, um dos aspectos essenciais

da racionalidade é não ter qualquer certeza inquestionável.

Seção 2
Bastam linguagem e lógica?

Sumário

Índice
RedeAinda que pelo menos alguns ramos da matemática estejam su-

ficientemente definidos pelos ingredientes ‘lógica’ e ‘linguagem for-
mal’, a prática social de fazer , aplicar , justificar , questionar , filoso-
far , especular , cultivar , divulgar e até mesmo financiar matemática
demanda muito mais. Uma pessoa que tenha uma nova ideia ma-
temática precisa convencer pessoas qualificadas sobre a relevância,
a originalidade e a validade de sua proposta. A estratégia social
mais comum e confiável para convencer pessoas sobre novas ideias
matemáticas é a veiculação de artigos científicos em periódicos espe-
cializados. Não pretendemos explorar este delicado ponto aqui. Mas
é imprescindível que o leitor compreenda que matemática é uma
atividade social. Sem trocas de ideias não há matemática alguma.
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Ilustramos a seguir em que sentido a prática matemática exige

muito mais do que linguagem e lógica. No final do século 19 Georg
Cantor teve uma ideia: introduzir o conceito de conjunto para qua-
lificar o que é o infinito. Com o passar de décadas de pesquisas,
matemáticos do mundo todo perceberam a elegância, o alcance, a
originalidade, a aplicabilidade e, especialmente, a necessidade das
ideias de Cantor. Antes dele, Bernardus Bolzano teve ideias seme-
lhantes. Mas a proposta dele seguia uma estratégia com severas
limitações. A proposta de Bolzano foi esquecida [57], enquanto a de
Cantor triunfou, apesar das duras críticas nas primeiras décadas após
o primeiro artigo dele sobre o tema. É assim que funciona a prática
social da matemática: ideias seguidas de discussões. O nascer de
ideias é um aspecto não matemático da prática social da matemáti-
ca. O mesmo é cabível para a análise crítica de novas ideias. Toda
nova ideia é uma ilha cercada por antigas concepções. É necessário
sair da ilha para apreciá-la como um todo.
Tanto Bolzano quanto Cantor foram os primeiros a perceber a

importância de qualificação do infinito. Mas Bolzano sustentou sua
proposta em uma visão muito difícil de colocar em prática. Neste
sentido, as ideias de Cantor foram mais felizes e, por conseguinte,
mais facilmente aceitáveis. Apesar disso, até mesmo a proposta ori-
ginal de Cantor enfrentou forte resistência.
A questão do financiamento da matemática é ainda mais ardilosa,

uma vez que ela depende de decisões políticas de governantes e em-
presários, os quais não são necessariamente familiarizados com os
poderosos efeitos da matemática a curto, médio e longo prazo so-
bre comunidades, sociedades, nações e o mundo onde vivemos. Daí
a importância da divulgação da matemática para um público leigo.
Tal discussão, porém, escapa dos propósitos desta obra.
O foco deste livro é o emprego de uma única linguagem formal

e uma única lógica, para fins de fundamentação de vastos ramos
da matemática, como aritmética, álgebra, álgebra linear, topologia,
probabilidades, geometria, cálculo diferencial e integral, equações
diferenciais e muito mais.
Neste livro é discutida de maneira sucinta a teoria de conjuntos

de Zermelo-Fraenkel (ZF), bem como a aplicabilidade da mesma em
alguns dos ramos mencionados acima. A teoria ZF é a mais popular
entre as formalizações atualmente conhecidas para as ideias originais
de Cantor, o criador da teoria de conjuntos.

Página 10



Matemática Pandêmica Parte 1 Seção 3
Seção 3

Requisitos para a leitura

Sumário

Índice
RedeSão três os resquisitos indispensáveis para a compreensão dos as-

suntos aqui abordados.

• Saber ler.
• Ter a mente aberta.
• Dispor-se a dialogar com pares.

Leitura não é uma atividade fácil. Isso porque ela exige senso
crítico e, consequentemente, uma boa dose de cultura. Não há senso
crítico, por exemplo, entre aqueles que assumem o que o autor quis
dizer sem que ele tenha de fato dito. Não há senso crítico também
onde certezas estão alojadas, seja por convicções pessoais ou por
conta de submissão ao doutrinamento promovido em escolas. Para
fins de ilustração, se o leitor tem certeza de que 0 + 5 = 5, vale
observar que apenas na Seção 29 conseguimos provar isso. Tal prova
é feita no Teorema 4.2 e consome uma redação de trinta e duas
linhas de justificativas. Ademais, não há senso crítico onde domina
a ignorância. A não familiaridade com cultura científica e filosófica
é um terreno árido onde dificilmente podem brotar questionamentos
pertinentes. Senso crítico é o exercício de enunciar questionamentos
pertinentes. A avaliação da pertinência de uma pergunta, no entanto,
é um processo subjetivo. Logo, não é fácil uma pessoa responder a
si mesma se é capaz de ler e levantar questões relevantes a partir do
que leu. Para ilustrar exemplos de questões pertinentes, ver Seção
46.
Mente aberta é a qualidade de saber lidar com incertezas como, por

exemplo, o problema de estabelecer o que é pertinente no estudo de
matemática. Um dos principais obstáculos contra o aprendizado de
matemática reside em preconceitos intelectuais. Aquilo que alguém
julga saber pode oferecer espantosa resistência contra novos apren-
dizados. Para citar um exemplo simples, teoria de conjuntos não é
uma teoria sobre coisas chamadas conjuntos. Teoria de conjuntos
é um corpo do conhecimento que trata de dois predicados binários,
conhecidos como igualdade e pertinência. Conjuntos, no contexto
de ZF, são apenas termos de uma linguagem formal. Do ponto de
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Matemática Pandêmica Parte 1 Seção 4
vista matemático, não faz diferença alguma chamar os termos de ZF
de conjuntos, unicórnios ou cenouras. O que está em jogo são as
relações entre pertinência e igualdade, os alicerces da teoria de con-
juntos ZF. Teoria de conjuntos não visa o estudo de cenouras. Teoria
de conjuntos é um assunto que demanda modos de pensar abstratos
e refinados, algo que só pode ser conquistado com um alinhamento
entre aptidão, disposição e paciência. Retomamos esse assunto na
Parte 11, a qual só pode ser apreciada após um detalhado estudo
sobre ZF na Parte 3.
O diálogo com pares se refere à troca de ideias matemáticas com

pessoas que compartilham os mesmos interesses e com dedicação
destacada à matemática. Uma vez que a mente aberta é um fenô-
meno emergente entre grupos de pessoas que compartilham a mesma
busca por melhores ferramentas para a compreensão do mundo onde
vivemos, cada um dos requisitos acima está emaranhado com os de-
mais. A busca pelo conhecimento não é uma aventura que possa ser
realizada em solitude. Ciência é um fenômeno social sinérgico.
Jules Henri Poincaré desenvolveu uma extensa obra de enorme

impacto para os fundamentos de teorias físicas, como a relatividade
restrita e a mecânica celeste, bem como teorias matemáticas, como
topologia, álgebra e equações diferenciais. Também foi um grande
filósofo e um brilhante escritor.
No livro La Valeur de la Science (publicado em 1905 e traduzido

para vários idiomas), Poincaré afirma:
O matemático nasce, não se cria.

Neste contexto é importante o leitor não confundir práticas institu-
cionais de ensino de matemática com matemática. Adestrar alunos
a se tornarem mímicos de atitudes tipicamente encontradas entre
matemáticos é algo muito diferente de estudar e fazer matemática.
Daí a importância dos requisitos acima.

Seção 4
Diferenciais desta obra

Sumário

Índice
RedeA meta principal deste livro é introduzir conceitos básicos típicos

de um primeiro ano de estudos de graduação em matemática, física e
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Matemática Pandêmica Parte 1 Seção 4
áreas afins, como engenharia e matemática industrial. No entanto, a
abordagem adotada segue algumas diferenças em relação à literatura
padrão:

i: Linguagem e lógica são explicitados, para fins de fundamen-
tação, bem como seus papeis na prática matemática.

ii: É destacada a existência de outras maneiras para desenvolver
matemática, além das mais usuais, como análise infinitesimal
suave, lógica intuicionista, lógica paraconsistente, entre outras.

iii: É salientado que até hoje não se sabe se a fundamentação usual
via teoria de conjuntos de Zermelo-Fraenkel é consistente.

iv: São propostos exercícios que visam promover mudanças na
definição usual de limite de função real, com o propósito de
compreender melhor esse importante conceito.

v: É destacada a importância de cálculo diferencial e integral
para definir seno, co-seno, logaritmo e exponencial, entre outras
funções de uso corrente.

vi: As interpretações geométricas de seno e co-seno são exibidas
como teoremas a partir da definição dada por soluções de uma
equação diferencial.

vii: São qualificados os conceitos de definição, teorema, demons-
tração, metateorema, premissa, hipótese, argumento, axioma,
postulado, entre outros comumente empregados na literatura es-
pecializada.

viii: É explicitado o poder da pertinência em teoria de conjun-
tos, mostrando como esse conceito consegue qualificar números
naturais, inteiros, racionais, irracionais, reais, algébricos, trans-
cendentes e complexos, bem como fundamentar cálculo diferen-
cial e integral, geometria euclidiana, geometria analítica, álgebra
linear, espaços métricos e espaços de probabilidades. Ou seja,
números reais são conjuntos, números naturais são conjuntos,
pontos no plano euclidiano são conjuntos, vetores são conjun-
tos, matrizes são conjuntos, relações são conjuntos, funções são
conjuntos, espaços amostrais são conjuntos, probabilidades são
conjuntos etc.

ix: A definição de Carathéodory para função real diferenciável é
abordada aqui, mas na forma de um teorema.
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x: É salientado o papel de verdade e, consequentemente, falsidade,

em matemática.
xi: Mostra-se claramente por que uma probabilidade condicional

não é uma probabilidade.
xii: É discutido o emprego de nomes em matemática.

Além disso, muitos exemplos são dados e detalhadamente justifi-
cados, para fins de ilustração.
Mas o principal diferencial deste texto é o tom provocativo. Como

disse o matemático britânico Bertrand Russell [42],

Matemática pode ser definida como o assunto no qual
jamais sabemos sobre o que estamos falando ou se o que

estamos dizendo é verdadeiro ou não.

Seção 5
Metodologia

Sumário

Índice
RedeO método aqui adotado para exposição dos temas é inspirado na

Teoria das Histórias, como apresentada por Robert McKee [37] (ape-
sar de Aristóteles, em sua obra Poética, já ter se ocupado do tema
dois milênios atrás). Na visão de McKee, a maioria das histórias
de cinema, teatro, televisão e literatura conta com a estrutura de
uma arquitrama dividida em três atos. No primeiro ato a perso-
nagem principal é apresentada, com suas características inerentes e
seu atual estado. No segundo ato algo acontece com a personagem
principal, exercendo pressão sobre ela. Essa pressão deve revelar o
caráter da personagem principal. Caráter, por definição, é a forma
como alguém reage diante de pressão. Pressão se refere a eventos
que antagonizam com as características inerentes e o estado em que
se encontra a personagem. Finalmente, no terceiro ato deve ocorrer
a resolução da história, ou seja, a solução final que a personagem
apresenta para a pressão iniciada no segundo ato.
Nossa personagem principal aqui é a teoria de conjuntos ZF. Neste

contexto, o primeiro ato consiste nas Partes 2 e 3. A partir da Parte 4
exercemos pressão sobre ZF, para avaliar sua capacidade de lidar com
as práticas matemáticas necessárias para o cotidiano de matemáticos,
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físicos, engenheiros e demais interessados em usá-la. Com relação ao
terceiro ato, este ainda está em andamento na aventura humana que
busca conhecer ZF e outras formas de fundamentos da matemática
que complementam ou até antagonizam ZF.
Neste contexto, matemática é tratada aqui não como uma ar-

quitrama, mas uma minitrama, na acepção de McKee em sua grande
obra. Detalhes podem ser avaliados pelo leitor no livro citado.
Um dos erros mais graves no ensino de matemática é o foco sobre

alunos e professores, uma vez que este foco deveria estar direcionado
à matemática. Com efeito, em narrativas não interessa quem está
narrando ou acompanhando a história, mas apenas a história. No
entanto, essa é uma extensa discussão que não é contemplada aqui.
Não obstante, a metodologia aqui adotada pode ser facilmente mal

interpretada. Isso porque o leitor pode ficar com a impressão de que
matemática é edificada a partir de conceitos básicos (como ZF), na
direção de conceitos mais sofisticados (como toda a matemática que
pode ser fundamentada em ZF). Porém, não é assim que matemática
(ou até mesmo o estudo de matemática) funciona.
Assim como as arquitramas de McKee contam com tramas para-

lelas que se emaranham com a história principal, conferindo uma
dinâmica que opera em rede sobre a personagem principal, algo a-
nálogo acontece com a prática matemática.
Consideremos, para fins de ilustração, o caso do cálculo diferencial

e integral padrão, assunto tratado nesta obra. Para demonstrarmos
certos resultados sobre funções trigonométricas aplicadas a números
reais, é altamente conveniente conhecermos números complexos. A
teoria ZF qualifica claramente o conceito de número complexo. No
entanto, limites, derivadas e integrais de funções trigonométricas só
podem ser definidos no contexto de espaços métricos, assunto este
que pode ser qualificado em ZF sem sabermos o que são números
complexos. Logo, devemos necessariamente estudar espaços métri-
cos antes de limites, derivadas e integrais de funções trigonométricas?
A resposta é claramente negativa, pelo menos do ponto de vista de
opções disponíveis para o aprendizado de matemática. Basta exa-
minarmos a literatura padrão de cálculo diferencial e integral. Na
maioria dos livros jamais são conceituados números reais ou com-
plexos, e nem mesmo espaços métricos.
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Este é o principal problema no estudo de matemática a partir de

livros. Livros apresentam conteúdos que são lidos sequencialmente,
da página n para a página n + 1, como se a matemática pudesse
ser conhecida de maneira linear, lendo página por página e fazendo
exercícios.
Matemática, porém, não conta com qualquer estrutura hierárquica

de pré-requisitos que permita avançar do básico a um nível avançado,
passando em algum momento por temas de nível intermediário de
sofisticação. Uma pessoa pode conhecer muito bem aspectos profun-
dos de equações diferenciais sem se dar conta dos axiomas de ZF que
sustentam a matemática de equações diferenciais.
Por conta disso, apresentamos a seguir uma estrutura em rede dos

temas abordados neste texto.

Zermelo-
Fraenkel

Probabili-
dades

Geometria
Euclidiana

Geometria
Analítica

Espaços
Métricos

Números
Complexos

Equações
Diferenciais
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Padrão
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Vetoriais
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Estrutura em rede dos assuntos deste livro

O leitor pode julgar seus estudos deste livro como bem sucedidos
se, ao término da leitura e da solução dos exercícios propostos, puder
avaliar criticamente a rede ilustrada na imagem acima.
A rede acima representada conta com dez nós, os quais correspon-

dem aos principais assuntos aqui tratados. As flechas sugerem a
influência de um nó sobre outros. Neste contexto, o nó Zermelo-
Fraenkel é o único do qual apenas partem flechas e nenhuma flecha
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chega até ele. Neste sentido, a rede estabelece que ZF é o ponto de
partida para definir os demais nós.
Digamos que alguém levante a seguinte questão:

Equação de reta, no plano cartesiano, é dada por
definição ou teorema?

A resposta depende do contexto em que equação de reta é apre-
sentada em geometria analítica. Na Seção 77 a equação de reta é
usada para definir retas quaisquer em um modelo de geometria eu-
clidiana plana conhecido como plano cartesiano. Neste sentido o nó
Geometria Analítica da rede acima é construído a partir dos nós
Geometria Euclidiana e Números Complexos. Porém, no es-
tudo de modelos de espaços vetoriais, a equação de reta surge como
teorema (Teorema 8.30). Logo, o nó Geometria Analítica da
rede acima é construído a partir dos nós Geometria Euclidiana,
Números Complexos e Espaços Vetoriais.
Apenas para citar mais um exemplo, o nó Números Complexos

corresponde não apenas ao estudo dos números complexos, mas tam-
bém à investigação de diversos conjuntos que os complexos são ca-
pazes de ‘copiar’, como os reais, os racionais, os irracionais, os inteiros
e os naturais. Neste contexto, as flechas informam que ZF permite
definir corpos, assim como também permite conceituar naturais, in-
teiros, racionais e reais, além dos complexos. Uma vez definidos os
reais, as flechas indicam que ZF permite qualificar espaços métricos.
Uma vez que os nós Espaços Métricos e Corpos são conectados
por uma flecha de duplo sentido, isso mostra que o estudo de espaços
métricos permite uma compreensão mais ampla sobre os próprios
reais (casos particulares de corpos) usados para defini-los.
De forma alguma está sendo sugerido que a rede acima corresponde

à maneira como matemática deve ser tratada. Trata-se apenas de
uma visão resumida sobre como os assuntos aqui explorados estão
conectados entre si. Por exemplo, se houvesse neste livro alguma dis-
cussão sobre espaços métricos probabilísticos, haveria na rede acima
uma flecha conectando os nós Espaços Métricos e Probabili-
dades.
Levando em conta o alerta já feito sobre a linearidade imposta pelo

formato ‘livro’, deve ficar evidente ao leitor o grande desafio que é
a apresentação desta rede no formato de um livro. Este é um dos
grandes desafios que autores enfrentam. Por consequência, quem
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deve pagar o esforço final é evidentemente o leitor. Ou seja, não é
fácil estudar matemática.

Seção 6
Signos usados neste livro

Sumário

Índice
RedeNesta obra utilizamos alguns signos para destacar certas partes do

texto.

b destaca exercícios recomendados ao leitor.

i destaca informações que podem ser obtidas consultando outras
fontes.

k destaca endereço eletrônico (e-mail).

m destaca informações históricas.

Q destaca Seção que pode ser ‘cortada’ (ignorada) sem prejuízo
óbvio ao restante da leitura.

! destaca que a leitura deve ser interrompida para fins de reflexão.

Também usamos retângulos coloridos para contrastar certos tre-
chos do livro. A meta é facilitar ao leitor a eventual busca por
definições, exemplos, proposições e axiomas. Levando em conta
que não empregamos qualquer notação para sinalizar conclusão de
demonstrações e provas, essas caixas coloridas devem auxiliar na
imediata localização dos pontos onde começam e terminam as argu-
mentações que justificam teoremas e proposições.

Definições são posicionadas em retângulos cinzas.

Exemplos são posicionados em retângulos azuis.

Proposições e teoremas são posicionados em retângulos verdes.
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Provas e demonstrações são posicionadas em retângulos com
outro tom de verde.

Axiomas próprios de ZFC são posicionados em retângulos amare-
los.
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PARTE 2

Linguagem e lógica
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Nesta segunda parte qualificamos e desenvolvemos uma linguagem
formal específica e uma lógica tradicionalmente conhecida como lógi-
ca clássica. Para facilitar a visão intuitiva dos conceitos aqui explo-
rados, promovemos analogias com noções elementares sobre ciência
da computação.

Seção 7
Linguagem S

Sumário

Índice
RedeOs conteúdos aqui discutidos sobre linguagens formais e lógica são

uma adaptação da famosa obra de Elliott Mendelson [38]. No en-
tanto, no livro citado o autor não discute sobre a Teoria de Zermelo-
Fraenkel (ZF). Por motivos profissionais e pessoais, Mendelson optou
tratar do sistema de von Neumann-Bernays-Gödel (NBG).
Ambas ZF e NBG são teorias formais amplamente conhecidas, ape-

sar de ZF ser obviamente mais popular. Referências interessantes
aos axiomas de ZF são [28] e [8]. O livro de Thomas Jech [28] não
é adequado a iniciantes, mas é perfeito para quem já tem familiari-
dade com teorias formais e deseja conhecer com alguma profundidade
teoria de modelos, incluindo universos de von Neumann, conjuntos
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construtíveis, modelos de permutações e forcing. Já a obra de Tim
Button [8] é dirigida a filósofos da matemática, com a vantagem
de tratar também de ZF2, ou seja, a versão de segunda ordem de
Zermelo-Fraenkel.
ZF é uma teoria formal axiomática. Toda teoria formal axiomática

exige uma linguagem formal e uma lógica. Nesta Seção tratamos da
linguagem de ZF.
Toda linguagem demanda um vocabulário, ou seja, uma coleção de

símbolos. Chamamos a linguagem da teoria ZF de S (letra S na
fonte Fraktur).

O vocabulário de S é formado pelos seguintes símbolos:
• Variáveis: x1, x2, x3, · · · . Eventualmente variáveis podem
ser abreviadas por letras latinas minúsculas em itálico como
x, y, z, r, s, · · · ou até mesmo letras gregas minúsculas como
α (alfa), β (beta), γ (gama), δ (delta), ε (épsilon), · · · ,
por uma questão de mera conveniência. Outros símbolos
podem ser empregados para designar variáveis, desde que
seja explicitado ser o caso.
• Constantes: c1, c2, c3, · · · . Eventualmente constantes po-
dem ser abreviadas por símbolos especiais, conforme a con-
veniência. Exemplos que são explorados ao longo do texto
são os símbolos ∅ (vazio), {∅} (unitário vazio), {{∅}}
(unitário unitário vazio), ω (omega), {ω} (unitário omega),
entre muitos outros. Observar que as letras gregas π e ω
ocupam uma posição privilegiada entre as constantes. São
as únicas letras gregas não usadas aqui para denotar variá-
veis.
• Dois predicados binários: = (igualdade) e ∈ (pertinência).
• Cinco conectivos lógicos: ¬ (negação), ∧ (conjunção), ∨
(disjunção), ⇒ (condicional), ⇔ (bicondicional).
• Dois quantificadores lógicos: ∀ (universal) e ∃ (existencial).
• Dois símbolos auxiliares: (, ), chamados de ‘abre parênteses’
e ‘fecha parênteses’, respectivamente.

Os símbolos especiais usados para certas constantes são conceitu-
ados oportunamente neste documento.
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Vale a pena notar que, diferentemente da língua portuguesa, a

linguagem formal S emprega um vocabulário com uma infinidade
de símbolos.
Uma sentença de S é qualquer sequência finita de símbolos do
vocabulário de S.

Exemplo 2.1. i: x4x1x4∀()c30¬ é uma sentença de S; com
efeito, esta é uma sequência com oito ocorrências de símbo-
los de S;

ii: x1 = x1 é uma sentença de S; com efeito, esta é uma
sequência com três ocorrências de símbolos de S;

iii: x2S¬ não é uma sentença de S; com efeito, o símbolo S
não está na lista de símbolos da linguagem S.

Intuitivamente falando, pedimos ao leitor para imaginar um teclado
de computador com infinitas teclas, uma para cada símbolo de S.
Uma sentença qualquer de S pode ser escrita digitando aleatoria-
mente esse teclado, sem atenção alguma além de digitar apenas as
teclas. No momento em que a digitação encerrar, teremos então uma
sentença de S.
Observar que a linguagem formal S aqui edificada é a linguagem-

objeto, no sentido de ser uma linguagem sobre a qual está sendo dito
algo a respeito. No entanto, está sendo empregada uma outra lin-
guagem para falar a respeito de S. Essa outra linguagem é o que
se chama de metalinguagem. Este mesmo parágrafo foi escrito na
metalinguagem usada aqui para discutir sobre a linguagem-objeto
S. Neste contexto, a linguagem-objeto S é uma linguagem formal,
enquanto a metalinguagem usada para tratar de S não é. Logo, ex-
pressões até aqui empregadas para descrever S, como ‘vocabulário’,
‘coleção de símbolos’, ‘sequência finita de símbolos’, entre outros, são
termos metalinguísticos com significados implicitamente assumidos.
A metalinguagem aqui usada não é formal. Logo, mesmo o estudo
de linguagens formais da matemática exige o emprego de linguagens
que não são formais.
Como foi dito na Seção 1, a língua portuguesa é insuficiente para

fazer matemática, a qual demanda linguagens formais que prescin-
dem de significados. No entanto, sem uma linguagem não formal
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como português, inglês ou francês, não parece ser possível compreen-
der algo como S.
O próximo passo para edificar S é estabelecer quais sentenças de

S são fórmulas. O papel de fórmulas é explicitar uma sintaxe para
S. Com efeito, matemáticos não estão interessados em sentenças
quaisquer de S, ou seja, sequências quaisquer dos símbolos que cons-
tituem o vocabulário de S.
Se fizermos uma analogia entre S e uma linguagem de progra-

mação de computadores, não basta conhecermos os símbolos da úl-
tima, se quisermos efetivamente criar um programa de computador.
É necessário conhecermos a sintaxe da linguagem. Caso contrário,
qualquer tentativa de fazer o programa funcionar fracassará, se hou-
ver algum erro de sintaxe. Ou seja, apenas digitar aleatoriamente
símbolos de uma linguagem de programação não produz necessaria-
mente um programa de computador.
Mas, antes de estabelecer a sintaxe de S, é necessário qualificar

o que é um termo de S. Isso porque fórmulas devem agir como
‘afirmações a respeito de termos’. Segue abaixo.

Variáveis e constantes são os únicos termos de S.

Ou seja, os únicos símbolos de S chamados de termos são as vari-
áveis e as constantes.

Exemplo 2.2. i: x3 é um termo de S, uma vez que x3 é
uma variável;

ii: ∀ não é um termo de S; com efeito, o símbolo ∀ não é
variável e nem constante.

iii: = não é um termo de S; com efeito, o símbolo = não é
variável e nem constante.

Os objetos de estudo de ZF são, neste primeiro momento, os termos
de S, ou seja, variáveis e constantes de S. Na literatura especializa-
da tais termos são comumente chamados de conjuntos, pelo menos
no contexto da linguagem S que está sendo construída aqui. Mas
o leitor deve ser advertido. Uma vez que S não é comprometida
com qualquer contraparte semântica, os termos de S não devem ser
interpretados como ‘conjuntos’ nas acepções usualmente empregadas
na língua portuguesa. A terminologia conjunto é tão somente um
nome para os termos de S, livre de significado. Comentário análogo

Página 24



Matemática Pandêmica Parte 2 Seção 7
vale para os demais símbolos deS (aqueles que não são termos, como
∀, ¬, ⇒ e outros).
Retornando à analogia com programas de computador, estes tam-

bém empregam linguagens desprovidas de significado. Por conta
disso, uma mesma linguagem de programação pode ser concebida
para criar desde jogos eletrônicos, para fins de entretenimento, até
softwares que gerenciam estoques de supermercados.
Agora podemos finalmente introduzir a sintaxe de S:

i Se u e v são termos de S, então as sentenças
u = v

e
u ∈ v

são fórmulas atômicas de S.
ii Toda fórmula atômica de S é fórmula de S.

iii Se A e B são fórmulas de S e u é uma variável, então as
sentenças ¬(A), (A ∧ B), (A ∨ B), (A ⇒ B), (A ⇔ B),
∀u(A) e ∃u(A) são fórmulas de S.

iv Apenas as sentenças de S que seguem os itens acima são
fórmulas de S.

As fórmulas atômicas u = v e u ∈ v se lêem, respectivamente, ‘u é
igual a v’ (ou, ‘u é idêntico a v’) e ‘u pertence a v’ (ou ‘u é elemento
de v’).
A fórmula ¬(A) se lê ‘não A’ ou ‘a negação de A’.
(A ∧ B) se lê ‘A e B’.
(A ∨ B) se lê ‘A ou B’.
(A ⇒ B) se lê ‘se A, então B’ (ou ‘A implica em B’).
(A ⇔ B) se lê ‘A se, e somente se, B’ ou ‘A é equivalente a B’.
∀u(A) se lê ‘para todo u, A’.
∃u(A) se lê ‘existe u tal que A’.

Fórmulas de S que não são fórmulas atômicas são fórmulas
moleculares.
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Na fórmula molecular ∀x(A) dizemos que A é o escopo do

quantificador universal ∀x. Além disso, x tem ocorrência liga-
da em ∀x(A). Qualquer ocorrência de x no escopo de ∀x(A)
também é ligada.
Variáveis que não são ligadas são variáveis de ocorrências livres.

Exemplo 2.3. i: A fórmula ∀x(x = y) tem duas ocorrên-
cias ligadas de x e uma ocorrência livre de y;

ii: a fórmula ∀y(x = y) tem duas ocorrências ligadas de y e
uma ocorrência livre de x;

iii: na fórmula ∀x(∀y(x = y)) todas as ocorrências de x e de
y são ligadas;

iv: na fórmula x = y todas as ocorrências de x e de y são
livres.

Observar que os símbolos A e B, na definição de fórmulas, são
abreviações metalinguísticas de fórmulas de S, uma vez que A e B
não fazem parte do vocabulário de S.
É usual se referir à fórmula atômica x = y como equação. Neste

sentido, toda equação é tão somente um caso particular de fórmula
atômica.
A sintaxe de S deixa claro que toda fórmula de S é uma sentença

de S, mas nem toda sentença de S é uma fórmula de S.
De agora em diante, para fins de abreviação, fórmulas de S e

sentenças de S são chamadas simplesmente de fórmulas e sentenças,
respectivamente.

Exemplo 2.4. As seguintes sentenças são fórmulas:
i: ∀x(x = x);
ii: ∃x(∀y(¬(y ∈ x)));
iii: ∀x(¬(x = x)).

Observar que, nos exemplos acima, estão sendo empregadas as
abreviações usuais para variáveis.
Justificando item ii do Exemplo acima: x e y abreviam variáveis;

logo, x e y são termos; logo, item i da sintaxe de S garante que
y ∈ x é fórmula atômica; logo, item ii da sintaxe de S garante que
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y ∈ x é fórmula; logo, item iii da sintaxe de S garante que ¬(y ∈ x)
é fórmula; logo, item iii da sintaxe de S garante que ∀y(¬(y ∈ x)) é
fórmula; logo, item iii da sintaxe de S garante que ∃x(∀y(¬(y ∈ x)))
é fórmula.
Todas as ocorrências de x e de y nos três itens do Exemplo 2.4

são ligadas.
O leitor deve ter observado que a sintaxe de S é uma definição

recursiva de fórmula, no sentido de que o item iii pode ser aplicado
quantas vezes forem necessárias para verificar se uma sentença é
fórmula. O critério de parada dessa definição recursiva é garantido
pelo fato de que toda sentença de S deve ser uma sequência finita
de símbolos de S.

Exemplo 2.5. As seguintes sentenças não são fórmulas:
i: = x⇒;
ii: ∃∀(x = x);
iii: (x = y);
iv: ∃x ∧ ∃y(x = y).

Justificando item i do último exemplo: o predicado binário = exige
as ocorrências de um termo imediatamente à esquerda e um termo
imediatamente à direita de =. Porém, não há qualquer ocorrência
de termo à esquerda de =.
Justificando item ii: apesar de x = x ser fórmula, a sentença
∃∀(x = x) não é uma fórmula, uma vez que o item iii da definição
de fórmula exige a ocorrência de uma variável imediatamente à di-
reita do quantificador universal ∀ e de uma variável imediatamente
à direita do quantificador existencial ∃.
Justificando item iii: Apesar de x = y ser fórmula atômica (e,

portanto, fórmula), item iv da definição de fórmula garante que (x =
y) não é fórmula. Com efeito, se A é fórmula, então (A) não é
fórmula.
Justificando item iv: Apesar de x ser uma abreviação para uma

variável, item iii da definição de fórmula exige que ∃x seja seguido
imediatamente à direita pela sentença (A), onde A é uma fórmula;
no entanto não é o que acontece com a sentença ∧∃y(x = y); logo,
item iv da definição de fórmula garante que essa sentença não é
fórmula.
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Seção 8

Definindo definições

Sumário

Índice
RedeUma prática comum é o emprego de definições explícitas abreviati-

vas na linguagemS. Apesar de tais definições explícitas abreviativas
serem matematicamente desnecessárias, elas são extremamente úteis
para facilitar a escrita e a leitura de abreviações metalinguísticas de
fórmulas. Um dos talentos exigidos de qualquer matemático é a ca-
pacidade de ler, escrever e usar fórmulas, bem como refletir e discutir
sobre elas.
Em [41] Alonzo Church ressalta que definições servem ao propósito

de introduzir novas notações, por uma questão de mera conveniência.
Neste sentido, existem vários tipos de definições. Detalhes em [43].
Mas as definições mais frequentemente empregadas neste texto são
as explícitas abreviativas.
Uma definição explícita abreviativa em S é uma sentença metalin-

guística da forma

definiendum
... definiens.

O símbolo ... é uma notação metalinguística cujo propósito é sepa-
rar o definiendum (termo a ser definido) do definiens (fórmula da
linguagem S que qualifica o que o definiendum está abreviando).
Observar que não há qualquer circularidade envolvida na definição

de definições explícitas em S. Isso porque definimos na metalin-
guagem o que são abreviações metalinguísticas da linguagem formal
S. Temos, dessa forma, mais um exemplo das virtudes de discrimi-
nação entre linguagem-objeto e metalinguagem.
Seguem dois exemplos de definições explícitas que são usadas com

frequência aqui e no restante da literatura especializada:

x 6= y
... ¬(x = y)

x 6∈ y ... ¬(x ∈ y)
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Ou seja, apesar de x 6= y não ser uma fórmula deS, é uma abrevia-

ção metalinguística para a fórmula ¬(x = y). Comentário análogo
vale para x 6∈ y.
Vale a pena observar que a sequência de símbolos x 6= y tem com-

primento 3, no sentido de que há três ocorrências de símbolos nela.
Em contrapartida, o definiens correspondente tem comprimento 6.
Com efeito, a fórmula ¬(x = y) conta com seis ocorrências de sím-
bolos, o dobro do definiendum. Comentário análogo vale para a
definição de x 6∈ y. Isso deixa patente a grande vantagem do em-
prego de definições explícitas abreviativas: economia para a escrita
de fórmulas. Desenvolver um tema como cálculo diferencial e inte-
gral sem o uso de definições torna o assunto intelectualmente indi-
gesto, exaustivo e não produtivo. Justamente por isso muitas outras
definições são introduzidas ao longo de todo este texto.
É uma prática comum se referir a abreviações metalinguísticas

como fórmulas, desde que sejam definidas nos moldes acima. Essa
prática é o que se chama de abuso de linguagem. Apesar de abuso de
linguagem não ser justificável formalmente (uma vez que abreviações
metalinguísticas não fazem parte do vocabulário de S), ela facilita
a discussão sobre aspectos formais da matemática. Matemáticos em
geral não perdem tempo com formalismo. Mas é indispensável o
rigor. Rigor , neste contexto, significa ‘a capacidade de reescrever
abreviações metalinguísticas como fórmulas da linguagem S’. For-
malismo significa ‘escrever apenas de acordo com a sintaxe da lin-
guagem formal, sem o emprego de abreviações metalinguísticas’.

Eventualmente podemos substituir o símbolo metalinguístico ... pelo
símbolo metalinguístico ‘sss’ (abreviação para ‘se, e somente se,’).
Logo, as definições acima para 6= e 6∈ poderiam ter sido escritas
também como

x 6= y sss ¬(x = y)
e

x 6∈ y sss ¬(x ∈ y).

Apelando novamente à nossa analogia da linguagem S com uma
linguagem de programação, definições explícitas abreviativas fun-
cionam como ‘sub-rotinas’ que ‘chamam’ uma fórmula a partir de
um ‘nome’. Ou seja, a ‘sub-rotina’ x 6= y apenas ‘chama’ a fórmula
¬(x = y), toda vez que ela ocorre em uma sentença.
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Muitos abusos de linguagem ocorrem com frequência em cálculo

diferencial e integral e álgebra linear, temas que aqui estudamos.
Por conta disso, não são raros os alunos que se sentem confusos, por
conta de tais abusos. Exemplo clássico é a afirmação de que

lim
x→a

f(x) =∞,

em certas situações envolvendo funções reais.
A experiência mostra que muitos alunos tratam o símbolo∞ como

um termo. Mas este não é o caso. Discutimos em detalhes sobre o
assunto na Seção 45. Um maior detalhamento sobre definições é
encontrado na Seção 14.

b Escrever novos exemplos de duas sentenças de S que são fór-
mulas e de duas sentenças que não são fórmulas. Cada exemplo deve
ser justificado de forma circunstanciada.

Seção 9
Lógica

Sumário

Índice
RedeA lógica da teoria de conjuntos ZF é definida por axiomas e regras

de inferência dedutiva.
Axiomas (também conhecidos como postulados) de ZF são fórmulas

selecionadas para compor a lista de axiomas de ZF. Neste contexto,
‘fórmulas de S’ e ‘fórmulas de ZF’ são tratados aqui como sinônimos.
Apesar da aparente circularidade no conceito de axioma, o fato é

que um axioma é tão somente uma fórmula que faz parte da lista de
axiomas de ZF. Obviamente a lista de axiomas de ZF poderia, em
princípio, ser dada pela totalidade de fórmulas deS. Mas, neste caso,
ZF seria uma teoria formal inútil, conforme o leitor deve perceber
mais adiante. Ou seja, todo axioma de ZF é uma fórmula de ZF,
mas nem toda fórmula de ZF é um axioma de ZF. Apesar disso, o
leitor também perceberá que a lista de axiomas de ZF é formada por
uma quantia não finita de fórmulas de S.

Uma regra de inferência dedutiva (ou argumento dedutivo) R é
uma relação

R(F1,F2,F3, · · · ,Fn)
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entre n fórmulas F1, F2, F3, · · · , Fn, de modo que Fn é única.

Por abuso de linguagem nos referimos a regras de inferência dedu-
tiva simplesmente como regras de inferência ou argumentos.
Qualquer regra de inferência R(F1,F2,F3, · · · ,Fn) se lê ‘Fn é con-

sequência imediata de F1, F2, · · · , Fn−1 via R’. No caso particular
em que n = 3, dizemos que R é um silogismo.
Observar que qualquer regra de inferência R em ZF é um símbolo

que não faz parte do vocabulário de ZF. Linguagens não têm o poder
de promover inferências.
A lista de axiomas de ZF é dividida em dois grupos de fórmulas:

axiomas lógicos e axiomas próprios.

Tal lista de axiomas lógicos e axiomas próprios de ZF é apresentada
a partir de alguns parágrafos abaixo.
Seguindo a analogia com programação de computadores, os axio-

mas lógicos e as regras de inferência de ZF operam como um ‘sistema
operacional’, enquanto os axiomas próprios de ZF funcionam como
um software especializado que é executado sob a gerência do sistema
operacional. Por conta disso, podemos considerar variações de ZF
(acrescentando, omitindo ou até alterando axiomas próprios), mas
sempre sob os mesmos princípios ditados pelos axiomas lógicos e
pelas regras de inferência.
A teoria de conjuntos ZF conta com apenas duas regras de infe-

rência:
Modus Ponens (abreviada como M)

e
Generalização (abreviada como G).

Se P e Q são fórmulas e x é uma variável, então
M(P , (P ⇒ Q),Q) e G(P , ∀x(P)).

Neste caso Modus Ponens M se lê como ‘Q é consequência ime-
diata de P e de (P ⇒ Q)’. Logo, Modus Ponens é um exemplo de
silogismo, uma vez que é uma regra de inferência que envolve três
ocorrências de fórmulas. Generalização G, por sua vez, se lê como
‘∀x(P) é consequência imediata de P ’. Logo, Generalização não é
um silogismo, uma vez que é um argumento que envolve apenas duas
ocorrências de fórmulas.
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Do ponto de vista intuitivo, regras de inferência permitem deduzir

novas fórmulas a partir de fórmulas anteriores. No caso de Modus
Ponens, é possível inferir a nova fórmula Q a partir das fórmulas P e
(P ⇒ Q). Desta maneira Modus Ponens confere um caráter dedutivo
ao conectivo condicional⇒. Isso justifica a leitura de (P ⇒ Q) como
‘se P , então Q’.
A importância de axiomas e regras de inferência na edificação de

ZF é discutida na próxima Seção. Por enquanto basta dizer que axi-
omas e regras de inferência são indispensáveis para ZF. Isso porque
ZF deve expressar ideias a partir de seus axiomas e permitir inferir
novas ideias não explicitamente expressas por seus axiomas.
Se A, B e C são fórmulas de S, então os axiomas lógicos de ZF são

as seguintes fórmulas:
L1 (A ⇒ (B ⇒ A));
L2 ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)));
L3 (((¬B)⇒ (¬A))⇒ (((¬B)⇒ A)⇒ B));
L4 ∀x(A(x) ⇒ A(t)), se t for um termo livre para x em A(x), ou

seja, nenhuma ocorrência livre de x em A(x) está no escopo de
quantificador ∀y com y ocorrendo em t;

L5 (∀x(A ⇒ B) ⇒ (A ⇒ ∀x(B))), se x não tem ocorrências livres
em A.

Os axiomas lógicos L1 e L2 estabelecem como deve ‘funcionar’ o
conectivo condicional ⇒. Por exemplo, axioma L1 diz, intuitiva-
mente falando, que ‘se temos a fórmula A, então qualquer fórmula
B implica em A’. Axioma L3 estabelece relações entre os conectivos
condicional ⇒ e negação ¬.
Os demais conectivos lógicos (conjunção ∧, disjunção ∨ e bicondi-

cional⇔) não têm ocorrência alguma entre os axiomas lógicos de ZF
por conta de um fato muito simples: são matematicamente desne-
cessários. Com efeito, poderíamos ter definido tais conectivos como
se segue:

i: (A ∧ B) ... ¬(A ⇒ ¬(B));
ii: (A ∨ B) ... (¬(A)⇒ B);
iii: (A ⇔ B) ... ((A ⇒ B) ∧ (B ⇒ A));

sendo A e B fórmulas.
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Em outras palavras, (A ∧ B) (A e B) equivale a dizer que ‘não é

o caso de A implicar na negação de B’; (A ∨ B) (A ou B) equivale
a dizer que ‘a negação de A implica em B’; e (A ⇔ B) (A se, e
somente se, B) equivale a dizer que ‘A implica em B, e B implica em
A’.
Neste texto escolhemos a incorporação dos conectivos lógicos con-

junção, disjunção e bicondicional ao vocabulário de S por motivos
meramente pedagógicos. Neste contexto, podemos acrescentar aos
axiomas lógicos de ZF as seguintes fórmulas:

(A ∧ B)⇔ ¬(A ⇒ ¬(B));

(A ∨ B)⇔ (¬(A)⇒ B);
e

(A ⇔ B)⇔ ((A ⇒ B) ∧ (B ⇒ A)).

Eventualmente pares de parênteses podem ser omitidos (se não
houver risco de ambiguidade na leitura das fórmulas) desde que o
rigor seja seguido, conforme discussão anterior sobre a diferença entre
formalismo e rigor.
Axiomas lógicos L4 e L5 estabelecem as ‘relações’ entre o quantifi-

cador universal ∀ e o conectivo condicional ⇒.
O quantificador existencial ∃ não tem ocorrência alguma entre os

axiomas lógicos de ZF porque ele pode ser definido a partir do quan-
tificador universal como se segue:

∃x(A) ... ¬(∀x(¬(A))),

sendo A uma fórmula.
Logo, analogamente à discussão sobre os conectivos lógicos con-

junção, disjunção e bicondicional, podemos acrescentar como axioma
lógico de ZF a seguinte fórmula:

∃x(A)⇔ ¬(∀x(¬(A))),

desde que A seja uma fórmula.
Uma discussão mais detalhada sobre os axiomas lógicos de ZF está

além dos propósitos introdutórios deste documento. Informações
complementares, com uma abordagem muito didática e matemati-
camente rigorosa, podem ser encontradas em [38]. No entanto, na
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próxima Seção há uma discussão que deve ajudar o leitor a desen-
volver uma visão intuitiva sobre axiomas e, particularmente, axiomas
lógicos de ZF.
Finalmente, observar que, entre os axiomas lógicos de ZF, não há

uma única ocorrência do predicado pertinência ∈. Os axiomas onde
ocorrem tal predicado são os axiomas próprios de ZF, os quais são
discutidos a partir da Seção 18, na Parte 3 deste livro.

Seção 10
O papel de axiomas e regras de inferência

Sumário

Índice
RedeAxiomas são casos especiais de fórmulas. Regras de inferência per-

mitem inferir novas fórmulas a partir de fórmulas anteriores, em uma
dada sequência finita de fórmulas. O princípio por trás desses con-
ceitos consiste na seguinte proposta: obter fórmulas novas, a partir
de axiomas e regras de inferência, chamadas de teoremas. Matemáti-
cos são caçadores de teoremas.

Definição 2.1. Uma demonstração em ZF é uma sequência
finita de fórmulas

F1,F2, · · · ,Fn
de S de modo que cada fórmula Fi dessa sequência é um axioma
de ZF ou uma consequência imediata de fórmulas anteriores via
o emprego de uma regra de inferência de ZF. Um teorema T de
ZF é a última fórmula de uma demonstração em ZF. Neste caso
dizemos que F1, F2, ...., Fn é uma demonstração de T (sendo
que Fn é a fórmula T ).

Proposição 2.1. Todo axioma de ZF é teorema de ZF.

Prova: Seja A um axioma de ZF. Logo, a sequência finita
A (formada por uma única fórmula) satisfaz a definição de
demonstração em ZF. Como A é a última fórmula da se-
quência A, então A é teorema de ZF.
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Observar que a proposição acima não é um teorema de ZF, uma

vez que foi formulada na metalinguagem aqui empregada para dis-
cutirmos sobre ZF. Proposições, no contexto do estudo de teorias
formais, são conhecidas também como metateoremas.

Proposição 2.2. Todo teorema em ZF admite infinitas de-
monstrações.

Prova: Seja T um teorema de ZF. Logo, existe demonstra-
ção F1, F2, ..., Fn em ZF de modo que Fn é a fórmula
T . Logo, a sequência F1, F2, ..., Fn, Fn também é uma
demonstração de T . Analogamente, a sequência F1, F2, ...,
Fn, Fn, Fn é uma demonstração de T . Podemos repetir
esse procedimento para definir novas demonstrações de T
quantas vezes quisermos.

Se T é teorema em ZF, denotamos isso como

`ZF T

ou
`ZF T .

Se T não é teorema em ZF, denotamos isso como

6`ZF T

ou
6`ZF T .

Para ilustrarmos um exemplo de demonstração não trivial, con-
sidere o seguinte enunciado.

Teorema 2.1. Se A é uma fórmula de ZF, então
`ZF (A ⇒ A).

Demonstração: (A ⇒ ((A ⇒ A) ⇒ A)), ((A ⇒ ((A ⇒
A) ⇒ A)) ⇒ ((A ⇒ (A ⇒ A)) ⇒ (A ⇒ A))), ((A ⇒
(A ⇒ A))⇒ (A ⇒ A)), (A ⇒ (A ⇒ A)), (A ⇒ A).
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A demonstração acima é uma sequência de cinco fórmulas de ZF,

separadas por vírgulas (neste caso a vírgula é um símbolo auxiliar
metalinguístico).
A primeira das cinco fórmulas é o axioma L1, onde a fórmula B

de L1 foi substituída pela fórmula (A ⇒ A). A segunda é o axioma
L2, onde B foi substituída por (A ⇒ A) e C foi substituída por
A. A terceira fórmula da demonstração é consequência imediata das
fórmulas dos passos 1 e 2 via Modus Ponens. A quarta é novamente o
axioma L1, onde substituímos B por A. Finalmente, o último passo
é consequência imediata dos passos 3 e 4 via Modus Ponens.
Do ponto de vista intuitivo, o enunciado acima estabelece que toda

fórmula de ZF implica nela mesma. Ou seja, se A é uma fórmula
de ZF, então (A ⇒ A) é um teorema de ZF, independentemente
de A ser teorema de ZF ou não. Por exemplo, a sentença x = y é
uma fórmula de ZF. Logo, (x = y ⇒ x = y) é um teorema de ZF.
Analogamente, (x 6= y ⇒ x 6= y) é outro teorema de ZF.
Observar que a fórmula (A ⇒ A) não é um axioma de ZF. No

entanto, é um teorema de ZF, desde que A seja fórmula. A meta do
matemático, neste contexto, é estabelecer quais fórmulas de ZF são
teoremas e quais não são.
Neste contexto, uma conjectura em ZF é uma fórmula A sobre

a qual acredita-se ser um teorema (ou pelo menos algum grupo de
matemáticos crê nisso), ainda que ninguém a tenha demonstrado. A
partir do momento em que uma demonstração é exibida na qual A
é a última fórmula da demonstração, tal fórmula deixa de ser uma
conjectura e passa a ser um teorema.
Os fatos colocados acima justificam a afirmação anterior de que,

uma versão de ZF onde todas as possíveis fórmulas são axiomas,
seria inútil. Se todas as fórmulas de ZF fossem axiomas, logo, todas
as fórmulas seriam teoremas. Logo, não haveria discriminação entre
fórmulas que são teoremas e aquelas que não são. Logo, não haveria
necessidade alguma de regras de inferência. Logo, em particular, ZF
jamais poderia ser aplicada para lidar com problemas do mundo real.
Com efeito, existem fenômenos que ocorrem no mundo real e aqueles
que não ocorrem. Os fenômenos que ocorrem no mundo real devem
ser, de algum modo, mapeados por teoremas de ZF.
Uma teoria formal como ZF não é um luxo intelectual. Há nesta

teoria algo inerentemente pragmático no que se refere a potenciais
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aplicações tanto em matemática quanto em ciências nas quais a ma-
temática se mostra relevante.
O fato de que nem todas as fórmulas de ZF são teoremas torna essa

teoria um objeto de estudo matemático e filosófico. Por exemplo,
se, em algum sentido, for possível enunciar um conceito de verdade
(ver Seções 15 e 111), é possível provar a existência de fórmulas
verdadeiras de ZF que não são teoremas?
O estudo mais detalhado dos axiomas lógicos de ZF demanda um

esforço que vai muito além dos propósitos deste livro, como já foi
dito acima. Por conta disso, interessa apenas saber que, se P , Q e
R forem fórmulas quaisquer (teoremas ou não), então as seguintes
fórmulas são teoremas de ZF:

1. (P ∧Q)⇒ P .
2. (P ∧Q)⇒ Q.
3. P ⇒ P .
4. P ⇒ (P ∨Q).
5. Q ⇒ (P ∨Q).
6. ¬¬P ⇔ P . Princípio da Dupla Negação.
7. (P ⇒ Q)⇔ (¬Q ⇒ ¬P).
8. P ∨ ¬P . Princípio do Terceiro Excluído.
9. (P ∧Q)⇔ (Q∧ P). Conjunção é comutativa.
10. (P ∨Q)⇔ (Q∨ P). Disjunção é comutativa.
11. (P ⇔ Q)⇔ (¬P ⇔ ¬Q).
12. (P ⇔ Q)⇔ ((P ⇒ Q) ∧ (Q ⇒ P)).
13. ((P ∨Q) ∨R)⇔ (P ∨ (Q∨R)). Disjunção é associativa.
14. ((P ∧Q) ∧R)⇔ (P ∧ (Q∧R)). Conjunção é associativa.
15. (P ∧ (Q∨R))⇔ ((P ∧Q)∨ (P ∧R)). Distributividade da

conjunção em relação à disjunção.
16. (P ∨ (Q∧R))⇔ ((P ∨Q)∧ (P ∨R)). Distributividade da

disjunção em relação à conjunção.
17. ¬(P ∨Q)⇔ (¬P ∧ ¬Q).
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Obviamente há uma infinidade de outros teoremas, além desses.

O que escrevemos aqui é apenas para fins de ilustração e futura
referência em trechos que ocorrem adiante neste texto.
A fórmula (¬Q ⇒ ¬P) no item 7 acima é chamada de contrapo-

sitiva de (P ⇒ Q). Por conta do Princípio da Dupla Negação, a
fórmula (P ⇒ Q) também é a contrapositiva de (¬Q ⇒ ¬P).

Exemplo 2.6. i: (¬(x 6= y) ⇔ x = y) é o Teorema 6 da
lista acima, onde a fórmula P é x = y; logo, por Generali-
zação,

∀x(¬(x 6= y)⇔ x = y)
é teorema de ZF. Aplicando Generalização novamente,

∀y(∀x(¬(x 6= y)⇔ x = y))
é mais um teorema de ZF;

ii: (x = y ∨ x 6= y) é o Teorema 8 da lista acima, onde a
fórmula P é x = y; logo, por Generalização,

∀x(x = y ∨ x 6= y)
é outro teorema de ZF.

A igualdade = deve satisfazer a duas condições, no sentido de serem
fórmulas que são teoremas:

i: ∀x(x = x);
ii: x = y ⇒ (P(x, x)⇒ P(x, y)), onde P(x, y) é uma fórmula

obtida a partir de P(x, x) por substituição de pelo menos
uma ocorrência de x por y (desde que y seja livre para x em
P(x, x), ou seja, nenhuma ocorrência livre de x em P(x, x)
está no escopo de quantificador ∀z com z ocorrendo em y).

O teorema i sobre igualdade é chamado de reflexividade da igual-
dade. Já o teorema ii é conhecido como substitutividade da igualdade.
O importante aqui é perceber que qualquer termo t só pode ser igual
a ele mesmo. Quando se escreve x = y, essa fórmula atômica apenas
diz que o mesmo termo x é chamado também de y.
A partir da reflexividade da igualdade e da substitutividade da

igualdade é possível provar que a igualdade é simétrica e transitiva.
Ou seja,

∀x∀y(x = y ⇒ y = x)
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e

∀x∀y∀z((x = y ∧ y = z)⇒ x = z)
são teoremas de ZF. Demonstrações desses dois últimos resultados
para situações muito mais amplas do que aquelas aqui colocadas
podem ser encontradas em [38].
Aqui cabe um esclarecimento. Como já definido, equações são fór-

mulas atômicas
x = y.

Soluções de uma equação, se existirem, são todos os termos x e y
tais que a equação x = y é teorema. Por conta disso, a reflexividade
da igualdade garante que todo termo x é solução da equação

x = x.

Mas, obviamente, estamos interessado em outras equações, bem
como na determinação das suas soluções, conforme se vê adiante, no
restante da leitura.

Seção 11
Esquemas de teoremas

Sumário

Índice
RedeO leitor mais crítico deve ter observado algo de ‘errado’ no Teo-

rema 2.1. Se Teorema 2.1 é de fato um teorema de ZF, então por que
o emprego da sentença metalinguística “Se A é uma fórmula de ZF,
então...”? Isso ocorre porque, rigorosamente falando, Teorema 2.1 é
um esquema de teoremas. Um teorema de fato de ZF é o seguinte:

Teorema 2.2. (x = y ⇒ x = y).

Uma possível demonstração do teorema acima é feita exatamente
como na demonstração do Teorema 2.1, substituindo a fórmula A
por x = y. No entanto, x = y não é a única possível fórmula de
ZF. O que foi feito na ‘demonstração’ do Teorema 2.1 foi uma in-
finidade de demonstrações, uma para cada possível fórmula A de ZF.
Apresentamos a seguir uma pequena lista com alguns deles:

`ZF (x = y ⇒ x = y),
`ZF (x 6= y ⇒ x 6= y),
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`ZF (x ∈ y ⇒ x ∈ y),

`ZF ((x = y ∧ x 6= y)⇒ (x = y ∧ x 6= y)).

Uma vez que (x = y ⇒ x = y) é teorema de ZF, é possível aplicar
Generalização para obter o novo teorema

∀x(x = y ⇒ x = y).

Aplicando Generalização mais uma vez se obtém o novo teorema

∀y∀x(x = y ⇒ x = y).

Seção 12
Metateorema da Dedução

Sumário

Índice
RedeNesta Seção é qualificado, no contexto de ZF, o conceito de pre-

missa, o qual é sinônimo de hipótese. Para uma definição aplicável
a uma vasta gama de teorias formais, ver [38].

Definição 2.2. Seja Γ um conjunto (na acepção da metalin-
guagem aqui empregada) de fórmulas de ZF. Dizemos que uma
fórmula T é consequência de Γ em ZF sss (abreviação para ‘se,
e somente se’) existe sequência finita de fórmulas

F1,F2, · · · ,Fn
tal que Fn é T e cada passo da sequência é um axioma de ZF
ou uma fórmula de Γ ou consequência imediata de fórmulas an-
teriores via o emprego de uma regra de inferência de ZF.

Γ é chamado de conjunto de premissas. Cada fórmula de Γ é
chamada de premissa ou hipótese. Denotamos isso por

Γ `ZF T .

A visão intuitiva da definição acima é desenvolvida melhor a partir
dos metateoremas que seguem abaixo.

Proposição 2.3. Sejam Γ e ∆ conjuntos quaisquer de fór-
mulas de ZF e T uma fórmula de ZF. Se Γ `ZF T então

Γ ∪∆ `ZF T .
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b A prova da proposição acima é imediata, bastando aplicar a
Definição 2.2. Fica como sugestão de exercício para o leitor. Obvia-
mente a recíproca da Proposição 2.3 (se Γ∪∆ `ZF T então Γ `ZF T )
não é uma proposição. Consegue encontrar contra-exemplo para a
recíproca da Proposição 2.3?
O que Proposição 2.3 estabelece é o seguinte: se uma fórmula T é

consequência de um conjunto de premissas, então não faz diferença
alguma acrescentar novas premissas; T continuará sendo consequên-
cia do novo conjunto de hipóteses. Esse tipo de resultado ajuda a
desenvolver intuições sobre o papel de premissas. Matemáticos sem-
pre estão interessados na ‘menor quantia’ possível de hipóteses não
triviais para provar que uma fórmula é consequência de tais hipóte-
ses.
Consequência imediata da Proposição 2.3 é a seguinte.

Proposição 2.4. Se T é teorema de ZF e Γ é um conjunto
de fórmulas, então Γ `ZF T .

Ou seja, qualquer teorema é consequência de qualquer conjunto
de hipóteses. Novamente a recíproca não é uma proposição. O fato
de uma fórmula ser consequência de um conjunto de premissas não
implica necessariamente que tal fórmula é teorema. No entanto, se
existe demonstração para Γ `ZF T tal que não ocorra uma única
fórmula de Γ, então T é teorema de ZF.

Proposição 2.5 (Dedução). Sejam Γ um conjunto de fór-
mulas de ZF e H e T fórmulas de ZF. Então

Γ ∪ {H} `ZF T sss Γ `ZF H ⇒ T .

Essa última proposição é o célebre Metateorema da Dedução, de-
vido ao francês Jacques Herbrand (1930). Ele garante que, se H é
uma hipótese de um conjunto Π de premissas e T é consequência de
tal conjunto Π de hipóteses, então H ⇒ T é consequência de um
conjunto de premissas que tem todas as hipóteses de Π, exceto H.
Obviamente, Π = Γ ∪ {H}.
Sua demonstração foge do escopo da proposta deste documento.

Mas o resultado em si é de grande importância, uma vez que o Meta-
teorema da Dedução justifica a prática das demonstrações condi-
cionais, aquelas nas quais são assumidas hipóteses Γ para derivar um
resultado T . Em particular, {H} `ZF T é equivalente a `ZF H ⇒ T .
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b Se H ⇒ T é uma fórmula de ZF, então T ⇒ H é chamada
de recíproca de H ⇒ T . O fato de H ⇒ T ser teorema de ZF não
implica que sua recíproca é teorema. Consegue justificar isso?
Escrevemos 0ZF T para dizer que T não é teorema de ZF e Γ 0ZF T

para dizer que T não é consequência do conjunto de premissas Γ em
ZF.

Exemplo 2.7. i: {A} `ZF B ⇒ A, sendo A e B fórmulas
de ZF; a prova deste resultado é feita a partir do axioma
lógico L1 e do Metateorema da Dedução 2.5;

ii: b {A} `ZF A; consegue justificar este resultado?

Quando o conjunto de hipóteses conta com uma única fórmula,
podemos omitir o emprego de chaves. Logo, item ii acima pode ser
reescrito como

A `ZF A.

Em outras palavras, está escrito acima que, se A é uma hipótese,
então A é consequência dela mesma.

Proposição 2.6. Se T é teorema de ZF e H é uma fórmula,
então

`ZF H ⇒ T .

b A prova pode ser feita a partir do Metateorema da Dedução e
da Proposição 2.4. Recomendamos ao leitor que faça como exercício.

Seção 13
Princípio da Explosão

Sumário

Índice
RedeQiApesar do Princípio da Explosão ser usado na discussão

sobre o Paradoxo de Russell na Seção 22, não há prejuízo óbvio ao
ignorar esta discussão.
Se considerarmos apenas axiomas L1, L2 e L3 da Seção 9 (ou seja,

ZF sem os axiomas próprios e sem os lógicos L4 e L5), o Metateo-
rema de Kalmár [38] garante como resultado secundário que, se uma
fórmula F é teorema, então ¬(F) não é teorema. Ou seja, os demais
axiomas lógicos L4 e L5 devem ser consistentes com este resultado.
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Em particular, sabendo que o Princípio do Terceiro Excluído

P ∨ ¬P

é teorema, então a negação

¬(P ∨ ¬P)

não é teorema.
No entanto, de acordo com as fórmulas 6 e 17 da Seção 10, a

fórmula
¬(P ∨ ¬P)⇔ (¬P ∧ P)

é teorema. Isso implica que ¬P ∧ P não é teorema.

b Por outro lado, se P eQ são fórmulas de ZF, logo, (P∧¬P)⇒
Q é teorema de ZF (consegue provar?).
A fórmula (P ∧¬P) é uma contradição ‘P e não P ’, no sentido de

que ¬(P ∧ ¬P) é teorema. Logo, de acordo com o Metateorema da
Dedução,

(P ∧ ¬P) `ZF Q.

Equivalentemente isso pode ser escrito como

{P ,¬P} `ZF Q.

Este é o Princípio da Explosão: a partir de um conjunto Γ de hi-
póteses cuja conjunção é uma contradição, qualquer fórmula Q de
ZF é consequência de Γ.
Em outras palavras, contradições permitem inferir qualquer fór-

mula. Se, em particular, os axiomas próprios de ZF produzirem
algum teorema T tal que ¬(T ) também é teorema, então todas as
fórmulas de ZF são teoremas. Até hoje não se sabe se esse fenômeno
altamente inconveniente ocorre ou não em ZF.
Matemáticos também operam sob o comando de crenças pessoais.

A sensação dominante é que muito provavelmente ZF é consistente.
Com efeito, até hoje não foi encontrada qualquer inconsistência.
Mas, claro, essa fé não é cega. Se alguém conseguir exibir uma
inconsistência em ZF, a teoria deverá ser reescrita.
O Princípio da Explosão motivou a edificação de outras lógicas

chamadas de paraconsistentes [9], nas quais tal princípio não vale.
Logo, lógicas paraconsistentes não são equivalentes à lógica clássica,
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apesar de poderem ser percebidas como uma extensão da mesma.
Detalhes na referência citada.

Seção 14
Ainda sobre definições

Sumário

Índice
RedeQAgora que conhecemos um pouco a respeito de linguagem e

lógica, podemos detalhar mais a respeito de definições, dando con-
tinuidade à Seção 8.
Definições explícitas abreviativas devem ser:
• Elimináveis e
• Conservativas.

O critério de eliminabilidade estabelece que, em qualquer definição
explícita abreviativa, podemos substituir o definendum pelo definiens.
Por exemplo, considere a definição do símbolo metalingístico 6=, in-
troduzido na Seção 8. Ao escrevermos x 6= y, podemos substituir tal
abreviação pela fórmula correspondente na linguagem S, a saber,
¬(x = y).
O critério de eliminabilidade reforça a economia de notação na

prática matemática, como já discutido. Uma vez que ZF é uma teoria
de fundamentação para assuntos como cálculo diferencial e integral,
conceitos sofisticados, como integral de Riemann (Seção 58), podem
ser introduzidos com considerável economia de notação graças a uma
estratégica lista de definições abreviativas. Escrever os conceitos de
limite, derivada e integral, sem o emprego de tais definições dadas
anteriormente (na medida em que este texto evolui), é obviamente
possível (usando única e exclusivamente os símbolos do vocabulário
da linguagem S de ZF); mas não é um recurso amigável para fins de
escrita e leitura de matemática. Ou seja, a prática matemática deve
levar com consideração limitações cognitivas humanas.
O segundo critério estabelece que toda definição explícita abrevia-

tiva deve ser conservativa, ou seja, não deve permitir a formulação
de novos teoremas que não poderiam ser obtidos sem a definição.
Por exemplo, digamos que alguém proponha o que se segue, como
definição para o símbolo metalinguístico �: dadas as fórmulas A, B
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e C, então

(A� B)⇔ C ... (A ∧ B)⇒ C.

Claramente o critério de eliminabilidade é satisfeito para quaisquer
ocorrências de (A�B)⇔ C. Mesmo nos casos em que há ocorrência
apenas de A�B, podemos substituir A�B por qualquer fórmula C
(por conta da bicondicional ⇔). No entanto, de acordo com a Seção
10, as fórmulas (A∧B)⇒ A e (A∧B)⇒ B são teoremas. Logo, (A�
B)⇔ A e (A� B)⇔ B são teoremas. Portanto, A ⇔ B é teorema.
Se B for a fórmula ¬A, isso implica em uma contradição A ⇔ ¬A,
a qual é um novo teorema, no sentido de que, antes da suposta
definição de �, a fórmula A ⇔ ¬A não era teorema. Portanto,
apesar da estrutura

definiendum ... definens,
isso não é uma definição explícita abreviativa para o símbolo �.
Resumidamente, definições explícitas abreviativas devem apenas

abreviar fórmulas, desde que não sejam equivalentes a novos postu-
lados de ZF, uma vez que apenas novos postulados podem ser res-
ponsáveis por novos teoremas. No caso acima, a suposta definição
para o símbolo � introduz a fórmula

((A� B)⇔ C)⇔ ((A ∧ B)⇒ C)

como novo postulado à lógica de ZF, o qual é inconsistente com os
demais postulados lógicos. Mais detalhes podem ser encontrados em
[43].

Seção 15
Verdade

Sumário

Índice
RedeA essa altura o leitor já deve ter observado que, em momento

algum, foram qualificados os conceitos de verdade e falsidade. O
estudo de ZF pode ser promovido sem jamais mencionar algo como
verdade ou falsidade. O que interessa em ZF é se uma dada fórmula
é teorema ou não. No entanto, é perfeitamente possível (e extrema-
mente útil) qualificar a afirmação ‘a fórmula A é verdadeira’. Uma
discussão sobre este problema e sua relevância é colocada na Seção
111.
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Seção 16

Resumo da ópera

Sumário

Índice
RedeO que sabemos até aqui pode ser resumido da seguinte maneira.

• A partir do vocabulário de S são definidas sentenças, as quais
são apenas sequências finitas de símbolos do vocabulário de S.
• Entre as sentenças de S são selecionadas aquelas que são fór-
mulas. Isso é feito graças a uma sintaxe.
• Entre as fórmulas de S são selecionadas aquelas que são os
axiomas de ZF. Com efeito, ZF não é definida apenas por uma
linguagem, mas por uma lógica também.
• Entre as fórmulas de S são selecionados os teoremas de ZF.
Teoremas são obtidos a partir de axiomas e/ou regras de infe-
rência. Teoremas cujas respectivas demonstrações não deman-
dam o emprego de qualquer regra de inferência são chamados
de triviais. Logo, todo axioma de ZF é um teorema trivial,
conforme Proposição 2.1. Teoremas, cujas possíveis demonstra-
ções sempre empregam pelo menos uma regra de inferência, são
chamados de não triviais.
• Matemáticos que trabalham com ZF estão interessados priori-
tariamente nos teoremas não triviais de ZF.

Com relação ao último item acima, notar que há também interesse
no estudo dos próprios axiomas de ZF, pelo menos de um ponto de
vista metalinguístico. Ver Seção 111.
Como foi dito anteriormente, matemáticos estão mais interessados

em rigor do que formalismo. Neste contexto, as demonstrações re-
alizadas na prática matemática não seguem ipsis litteris a Definição
2.1. No lugar disso, demonstrações típicas de ZF (aquelas que são co-
mumente encontradas na literatura especializada) são simplesmente
sequências finitas de afirmações, as quais podem ser formalmente
transcritas nos moldes da Definição 2.1.
Obviamente, não há procedimento efetivo para decidir se uma

demonstração, nesta acepção mais relaxada, é rigorosa ou não. Jus-
tamente por conta disso que erros humanos são muito comuns entre
matemáticos. Daí a necessidade de troca de ideias entre pares, como
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salientado na Seção 3. Ao longo de todo o restante deste texto ado-
tamos a prática matemática comum de que demonstrações devem
ser rigorosas, mas não necessariamente formais.

Seção 17
Notas históricas

Sumário

Índice
Rede

m
A linguagem S aqui empregada é um caso particular de Cálculo
Predicativo de Primeira Ordem [38], o qual atingiu um considerável
amadurecimento nas mãos de Gottlob Frege [22]. No entanto, há
outras linguagens formais com expressividade muito maior, como os
Cálculos de Ordem Superior . Um exemplo bem conhecido é a teoria
ZF em sua versão de segunda ordem [8] (conhecida como ZF2), a qual
conta com uma linguagem diferente da linguagem S aqui discutida.

David Hilbert em 1912
Fonte: Wikipedia.

A clara distinção entre cálculos de primeira ordem e de ordem su-
perior somente tomou forma na segunda década do século 20, graças
principalmente a David Hilbert e colaboradores. Para uma ampla
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visão histórica do nascimento de lógica e fundamentos nos moldes
do que hoje se entende sobre o tema, ver o extraordinário livro de
Jean van Heijenoort [22].

m
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O que faz a pertinência
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Nesta terceira parte a ênfase é sobre os axiomas próprios de ZF,
bem como os requisitos para a fundamentação de certos ramos da
matemática que encontram ampla aplicabilidade.

Seção 18
O primeiro axioma próprio de ZF

Sumário

Índice
RedeOs axiomas próprios de ZF se referem explicitamente ao predicado

binário ∈, no sentido de como ele se relaciona com conectivos lógicos,
quantificadores lógicos e a igualdade. Segue nesta, e nas próximas
Seções, a lista de todos os postulados próprios de ZF.
Cada axioma próprio de ZF tem um nome:
• Extensionalidade,
• Vazio,
• Par ,
• Potência,
• União,
• Separação,
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• Infinito,
• Regularidade e
• Substituição.

Uma variação de ZF é discutida mais adiante, chamada de ZFC.
Ela conta com os mesmos axiomas de ZF e um postulado a mais
chamado de Escolha.
Segue o primeiro postulado próprio de ZF.

ZF1 - Extensionalidade:
∀x∀y∀z((z ∈ x⇔ z ∈ y)⇒ x = y).

Os termos de ZF são chamados de conjuntos. A origem histórica
do termo conjunto deriva da interpretação pretendida de que ZF
deve capturar pelo menos parte das ideias originais de Georg Cantor,
autor de um corpo do conhecimento chamado Mengenlehre (teoria
de conjuntos, em tradução livre do alemão).
O Axioma da Extensionalidade de ZF afirma o seguinte: se x e y

são conjuntos que compartilham os mesmos elementos z, então x é
idêntico a y.
De um ponto de vista intuitivo, o Axioma da Extensionalidade

estabelece que um conjunto x é identificado única e exclusivamente
pelos conjuntos z tais que z ∈ x, ou seja, por seus elementos. A
recíproca do Axioma da Extensionalidade é teorema, como se percebe
a seguir.

Teorema 3.1. ∀x∀y∀z(x = y ⇒ (z ∈ x⇔ z ∈ y)).

Demonstração: Sabemos que
z ∈ x⇔ z ∈ x

é teorema (cuja demonstração pode ser exibida usando ape-
nas os axiomas lógicos de ZF e Modus Ponens, de maneira
análoga ao Teorema 2.1).
Logo,

z ∈ x⇔ z ∈ x
é consequência de qualquer premissa (Proposição 2.4), em
particular, x = y.
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Portanto,

x = y ⇒ (z ∈ x⇔ z ∈ x)
é teorema (Proposição 2.6). Mas, de acordo com a substi-
tutividade da igualdade, podemos substituir qualquer ocor-
rência livre de x por y na fórmula z ∈ x⇔ z ∈ x, de modo
que a nova fórmula é teorema. Logo,

x = y ⇒ (z ∈ x⇔ z ∈ y)
é teorema.
Aplicando Generalização, temos

∀z(x = y ⇒ (z ∈ x⇔ z ∈ y)).

Aplicando novamente temos
∀y∀z(x = y ⇒ (z ∈ x⇔ z ∈ y)).

Aplicando Generalização mais uma vez temos
∀x∀y∀z(x = y ⇒ (z ∈ x⇔ z ∈ y)).

Isso conclui a prova.

Ou seja, o Axioma da Extensionalidade, em parceria com o Teo-
rema 3.1, estabelece que a fórmula x = y é equivalente a afirmar
que x e y compartilham os mesmos elementos. Essa é uma infor-
mação de extraordinária importância sobre o predicado binário de
pertinência ∈. Tal predicado é necessário e suficiente para identificar
um conjunto.

i Se o leitor se interessar por uma compreensão mais aprofun-
dada sobre o Axioma da Extensionalidade, no artigo [1] há uma
proposição que prova o seguinte resultado:

6`ZF−{Extensionalidade, Infinito} Extensionalidade.

Por um lado, ZF−{Extensionalidade, Infinito} é uma teoria formal
com os mesmos postulados de ZF, exceto o Axioma da Extensiona-
lidade e o Axioma do Infinito (este último é discutido na Seção 23).
Por outro, a proposição acima simplesmente diz que o Axioma da
Extensionalidade não é teorema em uma teoria que conta com todos
os axiomas de ZF, exceto Extensionalidade e Infinito. Tal resultado
é de enorme importância. Com efeito, isso significa que apenas o
predicado de igualdade = não é o bastante para identificar conjuntos.
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Logo, aprendemos uma valiosa lição:

O Axioma da Extensionalidade desempenha papel
indispensável para a identificação de conjuntos.

Seção 19
Quantificador ∃!

Sumário

Índice
RedeAntes de prosseguirmos com os demais postulados de ZF, é útil a

introdução de uma nova abreviação metalinguística.
Seja A uma fórmula de ZF. Logo,

∃!x(A(x)) ... ∃x∀y(A(y)⇔ y = x).

A abreviação ∃!x(A(x)) se lê ‘existe um único x tal que A(x)’. A
ideia intuitiva é simples: existe um x tal que A(x) e, para qualquer
y tal que A(y), temos que y = x.

i Existem outras formas para definir o quantificador ∃!. Mas o
conceito dado acima basta para nossos propósitos.

Seção 20
Existem Conjuntos?

Sumário

Índice
RedeO Axioma da Extensionalidade não garante a existência de con-

juntos. Apenas garante que, se existirem conjuntos, sabemos como
identificá-los a partir da pertinência ∈. O primeiro postulado a
garantir que pelo menos um conjunto existe é o que se segue.

ZF2 - Vazio:
∃x∀y(y 6∈ x).

Observar atentamente o quantificador existencial acima, bem como
a maneira como ele opera em ‘parceria’ com o quantificador univer-
sal. Este postulado garante a existência de um conjunto x tal que
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nenhum conjunto y pertence a ele. O próximo teorema ilustra como
os postulados de ZF trabalham em ‘parceria’ uns com os outros.

Teorema 3.2. O conjunto x do Axioma do Vazio é único.

Demonstração: O Axioma da Extensionalidade pode ser
reescrito como

∀x∀y∀z((z 6∈ x⇔ z 6∈ y)⇒ x = y).
Ver Teoremas 7 e 12 da lista de 17 teoremas da Seção 10,
para saber como provar essa última fórmula.
Ou seja, a fórmula acima é teorema de ZF.
Seja x o conjunto cuja existência é garantida pelo Axioma do
Vazio, i.e., para todo z temos que z 6∈ x. Supor que existe
outro conjunto y (ou seja, y 6= x) que também satisfaz o
Axioma do Vazio. Logo, para todo z temos z 6∈ y. Isso
significa que

∀z(z 6∈ x⇔ z 6∈ y).
Mas, de acordo com o Axioma da Extensionalidade (na
forma como está reescrito acima), isso implica em y = x
(⊥).

O símbolo ⊥ usado ao final da demonstração acima (conhecido
como falsum) é o que se chama de contradição (neste caso, a con-
tradição sinalizada por ⊥ é y 6= x ∧ y = x). Uma vez que P ∨ ¬P é
teorema para qualquer fórmula P , se ¬P garante uma contradição,
então P deve ser teorema. Uma vez que a negação da tese acima
produz uma contradição, então deve valer a tese como teorema. A
tese em questão pode ser escrita formalmente como se segue:

∃!x(∀y(y 6∈ x)).

Caso o leitor não saiba, a expressão ‘i.e.’ (usada na última prova)
abrevia ‘id est’ que, em latim, se traduz como ‘isto é’.

b Um exercício interessante é escrever formalmente o Teorema
3.2 usando apenas os quantificadores ∀ e ∃, de acordo com a Seção
19. Obviamente, o que legitima tal demonstração é a hipótese de
que ZF é consistente (ou seja, a hipótese de que não existe fórmula
A tal que ambas A e ¬A são teoremas de ZF), algo que até hoje não
se sabe se é o caso.
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Como já dito anteriormente, o teorema P ∨ ¬P é conhecido como

Princípio do Terceiro Excluído. Este legitima as demonstrações re-
ductio ad absurdum (redução ao absurdo, em tradução livre do la-
tim): se a negação de uma tese (a qual é tão somente uma fórmula)
implica em contradição, então a tese é teorema.
Notar também que a fórmula

∀x∀y∀z((z 6∈ x⇔ z 6∈ y)⇒ x = y),

a qual é equivalente ao Axioma da Extensionalidade, viabiliza outra
visão intuitiva a respeito da identificação de conjuntos. Assim como
conjuntos são identificados por seus elementos, equivalentemente con-
juntos são também identificados pelos termos que não são seus ele-
mentos.
Uma vez que acabamos de provar que conjunto vazio é único, este

é uma constante de ZF. Por conta disso é usual a adoção de um
símbolo especial para tal constante: ∅. Ou seja,

∀y(y 6∈ ∅).

Aqui cabe uma oportuna observação de caráter histórico, filosófico,
matemático e didático, em relação à técnica empregada para provar
Teorema 3.2.
A experiência em sala de aula revela que muitos alunos encon-

tram dificuldade para compreender e aceitar a técnica de demons-
tração por redução ao absurdo. Pois bem, isso não é exclusividade de
alunos. Alguns matemáticos, justamente por conta de suas experi-
ências profissionais, também criticam esse método de demonstração.
No início do século 20, Luitzen Egbertus Jan Brouwer não aceitava

demonstrações por redução ao absurdo. Uma vez que ela é susten-
tada pelo Princípio do Terceiro Excluído, na visão de Brouwer a
fórmula P ∨ ¬P só pode ser teorema se existir uma demonstração
para P ou uma demonstração para ¬P , de modo que qualquer de-
monstração de uma não pode depender do ‘fracasso’ de outra, por
conta de uma contradição. Provar que a negação ¬P de uma tese P
implica em uma contradição, não garante que P é teorema, segundo
a postura filosófica de Brouwer. Com efeito, se a negação de uma tese
implica em uma contradição, apenas foi provado que tal negação da
tese implica em uma contradição, nada além disso. Por conta dessa
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visão, este conhecido matemático holandês rejeitava a lógica clássica
usada hoje para edificar ZF (entre muitas outras teorias).
Em oposição à lógica clássica, Brouwer introduziu a Lógica Intui-

cionista, na qual o Princípio do Terceiro Excluído não é teorema.

i Hoje em dia existem diversos sistemas formais que empregam
lógica intuicionista, incluindo uma versão intuicionista de ZF [5].
Essa última referência é um livro não publicado de John Bell, mas
gratuitamente disponível em pdf na internet. Até onde sabemos, não
há livros publicados sobre o tema.

i Outro exemplo de teoria fundamentada em lógica intuicionista
é a Análise Infinitesimal Suave. Esta última permite desenvolver
uma forma de cálculo diferencial e integral na qual todas as funções
são contínuas, algo que não ocorre no Cálculo Diferencial e Integral
Padrão (ver Definição 5.23). Outrossim, demonstrações por redução
absurdo não são aplicáveis em análise infinitesimal suave. Se o leitor
estiver interessado, no livro de John Bell [4] há uma excelente e
sucinta exposição sobre o tema, onde derivadas e integrais podem ser
definidas sem a necessidade de limites. No cálculo padrão derivadas
e integrais são casos especiais de limites.
No entanto, a motivação de Brouwer era meramente filosófica,

apesar de hoje encontrar grande repercussão em matemática e até
mesmo em física teórica. Neste livro adotamos lógica clássica.
Em lógica clássica o Princípio do Terceiro Excluído é teorema.

Portanto, demonstrações por redução ao absurdo podem ser empre-
gadas para a obtenção de teoremas. Essas informações devem ajudar
o leitor a perceber que existem muitas formas para desenvolver ma-
temática. Neste livro apenas tangenciamos uma dessas formas, a
qual é a mais usual.
Se um aluno encontra dificuldade para aceitar a técnica de redução

ao absurdo para a demonstração de certos teoremas, basta que este
mesmo aluno tenha consciência de que o Princípio do Terceiro Ex-
cluído é tão somente uma consequência dos axiomas lógicos de ZF.
Logo, qualquer objeção dessa natureza é de caráter filosófico, não
matemático.
Garantir a existência de um único conjunto em ZF, a saber, o vazio,

é insuficiente para a prática matemática. Logo, precisamos de mais
postulados.
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ZF3 - Par:
∀x∀y∃z∀t(t ∈ z ⇔ (t = x ∨ t = y)).

OAxioma do Par garante a existência de outros conjuntos z (chama-
dos de pares) além de ∅ (observar o quantificador existencial ∃z).
O Axioma do Par diz o seguinte: dados x e y, existe z cujos elemen-

tos são x ou y. Por exemplo, uma vez que é garantida a existência
do conjunto vazio ∅, o Axioma do Par garante a existência de um z
tal que t ∈ z se, e somente se, t = ∅ ∨ t = ∅ (aqui os termos x e y
do Axioma do Par assumem os valores ∅ e ∅). Neste caso o Axioma
da Extensionalidade garante que z 6= ∅, uma vez que ∅ ∈ z mas
∅ 6∈ ∅.
Neste momento se mostra útil a introdução de símbolos auxiliares

metalinguísticos novos: { e } (chamados de chaves).
Se z é um par com elementos x e y, denotamos isso por

z = {x, y},

desde que x 6= y.
Se x = y, escrevemos

z = {x}

ou
z = {y}.

O Axioma da Extensionalidade garante que {x, y} = {y, x}. Tam-
bém garante (na forma de teorema) que, dados x e y, o par z = {x, y}
(ou z = {x}) é único. Se o par z conta com um único elemento, ele
é chamado de singleton ou unitário.

Exemplo 3.1. Sejam x = ∅ e y = ∅. Logo, z = {∅}. Neste
caso z é um singleton.

Exemplo 3.2. Sejam x = ∅ e y = {∅}. Logo, z = {∅, {∅}}.
Com efeito, a existência de ∅ é garantida pelo Axioma do Vazio,
enquanto a existência de {∅} é garantida pela aplicação do A-
xioma do Par no Exemplo anterior. Observar que, de acordo
com o Axioma de Extensionalidade, {∅, {∅}} = {{∅},∅}.
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O emprego de chaves { e } como novos símbolos auxiliares motiva

uma notação alternativa para o conjunto vazio, a saber, {}. Ape-
sar desta ser uma notação bastante comum na literatura, ela não é
empregada aqui.

Teorema 3.3. Se x é um conjunto unitário e x = y, então y
é unitário.

Demonstração: Se x é unitário, ∃a(x = {a}). Supor que
y não é unitário. Logo, existe pelo menos um elemento t
em y tal que t 6= a. Logo, t 6∈ x. Logo, o Axioma da
Extensionalidade garante que x 6= y. ⊥

O Axioma do Par garante a existência de uma infinidade de con-
juntos. Basta aplicá-lo repetidas vezes a partir do conjunto vazio.
No entanto, cada um dos conjuntos obtidos a partir de Par e Vazio
conta com, no máximo, dois elementos. Para fins de fundamentação
da prática matemática isso é muito pouco. Daí a necessidade de mais
postulados! Mas, antes de proseguirmos com novos axiomas, segue
uma definição muito útil: o conceito de par ordenado.

Definição 3.1 (Kuratowski).

(a, b) ... {{a}, {a, b}}.

Na definição abreviativa acima não está sendo introduzida qual-
quer abreviação metalinguística para uma fórmula de ZF, mas uma
abreviação metalinguística para um termo denotado por (a, b). Ob-
viamente tal manobra pode ser adaptada para a seguinte forma:

t = (a, b) ... t = {{a}, {a, b}}

ou

t = (a, b) ... ∃x∃y(x ∈ t ∧ y ∈ t ∧ a ∈ x ∧ a ∈ y ∧ b ∈ y),

sendo t obtido por repetidas aplicações do Axioma do Par.
Observar que (a, b) é um conjunto, uma vez que a e b são conjuntos.

O termo (a, b) é chamado de par ordenado. Esse nome se justifica
pelo próximo teorema.

Teorema 3.4. (a, b) = (c, d) se, e somente se, a = c e b = d.
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Demonstração: Uma vez que o teorema é dado por uma
bicondicional, a demonstração é dividida em duas partes.
A conjunção do final de ambas as partes é exatamente o
teorema.
Parte ⇐. De acordo com a definição de Kuratowski,

(a, b) = {{a}, {a, b}}
e

(c, d) = {{c}, {c, d}}.
Se a = c e b = d, o Axioma da Extensionalidade garante
que (a, b) = (c, d).
Parte ⇒. Essa segunda parte da demonstração deve ser
dividida em duas possíveis situações:

i: o caso em que a = b e
ii: o caso em que a 6= b.

Se a = b, temos que
(a, b) = (a, a) = {{a}}.

Logo, o par ordenado (a, b) é unitário. Mas Teorema 3.3
garante que (c, d) é unitário. Logo, (c, d) = {{c}}, sendo c =
d. Logo, {{a}} = {{c}}. O Axioma da Extensionalidade
garante que a = c. Neste caso b = d é consequência da
transitividade da igualdade.b O restante da demonstra-
ção fica a cargo do leitor interessado.

Exemplo 3.3. O par ordenado (∅, {∅}) é diferente de ({∅},∅).
Com efeito,

(∅, {∅}) = {{∅}, {∅, {∅}}}
e

({∅},∅) = {{{∅}}, {∅, {∅}}}.
Apesar de ambos os conjuntos compartilharem um elemento em
comum, a saber, {∅, {∅}}, o termo {∅} pertence ao primeiro
par ordenado mas não ao segundo. Logo, o Axioma da Exten-
sionalidade garante que (∅, {∅}) 6= ({∅},∅).

A definição de par ordenado, introduzida por Kazimierz Kura-
towski, motiva nova nomenclatura. Qualquer par obtido pelo A-
xioma do Par é chamado de par não ordenado. Isso porque, por
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exemplo,

{∅, {∅}} = {{∅},∅},
apesar de

(∅, {∅}) 6= ({∅},∅).

Neste contexto, pares ordenados são casos particulares de pares
não ordenados. O que permite estabelecer relevância na ‘ordenação’
de um par ordenado é o fato de ZF ser uma teoria com igualdade.
Essa foi a ideia genial de Kuratowski!

i A definição de par ordenado não foi uma conquista fácil em
lógica-matemática. Outras propostas, muito mais complicadas, an-
tecederam a ideia de Kuratowski. Detalhes em [48].

Seção 21
Potência, união arbitrária e união finitária

Sumário

Índice
RedeOs axiomas do Vazio e do Par não garantem a existência de con-

juntos suficientes para a prática matemática. Logo, precisamos de
novos postulados. Mas, antes disso, as seguintes definições são úteis.

Definição 3.2. Sejam x e y conjuntos. Logo,

i: x ⊆ y
... ∀t(t ∈ x ⇒ t ∈ y); lemos x ⊆ y como ‘x é

subconjunto de y’ ou ‘x está contido em y’;

ii: x ⊂ y
... x ⊆ y ∧ x 6= y; lemos x ⊂ y como ‘x é subconjunto

próprio de y’;

iii: x 6⊆ y
... ¬(x ⊆ y);

iv: x 6⊂ y
... ¬(x ⊂ y).

Ou seja, x é subconjunto de y sss todo elemento t de x é elemento
de y. Além disso, x é subconjunto próprio de y sss x é subconjunto
de y e x é diferente de y.

Exemplo 3.4. i: {∅} ⊆ {∅, {∅}};
ii: {∅} ⊂ {∅, {∅}};
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iii: {∅, {∅}} 6⊆ {∅};
iv: {∅} ⊆ {∅};
v: {∅} 6⊂ {∅}.

Teorema 3.5. Todo conjunto é subconjunto de si mesmo.

Demonstração: Formalmente, o teorema estabelece que
∀x(x ⊆ x).

De acordo com a Definição 3.2, devemos provar que
∀x∀t(t ∈ x⇒ t ∈ x).

Mas t ∈ x ⇒ t ∈ x é teorema em ZF (de acordo com
Teorema 2.1). Logo, aplicando Generalização duas vezes,
temos ∀x∀t(t ∈ x⇒ t ∈ x).

Em particular, foi provado acima que ∅ ⊆ ∅. Notar também que,
apesar de não termos ainda à nossa disposição outros conjuntos, além
de vazio e pares, o último teorema diz o seguinte: quaisquer outros
postulados que garantam a existência de novos conjuntos devem ser
tais que todo conjunto é subconjunto de si mesmo.
No entanto, o próximo teorema mostra que vazio não é subconjunto

apenas dele mesmo.

Teorema 3.6. O conjunto vazio é subconjunto de qualquer
conjunto.

Demonstração: Formalmente, o teorema estabelece que
∀x(∅ ⊆ x).

Supor que ¬∀x(∅ ⊆ x). Logo, ∃x(∅ 6⊆ x). Logo, existe t
tal que t ∈ ∅ ∧ t 6∈ x. ⊥.

Mais uma vez redução ao absurdo foi usada como técnica de de-
monstração, uma vez que empregamos aqui a lógica clássica. A ideia
intuitiva da prova acima é a seguinte. Supor que a tese não é teo-
rema, ou seja, não é teorema a afirmação de que o conjunto vazio
é subconjunto de todo e qualquer conjunto. Isso é equivalente a
afirmar que existe pelo menos um conjunto x tal que ∅ não é sub-
conjunto de x. Mas isso, de acordo com a definição de subconjunto,
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é equivalente a afirmar que existe pelo menos um t que pertence a ∅
de modo que t não pertence a x. Não obstante, ∅ é um conjunto que
não admite elemento algum. Logo, a negação da tese garante uma
contradição (a existência de um t tal que t ∈ ∅, sendo que nenhum
t pertence a vazio). Logo, o Princípio do Terceiro Excluído (um dos
teoremas de ZF) garante que a tese é necessariamente teorema.
Uma confusão frequente entre aprendizes de matemática reside na

diferença entre ∈ e ⊆. O último teorema é uma ótima oportunidade
para evitar tal desconforto desnecessário. Basta observar que ∅ 6∈ ∅,
uma vez que termo algum pertence a vazio. No entanto, ∅ ⊆ ∅,
uma vez que vazio é subconjunto de qualquer conjunto, incluindo,
obviamente, o próprio vazio. Ambas as fórmulas

∅ 6∈ ∅ e ∅ ⊆ ∅

são teoremas de ZF. Isso implica que as fórmulas ∅ ∈ ∅ e ∅ 6⊆ ∅
não são teoremas de ZF (se ZF for consistente, claro).
Agora podemos finalmente introduzir o Axioma da Potência.

ZF4 - Potência:
∀x∃y∀t(t ∈ y ⇔ t ⊆ x).

O conjunto y acima é chamado de potência de x. Se x é um con-
junto qualquer, sua potência y (cuja existência é garantida por ZF4)
é o conjunto cujos elementos são todos os subconjuntos t de x.

b O Axioma da Extensionalidade garante que a potência y de
qualquer conjunto x é única (mais um teorema que sugerimos ao
leitor demonstrar). Por conta disso, usualmente a potência y de x é
denotada por

y = ℘(x).

Em particular, se c é uma constante de ZF, então ℘(c) também é
uma constante de ZF.

Exemplo 3.5. i: Se x = ∅, então ℘(x) = {∅};
ii: se x = {∅}, então ℘(x) = {∅, {∅}};
iii: ℘({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}.
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O último Exemplo ilustra o fato de que ZF admite uma infinidade

de constantes, a saber, ∅, ℘(∅), ℘(℘(∅)) e assim por diante.
Observar que, se x tem n elementos, então ℘(x) tem 2n elementos

(um simples problema de análise combinatória). No item iii acima,
o conjunto {∅, {∅}} tem dois elementos, enquanto ℘({∅, {∅}}) tem
22 elementos, ou seja, 4.

i Aqui cabe mais uma observação. Essa conta 2n, para o número
de elementos da potência de um conjunto com n elementos, está
sendo feita aqui no contexto da metalinguagem usada para falarmos
sobre a linguagem-objeto S empregada para edificar ZF. No entanto,
é possível qualificar com precisão o que é o ‘número’ de elementos
de um conjunto. Isso se faz a partir da noção de cardinalidade de
um conjunto. No entanto, este é outro assunto que escapa de nossos
propósitos para um texto meramente introdutório. Para detalhes
sobre cardinalidade de um conjunto, ver [28]. Para um estudo muito
mais avançado sobre o tema, ver [30].
Graças aos quatro primeiros axiomas de ZF, podemos garantir

agora a existência de uma nova infinidade de conjuntos, incluindo
aqueles que contam com 2n elementos (1, 2, 4, 8, 16, ...). Para
efeitos práticos, isso significa que o Axioma da Potência garante a
existência de conjuntos tais que os demais postulados anteriores não
conseguem garantir. O item iii do Exemplo 3.5 exibe um conjunto
cuja existência não pode ser garantida apenas a partir dos axiomas
que antecedem ZF4.
O próximo é o Axioma da União.

ZF5 - União:
∀x∃y∀z(z ∈ y ⇔ ∃w(z ∈ w ∧ w ∈ x)).

Chamamos y de união arbitrária dos termos w que pertencem a x
e denotamos isso como

y =
⋃
w∈x

w.

Em outras palavras, dado um conjunto x, os elementos de y (cuja
existência é garantida por ZF5) são os termos z que pertencem a w,
para cada w que pertence a x. Novamente o Axioma da Extensionali-
dade garante que, para cada x, a união arbitrária y = ⋃

w∈xw é única.
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Exemplo 3.6. Seja x = {∅, {∅}, {{∅}}, {∅, {∅}}}. Logo,⋃
w∈x

w = {∅, {∅}}.

b É obviamente interessante que o leitor crie seus próprios e-
xemplos.

Se x = {r, s}, denotamos abreviadamente ⋃w∈xw como r ∪ s.
Neste caso, a união arbitrária é chamada de união finitária.

Teorema 3.7. Se x é o par {r, s}, então
∀t(t ∈ r ∪ s⇔ (t ∈ r ∨ t ∈ s)).

b A prova deste último fica a cargo do leitor interessado.
No ensino básico o teorema acima é comumente apresentado como

definição para união, da seguinte maneira:

r ∪ s é o conjunto dos t tais que t pertence a r ou s.

Mas, para os propósitos da matemática a união finitária é insufi-
ciente. Exemplos ilustrativos são apresentados oportunamente.

Teorema 3.8. União finitária tem elemento neutro, é asso-
ciativa e é comutativa.

Formalmente, o teorema acima estabelece que

∀x(x ∪∅ = x),

ou seja, ∅ é o elemento neutro mencionado,

∀x∀y∀z(x ∪ (y ∪ z) = (x ∪ y) ∪ z)

e
∀x∀y(x ∪ y = y ∪ x),

respectivamente.

b As demonstrações desses resultados ficam a cargo do leitor
interessado. Se o Teorema 3.7 for provado, a demonstração deste úl-
timo se torna praticamente imediata a partir da lista de 17 teoremas
da Seção 10.
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Seção 22

Separação
Sumário

Índice
RedeConsidere as seguintes fórmulas (observar o emprego do plural!),

conhecidas historicamente como Esquema da Compreensão. Se P(y)
é uma fórmula cujas ocorrências de y são livres, então

∃x∀y(y ∈ x⇔ P(y)).

Nos primórdios da teoria de conjuntos, antes do trabalho de Ernst
Zermelo (um dos criadores de ZF), o Esquema da Compreensão era
empregado para definir um conjunto x por um predicado monádico
P(y) (ou seja, uma fórmula com ocorrências livres de y). Para cada
fórmula P temos um axioma. Daí o nome Esquema da Compreensão!
Ou seja, abreviadamente, o conjunto x, cuja existência era garan-

tida por uma fórmula P que seus elementos y devem satisfazer, era
denotado como

x = {y | P(y)}
(lê-se ‘o conjunto x dos elementos y tais que P(y)’). Neste sentido,
em particular, o conjunto x de todos os conjuntos pode ser definido
como x = {y | y = y}. Com efeito, todo conjunto y é idêntico a
si mesmo. Afirmar que y é um conjunto, neste contexto, equivale a
afirmar y ∈ x. Como caso especial, temos que x ∈ x.
No entanto, apliquemos o Esquema da Compreensão para definir

um outro conjunto x da seguinte maneira:

x = {y | y 6∈ y}.

Neste caso, o predicado monádico P (y) é y 6∈ y. Se x ∈ x, então x
deve satisfazer a fórmula em questão. Logo, x 6∈ x. Se x 6∈ x, então
x deve pertencer a x, uma vez que satisfaz a fórmula em questão.
Logo, x ∈ x. Resumidamente, temos que, neste caso, x ∈ x e x 6∈ x.
Este é o célebre Paradoxo de Russell (1901), o qual mostra que

o Esquema da Compreensão é inconsistente com os demais postu-
lados de ZF (uma vez que x ∈ x ∧ x 6∈ x). Logo, o Princípio da
Explosão (Seção 13) garante que, em uma teoria formal com os a-
xiomas ZF1∼ZF5 + Esquema da Compreensão, qualquer fórmula é
teorema. Tal resultado é obviamente indesejável.
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Para evitar essa antinomia, uma possível solução é a adoção do

Esquema de Separação de Zermelo, como se segue.

ZF6F - Separação: Se F(y) é uma fórmula onde não há ocor-
rências livres de x, então:

∀z∃x∀y(y ∈ x⇔ y ∈ z ∧ F(y)).

O conjunto x do postulado acima (cuja existência é garantida pelo
Esquema de Separação) é usualmente denotado por

x = {y ∈ z | F(y)}.

Neste contexto, a existência de um conjunto x, cujos elementos são
termos y tais que F(y), depende da existência de um conjunto z
tal que os termos y pertencem a z. Comumente z é chamado de
conjunto universo, o qual pode ser qualquer conjunto cuja existência
é garantida pelos axiomas de ZF.
Novamente o Axioma da Extensionalidade garante que o conjunto
{y ∈ z | F(y)} é único, desde que seja dado o conjunto z, bem como
a fórmula F . Ademais, se F é equivalente a uma fórmula G (ou seja,
F ⇔ G), então

{y ∈ z | F(y)} = {t ∈ z | G(t)}.

O Esquema de Separação permite, entre outras coisas, definir a
diferença entre conjuntos.

Definição 3.3. Dados os conjuntos x e y, a diferença entre
x e y é dada por

x− y = {t ∈ x | t 6∈ y}.

Exemplo 3.7. Sejam x = {∅, {∅}, {{∅}}, {∅, {∅}}} e y =⋃
w∈xw, ou seja, y = {∅, {∅}}. Logo,

x− y = {{{∅}}, {∅, {∅}}}.
Com efeito, os elementos de x − y são aqueles que pertencem a
x mas não a y. Analogamente, y − x = ∅; isso porque y ⊆ x.

O Exemplo acima deixa claro que diferença entre conjuntos é não
comutativa. Em outras palavras, não é teorema a fórmula

x− y = y − x.
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i Importante destacar que a terminologia ‘Esquema da Com-
preensão’ admite outras acepções, além daquela colocada nesta Seção.
Em ZF2 (ZF de segunda ordem), por exemplo, há um esquema de
axiomas conhecido pelo mesmo nome, mas que não tem relação al-
guma com o que foi discutido acima.

Moral da História: Para definir um conjunto x cujos elemen-
tos y devem satisfazer a uma fórmula F é necessário qualificar um
conjunto universo z tal que cada y de x pertence a z. Caso con-
trário, a teoria de conjuntos em tela seria inconsistente. Ou seja, no
contexto de ZF6F , x ⊆ z. É claro que se, em particular, o conjunto
universo z for vazio, para qualquer fórmula F teremos x = ∅.

b Mostrar por que a adoção do Esquema de Separação no lugar
do Esquema de Compreensão evita o Paradoxo de Russell.

i Procurar na literatura por outras soluções que evitam o Para-
doxo de Russell sem o emprego do Esquema de Separação.

Seção 23
Usando união finitária

Sumário

Índice
RedeNesta Seção são dados os primeiros passos para edificar os números

naturais a partir dos axiomas de ZF.

Definição 3.4. S(x) ... x ∪ {x}. Lemos S(x) como ‘sucessor
de x’.

Em outras palavras, t pertence ao sucessor de x sss t ∈ x ou t = x.

Exemplo 3.8. i: S(∅) = ∅ ∪ {∅} = {∅};
ii: S(S(∅)) = S({∅}) = {∅} ∪ {{∅}} = {∅, {∅}};
iii: S(S(S(∅))) = S({∅, {∅}}) = {∅, {∅}} ∪ {{∅, {∅}}} =
{∅, {∅}, {∅, {∅}}}.

Observar que ∅ tem zero elementos, S(∅) tem somente um ele-
mento, S(S(∅)) tem dois elementos e assim por diante. b Além
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disso, não existe x tal que S(x) = ∅ (consegue provar por redução
ao absurdo?).
O sucessor S(x) de um conjunto x tem, além de todos os elementos

de x, o próprio x como elemento. Ou seja, para qualquer x temos
que x ⊂ S(x). Esse conceito é essencial para que sejamos capazes
de finalmente definir números naturais no âmbito de ZF. Mas, uma
coisa é definir número natural; outra é definir o conjunto de todos os
números naturais. Para que essa distinção essencial seja percebida,
introduzimos a seguir o Axioma do Infinito.

ZF7 - Infinito:
∃x(∅ ∈ x ∧ ∀y(y ∈ x⇒ S(y) ∈ x)).

O Axioma do Infinito garante a existência de pelo menos um con-
junto x que satisfaz a conjunção das seguintes fórmulas:

• ∅ pertence a x;
• se y pertence a x, então o sucessor de y também pertence a x.

Isso produz algo como um ‘efeito dominó’, no seguinte sentido:
uma vez que ∅ pertence a x, e ∅ pertencer a x implica que o sucessor
de ∅ pertence a x, então o sucessor de ∅ também pertence a x; uma
vez que o sucessor de ∅ pertence a x, e o sucessor de ∅ pertencer
a x implica que o sucessor do sucessor de ∅ pertence a x, então o
sucessor do sucessor de ∅ também pertence a x; e assim por diante.
Ou seja, Modus Ponens está sendo usado indefinidamente.
Obviamente o emprego de chaves para denotar sucessor de vazio,

sucessor do sucessor de vazio, sucessor do sucessor do sucessor de
vazio (e assim por diante) se mostra extremamente inconveniente,
além de esteticamente repulsivo. Para contornar tal dificuldade é de
interesse o emprego de abreviações metalinguísticas que facilitem a
vida do matemático.
Considere um alfabeto D cujos símbolos são 0, 1, 2, 3, 4, 5, 6, 7, 8 e

9, ordenados por ordem lexicográfica de acordo com o sistema deci-
mal usual. Tal ordem lexicográfica (análoga à ordem alfabética de
dicionários) é definida da seguinte maneira:

i: 0 é menor do que 1, 1 é menor do que 2, 2 é menor do que 3, 3
é menor do que 4, 4 é menor do que 5, 5 é menor do que 6, 6 é
menor do que 7, 7 é menor do que 8, 8 é menor do que 9;
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ii: os dez símbolos do sistema decimal usual podem ser concate-

nados para formar sequências finitas como, por exemplo, 1234;
iii: se uma sequência finita de símbolos de D conta com mais de

um símbolo, então o primeiro é sempre diferente de 0;
iv: se x1x2 · · ·xn e y1y2 · · · yn são sequências de n símbolos de D

em cada uma, então x1x2 · · ·xn é menor do que y1y2 · · · yn sss
(i) x1 é menor do que y1 ou (ii) x1 = y1 e x2 é menor do que y2,
ou (iii) x1 = y1, x2 = y2 e x3 é menor do que y3, e assim por
diante, até o caso em que x1 = y1, x2 = y2, · · · , xn−1 = yn−1 e
xn é menor do que yn;

v: se x1x2 · · ·xm e y1y2 · · · yn são sequências de m e de n símbolos
de D, respectivamente, tal que m é menor do que n, então,
x1x2 · · ·xm é menor do que y1y2 · · · yn.

Cada símbolo de D é chamado de dígito.

Exemplo 3.9. 1234 é menor do que 1244; com efeito, os dois
primeiros dígitos são respectivamente iguais em cada uma, mas
o terceiro dígito da primeira é menor do que o terceiro dígito da
segunda.

Logo, podemos adotar as seguintes abreviações:

0 ... ∅; 1 ... S(∅); 2 ... S(S(∅)); 3 ... S(S(S(∅)))
e assim por diante.
Em outras palavras, se n denota um termo definido a partir de D e

n+1 é o termo seguinte pela ordem lexicográfica, então n+1 = S(n),
onde 0 = ∅. Ou seja,

0 ... ∅; 1 ... S(0); 2 ... S(S(0)); 3 ... S(S(S(0)))
e assim por diante.
Essa codificação a partir do alfabeto D permite dispensar o em-

prego de chaves, além de se identificar com práticas comuns de no-
tação para números naturais.
Agora fica mais fácil definir e exemplificar adição e multiplicação

entre certos conjuntos que pertencem ao x do Axioma do Infinito.
Observar também que

∀x(x ∈ S(x)).
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Uma das consequências disso é que, em particular, 0, 1 e 2 são os

únicos elementos de 3. Analogamente, 5 = {0, 1, 2, 3, 4}.
Agora podemos finalmente definir certas operações.
Definição de Adição:

i: +(m, 0) = m;
ii: +(m,S(n)) = S(+(m,n)).

Lê-se +(m,n) como ‘adição de m com n’ ou ‘adição entre m e n’.

Exemplo 3.10.
+(2, 3) = S(+(2, 2)) = S(S(+(2, 1))) = S(S(S(+(2, 0)))) =

S(S(S(2))) = S(S(3)) = S(4) = 5.

Foi provado no Exemplo acima que a adição entre 2 e 3 é 5.
A notação mais usual para adição + segue abaixo.

m+ n
... + (m,n).

Se m+ n = p, dizemos que p é a soma das parcelas m e n.

Definição 3.5. Qualquer termo x, cuja existência é garan-
tida pelo Axioma do Infinito ZF6, é chamado de conjunto in-
dutivo. Usando o Esquema de Separação é possível definir o
conjunto ω dos números naturais:

ω = {t ∈ z | ∀w(w é indutivo ⇒ t ∈ w)},
sendo z um conjunto indutivo.

Ou seja, ω é o conjunto cujos elementos são ∅, S(∅), S(S(∅)) e
assim por diante, denotados abreviadamente por 0, 1, 2 etc. Esse
conjunto ω é chamado de conjunto dos números naturais. Cada
elemento de ω é um número natural.
A razão para definir ω a partir do Axioma do Infinito e do Esquema

de Separação é a seguinte: o Axioma do Infinito é consistente com a
existência de conjuntos indutivos diferentes de ω.
Por exemplo, considere o conjunto indutivo x cujos elementos são

os números naturais e, além deles, os conjuntos

{{∅}}, S({{∅}}), S(S({{∅}}))
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e assim por diante.
Claramente existem termos pertencentes a x que não são números

naturais, a saber, {{∅}}, S({{∅}}), S(S({{∅}})) etc. Analoga-
mente, podem existir muitos outros conjuntos indutivos diferentes de
ω. No entanto, a definição de conjunto indutivo dada acima garante
que, se x é indutivo, então ω ⊆ x. Dessa maneira, o emprego do
Esquema de Separação na Definição 3.5 garante a definição do con-
junto ω cujos elementos são aqueles que ocorrem obrigatoriamente
em todos os conjuntos indutivos. Tais elementos são exatamente os
números naturais. O Axioma da Extensionalidade permite provar
que ω é único. Logo, ω é uma constante de ZF.
O Axioma da Extensionalidade permite provar a unicidade do con-

junto vazio, da potência de um conjunto qualquer, da união arbitrária
sobre um conjunto qualquer, de um par qualquer, mas não de conjun-
tos indutivos. Daí a necessidade das considerações feitas no último
parágrafo!

b Notar também que a definição de adição dada acima viola
o critério de eliminabilidade introduzido na Seção 14, se aplicar-
mos essa adição sobre termos pertencentes a um conjunto indutivo
x diferente de ω. Portanto, o que foi introduzido como adição é uma
definição explícita abreviativa somente para os termos pertencentes
a ω. Consegue provar isso?
Adição entre naturais permite definir o que é um natural m menor

ou igual a um natural n.

Definição 3.6. Sejam a e b naturais. Logo,

a ≤ b
... ∃c(c ∈ ω ∧ b = a+ c).

Lemos a ≤ b como ‘a é menor ou igual a b’.

Exemplo 3.11. i: 2 ≤ 5. Com efeito, 5 = 2 + 3;
ii: 2 ≤ 2. Com efeito, 2 = 2 + 0.

Por abuso de notação, é usual escreverm ≤ n ≤ p como abreviação
para m ≤ n ∧ n ≤ p.
Considere a seguinte fórmula:

∃!x(∅ ∈ x ∧ ∀y(y ∈ x⇒ S(y) ∈ x)).
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Chamemos a fórmula acima de ZF7Maluco.
b Uma teoria que tivesse todos os axiomas de ZF e, além disso, a

fórmula ZF7Maluco, seria inconsistente, no sentido de que haveria
alguma fórmula F nessa nova teoria tal que ambas F e ¬F seriam
teoremas. Consegue provar isso?

b Para dificultar um pouco mais, considere uma teoria que
tivesse todos os axiomas de ZF, mas com ZF7Maluco substituindo
ZF7. Consegue provar que essa teoria também seria inconsistente?

Definição de Multiplicação:

i: ·(0, n) = 0;
ii: ·(S(m), n) = ·(m,n) + n.

Lê-se ·(m,n) como ‘a multiplicação dem com n’ ou ‘a multiplicação
entre m e n’. Obviamente, levando em consideração comentários
anteriores, devemos assumir que m e n são naturais, i.e., elementos
de ω.

Exemplo 3.12.
·(3, 2) = ·(2, 2) + 2 = (·(1, 2) + 2) + 2 =

((·(0, 2) + 2) + 2) + 2 = ((0 + 2) + 2) + 2 =
(2 + 2) + 2 = 4 + 2 = 6.

Foi provado, no Exemplo acima, que a multiplicação entre 3 e
2 é 6. A notação mais usual para a multiplicação · entre números
naturais é a que segue abaixo.
mn

... · (m,n).
No entanto, é também usual denotar a multiplicação acima por

m · n. Se mn = p, dizemos que p é o produto dos fatores m e n.
Existem propriedades algébricas de estratégica importância para

as operações de adição + e multiplicação · em ω. Discutimos sobre
isso na Seção 29.

b Observar que não existe x tal que S(x) = ω. Em outras
palavras, ω não é sucessor de conjunto algum.
O Esquema de Separação, em parceria com os postulados União e

Potência, permite definir um conceito útil para a matemática:
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Definição 3.7.

x× y ... {(a, b) ∈ ℘(℘(x ∪ y)) | a ∈ x ∧ b ∈ y}.

O termo x× y se lê ‘produto cartesiano de x por y’. Observar que,
no emprego do Esquema da Separação acima, o conjunto universo é
℘(℘(x ∪ y)).

Exemplo 3.13. Sejam x = {0, 3, 1} e y = {1, 2}. Logo,
x ∪ y = {0, 1, 2, 3}.

Portanto,
℘(x ∪ y) = {∅, {0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {0, 3}, {1, 2},
{1, 3}, {2, 3}, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, x ∪ y}.

O termo ℘(℘(x ∪ y)) conta com 65.536 elementos. Entre eles,
temos os seguintes:
{{0}, {0, 1}}, {{0}, {0, 2}}, {{1}}, {{1}, {1, 2}}, {{3}, {1, 3}}

e {{3}, {2, 3}}.
Mas estes são exatamente os pares ordenados (0, 1), (0, 2),

(1, 1), (1, 2), (3, 1) e (3, 2), respectivamente. Logo,
x× y = {(0, 1), (0, 2), (1, 1), (1, 2), (3, 1), (3, 2)}.

Exemplo 3.14. Sejam x = {0, 3, 1} e y = {1, 2}. Logo,
y × x = {(1, 0), (1, 1), (1, 3), (2, 0), (2, 1), (2, 3)}.

Observar que x× y 6= y × x, pelo menos neste exemplo.
Logo, produto cartesiano é não comutativo.

Exemplo 3.15. Sejam x = {0, 3, 1} e y = {1, 2}. Logo,
(x× y)× x 6= x× (y × x).

Com efeito, ((0, 1), 2) ∈ (x×y)×x, mas ((0, 1), 2) 6∈ x× (y×x).

No último Exemplo acima fica claro que produto cartesiano é não
associativo. Logo, o emprego de parênteses é necessário, no caso de
produtos cartesianos envolvendo três ou mais conjuntos.
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i O número de maneiras de parentesar o produto cartesiano

x0 × x1 × x2 × · · · × xn,

entre n+ 1 ocorrências de termos, é o Número de Catalan [51]

Cn = (2n)!
(n+ 1)!n! .

Se o leitor não recorda o que é o fatorial n! de um número natural
n, aqui vai.

Definição 3.8. i 0! = 1;
ii (n+ 1)! = (n+ 1)n!.

Exemplo 3.16. 5!, de acordo com o item ii da definição de
fatorial, é igual a 5(4!). Aplicando novamente o item ii, para cal-
cular 4!, temos que 5! = 5(4(3!)). Aplicando de novo, até chegar-
mos a 0! (este é o critério de parada), temos 5! = 5(4(3(2!))) =
5(4(3(2(1!)))) = 5(4(3(2(1(0!))))) = 120, uma vez que item i diz
que 0! = 1.

Exemplo 3.17. Sobre Número de Catalan. Sabemos que

C3 = (2(3))!
(3 + 1)!3! .

Logo, C3 = 5. Logo, é possível parentesar
x0 × x1 × x2 × x3

de cinco maneiras distintas, cada uma produzindo um produto
cartesiano diferente dos demais (se todos os conjuntos envolvidos
são diferentes de ∅).

As cinco maneiras mencionadas no último Exemplo são as seguin-
tes:

i: ((x0 × x1)× x2)× x3;
ii: (x0 × x1)× (x2 × x3);
iii: x0 × ((x1 × x2)× x3);
iv: (x0 × (x1 × x2))× x3;
v: x0 × (x1 × (x2 × x3)).
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No entanto, é uma prática comum introduzir a seguinte definição,

a qual é aplicada frequentemente em matemática e contorna a difi-
culdade de lidar com a não associatividade de produto cartesiano:

Definição 3.9. Seja x um conjunto. Logo,
i: x2 = x× x (lê-se ‘x 2’);
ii: xn+1 = x× xn (lê-se ‘x n+ 1’);

onde n é um número natural diferente de 0.

A definição acima evita qualquer ambiguidade no cálculo de, por
exemplo,

x3 = x× x× x

(lê-se ‘x 3’).
Neste caso,

x3 = x× x2 = x× (x× x).

Os elementos de xn (lê-se ‘x n’) são chamados de n-uplas ordenadas

(a1, a2, · · · , an),

onde cada ai (1 ≤ i ≤ n) é elemento de x. Em particular, cada
3-upla ordenada (também chamada de tripla ordenada) de x3 é o
termo

(a1, a2, a3) = (a1, (a2, a3)),

onde a1, a2 e a3 são elementos de x. Isso significa que a Definição 3.9
permite generalizar a definição de Kuratowski para par ordenado.
Uma n-upla ordenada (a1, a2, · · · , an) é tão somente elemento de xn
para algum conjunto x tal que cada ai (onde 1 ≤ i ≤ n) pertence a x.
Em outras palavras, toda n-upla ordenada é um caso particular de
par ordenado. Uma vez que todo par ordenado é um caso particular
de par não ordenado, então toda n-upla ordenada é um par não
ordenado.
A não comutatividade de produto cartesiano permite introduzir os

conceitos de relação e função, como vemos nas Seções 25 e 29.

b Exibir conjunto x diferente de ω e diferente de ∅ de modo que x
não seja sucessor de conjunto algum. Dica: pelo menos um exemplo
já foi apresentado nesta Seção!
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Seção 24

Substituição, Regularidade e Escolha
Sumário

Índice
RedeQO objetivo desta Seção é encerrar os axiomas próprios de ZF.

Os axiomas de Substituição e de Regularidade de ZF não são
necessários para provar os resultados de interesse para aqueles que es-
tão focados em temas do cotidiano da maioria dos matemáticos, como
cálculo diferencial e integral, análise matemática, espaços métricos,
equações diferenciais, álgebra linear, análise funcional, topologia, ál-
gebra, probabilidades, teoria dos números, geometria diferencial, teo-
ria de reticulados, matemática fuzzy, geometria euclidiana, geome-
trias não euclidianas, geometria absoluta, geometria projetiva, entre
outros temas. Isso ocorre apesar de todas essas áreas poderem ser
fundamentadas com os axiomas até aqui apresentados. Ou seja, os
resultados mais populares de tais áreas do conhecimento podem ser
escritos como teoremas de ZF, bastando os axiomas ZF1∼ZF7. Logo,
o leitor não é prejudicado se ignorar esta Seção.
No entanto, se o leitor estiver interessado em questões ligadas

aos fundamentos da matemática (como epistemologia e metodologia
da matemática), esses postulados desempenham papel estratégico e
necessário.

ZF8F - Substituição: Seja F(x, y) uma fórmula onde todas
as ocorrências de x e y são livres; logo,

∀x∃!yF(x, y)⇒ ∀z∃w∀t(t ∈ w ⇔ ∃s(s ∈ z ∧ F(s, t))).

Substituição (o qual não pode ser confundido com a substitutivi-
dade da igualdade) é um esquema de axiomas. Com efeito, há um
axioma para cada fórmula F , desde que F satisfaça as condições
sintáticas acima impostas.
O Esquema da Substituição (como também é conhecido) é aplicável

somente a fórmulas F(x, y) tais que, para qualquer conjunto x existe
um único y tal que F(x, y). É exatamente isso que está escrito antes
da primeira ocorrência da condicional ⇒ em ZF8F . Exemplos de
fórmulas F(x, y) desse tipo são os seguintes:

i: y = x;
ii: y = ℘(x);
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iii: y = ⋃

w∈xw;
iv: y = S(x);
v: y = ℘(x) ∪ S(x);
vi: (x = ∅⇒ y = {∅}) ∧ (x 6= ∅⇒ y = {{∅}});

entre uma infinidade de outros. Neste caso, o termo y é chamado de
imagem de x pela fórmula F .
Exemplo de fórmula F(x, y) que não atende às exigências do Es-

quema de Substituição: y ⊆ x. Com efeito, um mesmo conjunto
x pode admitir mais de um subconjunto y (basta que x seja dife-
rente de ∅). Outro exemplo de fórmula F(x, y) que não atende às
exigências do Esquema de Substituição: y 6= x.
O Esquema da Substituição estabelece o seguinte, desde que a fór-

mula F(x, y) atenda às exigências já mencionadas: dado um conjunto
z, existe um conjunto w tal que, cada elemento t de w é imagem de
um termo s pertencente a z pela fórmula F(s, t). Em particular, se
o conjunto z é {∅} e a fórmula F(x, y) é aquela do exemplo vi dado
acima, então w = {{∅}}.
Ou seja, o Esquema da Substituição permite garantir a existência

de conjuntos w a partir de conjuntos z e fórmulas. É um papel
semelhante ao do Esquema de Separação. No entanto, no caso de
Substituição, o conjunto w não é necessariamente subconjunto de z.
Na Seção 111 é provado que, graças ao Esquema da Substituição, o

Axioma do Par é desnecessário em ZF. Tradicionalmente, o Axioma
do Par é mantido por motivos didáticos.

i Foi mencionado anteriormente que ∅ e ω são exemplos de
conjuntos que não são sucessores de qualquer outro conjunto. Pois
bem. Há uma generalização dos números naturais que permite con-
ceituar ordinais, no sentido de que todo natural é um ordinal. Mas
em ZF existem outros ordinais além dos elementos de ω. O próprio
ω é um ordinal, bem como o sucessor de ω, o sucessor do sucessor de
ω e assim por diante. Usando o Esquema de Substituição é possível
provar a existência de outros ordinais λ tais que λ não é sucessor
de conjunto algum. Esse resultado permite provar diversos teoremas
com impacto profundo até mesmo em ramos como teoria da medida
e, consequentemente, em análise matemática [52]. Mas este é um
assunto que vai muito além da proposta deste livro.
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O próximo postulado desempenha um papel radicalmente diferente

dos demais. Para facilitar a sua leitura, introduzimos nova abrevia-
ção metalinguística.

Definição 3.10. x ∩ y = {r ∈ x ∪ y | r ∈ x ∧ r ∈ y}, sendo x
e y conjuntos.

Ou seja, x ∩ y é o conjunto dos termos que pertencem a ambos x
e y.
O símbolo ∩ é chamado de interseção finitária ou, simplesmente,

interseção. Lê-se x∩ y como ‘x interseção y’ ou ‘interseção de x com
y’. Para o conceito de interseção arbitrária, ver Definição 9.3.

Exemplo 3.18. i: Sejam x = {2, 3} e y = {3, 4}; portanto,
x ∩ y = {3};

ii: sejam x = {2, 3} e z = {4, 5}; logo, x ∩ z = ∅.

Se x e y são conjuntos tais que x ∩ y = ∅, dizemos que x e y são
disjuntos. Item ii do Exemplo acima ilustra um caso de conjuntos
disjuntos.

Teorema 3.9. Sejam x, y e z conjuntos. Logo
i: x ∩ y = y ∩ x;
ii: x ∩ (y ∩ z) = (x ∩ y) ∩ z;
iii: x ∩∅ = ∅;
iv: x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z).

b A demonstração é recomendada como exercício ao leitor.
Agora podemos enunciar o próximo postulado próprio de ZF.

ZF9 - Regularidade: ∀x(x 6= ∅⇒ ∃y(y ∈ x ∧ x ∩ y = ∅)).

Também conhecido como Axioma da Boa Fundação, o Axioma da
Regularidade garante que qualquer conjunto x não vazio admite pelo
menos um elemento y que não compartilha qualquer elemento em
comum com x. O objetivo deste axioma não é garantir a existência
de conjuntos, mas proibir a existência de termos x onde ocorram
cadeias infinitas de pertinência como

x ∈ y ∈ x ∈ y ∈ x · · · .
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O mesmo postulado também impede a existência de conjuntos que

pertençam a si mesmos.
Graças ao Axioma da Regularidade é possível introduzir uma de-

finição alternativa para par ordenado (diferente daquela devida a
Kuratowski):

(a, b) = {a, {a, b}}.

Dessa maneira, um par de chaves se mostra desnecessário. Por-
tanto, a definição de par ordenado devida a Kuratowski pode ser
usada tanto em ZF quanto em variações de ZF que abrem mão do
Axioma de Regularidade.
Uma das vantagens mais significativas do Axioma da Regularidade

é o fato de que ele permite definir o conceito de rank de um conjunto.
No entanto, novamente este é um tema que vai além dos propósitos
desta pequena obra.
Finalmente, os axiomas próprios ZF1∼ZF9 encerram todos os pos-

tulados próprios de ZF.
Uma variação de ZF, conhecida como ZFC (a letra C se refere à

palavra ‘Choice’ em inglês, a qual se traduz como ‘Escolha’) acres-
centa o seguinte postulado.

ZF10 - Escolha:
∀x(∀y∀z((y ∈ x ∧ z ∈ x ∧ y 6= z)⇒ (y 6= ∅ ∧ y ∩ z = ∅))⇒

∃y∀z(z ∈ x⇒ ∃w(y ∩ z = {w}))).

O Axioma da Escolha afirma o seguinte: dado um conjunto x cujos
elementos são conjuntos não vazios e sem quaisquer elementos em
comum, então existe um conjunto escolha y tal que cada elemento
de y é um, e apenas um, elemento de cada elemento de x.
Bertrand Russell introduziu uma analogia para facilitar a com-

preensão do Axioma da Escolha: considere uma gaveta com uma
quantia infinita de pares de meias, de modo que cada par de meias
é facilmente discernível de todos os demais; neste caso o Axioma da
Escolha permite definir uma nova gaveta que terá uma, e apenas
uma, meia de cada par da primeira gaveta.
Russell fez a analogia com pares do meias por conta de um fato

simples: o pé esquerdo é indiscernível do pé direito em qualquer
par de meias. Isso significa que não é possível estabelecer qualquer
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critério para a escolha de uma meia de cada par (algo bem diferente
de uma gaveta de sapatos). Logo, é isso o que o Axioma da Escolha
faz! Ele permite escolher elementos quaisquer de conjuntos dados
sem estabelecer qualquer critério. Apenas escolhe, como em um ato
de inquestionável livre arbítrio.
O Axioma da Escolha, introduzido por Ernst Zermelo em 1904,

provocou enorme debate entre matemáticos do início do século pas-
sado. Parte das críticas era sustentada pelo caráter não construtivo
deste postulado, no sentido de o mesmo não estabelecer critérios de
escolha. Parte das críticas ocorria por conta de resultados contra-
intuitivos que eram consequências do Axioma da Escolha, como o
Teorema de Banach-Tarski. Hoje se sabe que tal postulado ape-
nas permite desenvolver novas formas de matemática. Atualmente
ele exerce enorme impacto sobre a matemática, como os seguintes
resultados:

i: Todo conjunto admite uma boa ordem. Relações de boa ordem
sobre um conjunto x são relações de ordem total ≤ (ver Seção
25) tais que qualquer subconjunto de x admite um menor ele-
mento relativamente a ≤.

ii: O Princípio de Partição (PP) é teorema de ZFC. PP é uma
fórmula envolvendo funções. Detalhes na Seção 112.

iii: OTeorema de Tychonov, o qual é aplicado no estudo de topolo-
gia geral.

iv: Todo espaço vetorial não trivial admite base (ver Seção 96), o
qual é um resultado de análise funcional.

entre centenas de outros. No entanto, a maioria desses resultados
está fora do escopo dos interesses deste texto.
Em 1938 Kurt Gödel provou que, se ZF for consistente, então ZFC

é consistente. Em 1963 Paul Cohen provou que

6`ZF Escolha

e
6`ZF ¬(Escolha),

ou seja, nem o Axioma da Escolha ou a sua negação são teoremas
em ZF. A revolucionária técnica criada por Cohen para garantir tal
resultado rendeu a ele a única Medalha Fields destinada a uma con-
tribuição em lógica. Detalhes na Seção 111.

Página 79



Matemática Pandêmica Parte 3 Seção 25
Há na literatura muitas outras variações de ZF, além de ZFC,

sendo que algumas delas contam com impacto significativo sobre a
prática matemática.

Seção 25
Relações

Sumário

Índice
RedePara que sejamos capazes de introduzir números inteiros, racionais,

reais e complexos, precisamos qualificar o que são relações.

Definição 3.11.

r é uma relação ... ∃x∃y(r ⊆ x× y).

Lemos ‘r é uma relação com domínio x e co-domínio y’ ou, sim-
plesmente, ‘r é uma relação de x em y’. A notação usual é

r : x→ y.

Lembrar que produto cartesiano é uma operação não comutativa,
conforme Exemplo 3.14.
Esse fato permite a discriminação entre domínio e co-domínio de

uma relação r, uma vez que toda relação é subconjunto de um pro-
duto cartesiano. Alguns autores se referem ao co-domínio de uma
relação como contradomínio.

Exemplo 3.19. Sejam x = {1, 2} e y = {2, 3}. São exemplos
de relações de x em y os seguintes conjuntos:

i: ∅; com efeito, vazio é subconjunto de qualquer conjunto, de
acordo com o Teorema 3.6; logo,

∅ : x→ y

é relação para quaisquer x e y;
ii: x×y; com efeito, todo conjunto é subconjunto de si mesmo,

de acordo com o Teorema 3.5;
iii: {(1, 2)}; com efeito, todo elemento de {(1, 2)} pertence a
{2, 3} × {2, 3};
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iv: {(1, 2), (1, 3)};
v: {(1, 2), (2, 2)};
vi: {(1, 3), (2, 2)}.

b Para os conjuntos x e y aqui sugeridos, há 16 pos-
síveis relações de x em y. Listamos aqui apenas seis delas.
Cabe ao leitor listar outros exemplos.

Definição 3.12. Uma relação r em x é qualquer subconjunto
de x× x.

Ou seja, uma relação em x é uma relação cujo domínio é idêntico
ao seu co-domínio. Em particular, a relação

r = {(a, b) ∈ ℘(℘(x)) | a ∈ x ∧ b ∈ x ∧ a = b}

é a diagonal do conjunto x.

Exemplo 3.20. A diagonal de ω é o conjunto
d = {(m,n) ∈ ω × ω | m = n}.

Definição 3.13. Uma relação r em x é:
i: reflexiva sss ∀a(a ∈ x⇒ (a, a) ∈ r);
ii: simétrica sss ∀a∀b((a, b) ∈ r ⇒ (b, a) ∈ r);
iii: transitiva sss ∀a∀b∀c(((a, b) ∈ r∧ (b, c) ∈ r)⇒ (a, c) ∈ r).

Exemplo 3.21. i: b A diagonal de qualquer conjunto é
uma relação reflexiva, simétrica e transitiva; consegue provar
isso?

ii: b Seja r uma relação em ω tal que
(a, b) ∈ r sss a+ b = 2n,

para algum n ∈ ω; logo, r é reflexiva, simétrica e transi-
tiva. Consegue provar isso? Observar que, neste caso, r é
o conjunto
{(0, 0), (0, 2), (0, 4), · · · , (1, 1), (1, 3), (1, 5), · · · ,

(2, 0), (2, 2), (2, 4), · · · }.
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Se r é uma relação em x, então

arb
... (a, b) ∈ r.

A notação introduzida acima é muito comum em matemática,
como ilustrado no próximo parágrafo.

Sejam a e b elementos de ω. Logo, ≤ é uma relação em ω tal que

a ≤ b
... ∃c(c ∈ ω ∧ b = a+ c).

É interessante contrastar essa última definição com a Definição 3.6.
Isso porque ≤ é o conjunto

{(0, 0), (0, 1), (0, 2), · · · , (1, 1), (1, 2), (1, 3), · · · ,
(2, 2), (2, 3), (2, 4), · · · }.

Exemplo 3.22. i: 2 ≤ 2, ou seja, (2, 2) ∈≤. Com efeito,
2 = 2 + 0.

ii: 2 ≤ 5, ou seja, (2, 5) ∈≤. Com efeito, 5 = 2 + 3;

iii: b ¬(5 ≤ 2), ou seja, (5, 2) 6∈≤. Com efeito, não existe
natural c tal que 2 = 5+c. Cabe ao leitor provar este último
resultado por redução ao absurdo.

A relação ≤ em ω é reflexiva e transitiva, apesar de não ser simé-
trica. No entanto, a diagonal d de ω é subconjunto próprio de ≤,
i.e.,

d ⊂≤ .

Isso significa que uma relação simétrica pode estar contida em uma
relação não simétrica.
Sejam a e b elementos de ω. Logo,

a < b
... a ≤ b ∧ a 6= b.

Observar que
<= {(0, 1), (0, 2), (0, 3), · · · , (1, 2), (1, 3), (1, 4), · · · ,

(2, 3), (2, 4), (2, 5), · · · }.

A relação < em ω é transitiva, mas não reflexiva e nem simétrica.
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Exemplo 3.23. i: ¬(2 < 2); com efeito, apesar de 2 ≤ 2,
2 = 2. Este resultado prova a não reflexividade de < em ω.

ii: 2 < 5; com efeito, 2 ≤ 5 e 2 6= 5.

Relações encontram ampla aplicabilidade em matemática. Entre
elas, estão as célebres relações de equivalência:

Definição 3.14. Uma relação r em x é de equivalência sss r
é reflexiva, simétrica e transitiva.

Se r é uma relação de equivalência em x, lemos arb como ‘a é
equivalente a b relativamente a r’, ou simplesmente, ‘a é equivalente
a b’, se não houver risco de confusão.

Exemplo 3.24. i: A diagonal de qualquer conjunto x é uma
relação de equivalência; logo, se a pertence a x, então apenas
a é equivalente a a em relação à diagonal de x;

ii: seja r uma relação em ω tal que (a, b) ∈ r sss a + b = 2n,
para algum n ∈ ω; logo, r é uma relação de equivalência;
além disso, o natural 2 é equivalente a 0, 2, 4, 6 etc., en-
quanto o natural 3 é equivalente a 1, 3, 5, etc., relativamente
a r.

b Prove todas as afirmações dos dois últimos Exemplos.

Seção 26
Classes de Equivalência e Partições

Sumário

Índice
RedeO primeiro exemplo de aplicação de relações de equivalência é dado

na Seção 30. Mas, antes disso, são necessárias mais informações.

Definição 3.15. Seja ∼ uma relação de equivalência em x.
Logo,

[a] = {t ∈ x | t ∼ a}.
Chamamos [a] de classe de equivalência de x relativamente a ∼
(ou apenas classe de equivalência, se não houver risco de con-
fusão). Qualquer elemento b ∈ [a] é chamado de representante
da classe de equivalência [a].
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Observar que está sendo usado o Esquema de Separação para

definir a classe de equivalência [a] de x relativamente a ∼.

Exemplo 3.25. Seja r a relação de equivalência em ω definida
por

(a, b) ∈ r sss a+ b = 2n,
para algum n ∈ ω. Logo,

[0] = {0, 2, 4, 6, · · · }
e

[1] = {1, 3, 5, 7, · · · }.
Observar que

[0] = [2] = [4] = [2n],
para qualquer natural n, enquanto

[1] = [3] = [5] = [2n+ 1],
para qualquer natural n.
A classe de equivalência [0] é chamada de conjunto dos natu-

rais pares, enquanto [1] é o conjunto dos naturais ímpares.

O leitor deve observar que, no Exemplo acima, o conjunto ω
dos números naturais conta com apenas duas classes de equivalência
relativamente a r: [0] e [1]. Ademais,

[0] ∩ [1] = ∅

e
[0] ∪ [1] = ω.

Exemplo 3.26. Como caso particular do Exemplo 3.24, a
diagonal d de ω é uma relação de equivalência em ω. Logo, para
qualquer natural n, temos

[n] = {n}.
Neste caso, cada classe de equivalência é um singleton.

No Exemplo acima o conjunto ω dos números naturais conta com
uma infinidade de classes de equivalência relativamente à diagonal.
Além disso, se m 6= n, então

[m] ∩ [n] = ∅.
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De maneira análoga ao caso anterior, temos⋃

n∈ω
[n] = ω.

Nos dois últimos Exemplos mostramos classes de equivalência
distintas que são disjuntas, bem como o fato de que a união arbitrária
de todas elas é o próprio conjunto ω. Tal fenômeno é onipresente em
relações de equivalência, como mostramos adiante.
Para o conceito de partição de um conjunto, dado a seguir, é empre-

gada a Definição 3.10. Partições são essenciais para compreendermos
classes de equivalência.

Definição 3.16. Seja x um conjunto. Dizemos que p é uma
partição de x sss

i: ∀t(t ∈ p⇒ (t 6= ∅ ∧ t ⊆ x));
ii: ∀r∀s((r ∈ p ∧ s ∈ p)⇒ (r = s ∨ r ∩ s = ∅)); e
iii: ⋃t∈p t = x.

Ou seja, uma partição p de um conjunto x é um conjunto de sub-
conjuntos de x (i.e., p ⊂ ℘(x)) tal que

i: cada elemento de p é não vazio;
ii: dois elementos distintos de p têm interseção vazia, ou seja, são

disjuntos; e
iii: a união arbitrária de todos os elementos de p é igual a x.

Exemplo 3.27. i: Seja r uma relação em ω tal que
(a, b) ∈ r sss a+ b = 2n,

para algum n ∈ ω. Logo,
p = {[0], [1]}

é uma partição de ω, conforme Exemplo 3.25. Afinal,
p ⊂ ℘(ω), [0] 6= ∅, [1] 6= ∅, [0] ∩ [1] = ∅ e [0] ∪ [1] = ω.

ii: Seja d a diagonal de ω. Logo,
p = {y ∈ ℘(ω) | y é unitário}

é uma partição de ω (ver Exemplo 3.26). Com efeito,
p ⊂ ℘(ω), uma vez que p é o conjunto de todos os singletons
{n}, onde n é um natural. Observar que cada elemento de
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p é uma classe de equivalência [n] relativamente à diagonal
d de ω. Além disso, cada singleton [n] = {n} é diferente de
∅; se [m] 6= [n], então [m] ∩ [n] = ∅; e ⋃[n]∈p[n] = ω.

Nos dois últimos Exemplos partições foram definidas como con-
juntos de classes de equivalência. Isso não é uma mera coincidência,
como se percebe nos próximos dois teoremas.

Teorema 3.10. Seja ∼ uma relação de equivalência em x.
Logo,

p = {y ∈ ℘(x) | ∃r(r ∈ x ∧ y = [r])}
é uma partição de x, onde [r] = {t ∈ x | t ∼ r}.

Demonstração: A definição de classe de equivalência ga-
rante que cada uma delas é subconjunto não vazio de x, o
que satisfaz item i da Definição 3.16. A reflexividade de ∼
garante que ⋃[r]∈p[r] = x (item iii da Definição 3.16). Se
z ∈ [r]∩ [s], então r ∼ z e s ∼ z. Logo, pela transitividade e
pela simetria de ∼, temos r ∼ s, o que implica em [r] = [s]
(item ii da Definição 3.16).

Teorema 3.11. Toda partição p de qualquer conjunto x define
uma relação de equivalência.

Demonstração: Basta definir ∼ como se segue:
r ∼ s sss ambos r e s pertencem ao mesmo y,

sendo y ∈ p. Reflexividade é imediata. Se r ∈ y e s ∈ y,
então s ∈ y e r ∈ y. Logo, temos simetria. Finalmente,
se r ∈ y e s ∈ y, e s ∈ y e t ∈ y, então r ∈ y e t ∈ y
(transitividade).

Se x é um conjunto e ∼ é uma relação de equivalência em x,
então a partição

x/∼ = {y ∈ ℘(x) | ∃r(r ∈ x ∧ y = [r])}
é também conhecida como o quociente de x por ∼.

Por abuso de notação, é usual escrever x/∼ = {[r] | r ∈ x} (de
forma alguma isso significa que está sendo usado o Esquema de Com-
preensão, uma vez que esta é apenas uma notação abusiva, mas muito
frequente na literatura). Ou seja, o quociente de um conjunto por
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uma relação de equivalência é apenas uma partição induzida pela
relação de equivalência. O que legitima tal definição é o Teorema
3.10. O que garante a unicidade de x/∼, para cada x, é o Axioma
de Extensionalidade.

Definição 3.17. Uma relação r em x é de ordem parcial sss
r é reflexiva, transitiva e antissimétrica, sendo que antissimetria
se traduz formalmente pela fórmula

∀a∀b(((a, b) ∈ r ∧ a 6= b)⇒ (b, a) 6∈ r).

Exemplo 3.28. i: b A diagonal de um conjunto x é tam-
bém conhecida como igualdade em x (a qual não pode ser
confundida com o predicado binário = do alfabeto da lin-
guagem de ZF). A igualdade em qualquer conjunto x é uma
relação de equivalência e uma relação de ordem parcial.

ii: b A relação ≤ em ω é de ordem parcial.

Definição 3.18. Uma relação de ordem parcial r em um con-
junto x é de ordem total sss

∀a∀b((a ∈ x ∧ b ∈ x)⇒ ((a, b) ∈ r ∨ (b, a) ∈ r)).

Exemplo 3.29. i: A relação ≤ em ω é de ordem total; com
efeito, para quaisquer naturais m e n temos m ≤ n ou n ≤
m;

ii: A relação < em ω não é de ordem total; com efeito ¬(2 <
2).

Seção 27
Resumo da ópera

Sumário

Índice
RedeO que vimos nesta Parte pode ser resumido da seguinte maneira.

• Os axiomas próprios de ZF servem a dois propósitos: garan-
tir a existência de certos conjuntos e descrever propriedades do
predicado de pertinência ∈.
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• Entre os axiomas reguladores (aqueles que apenas descrevem
propriedades de ∈) estão o Axioma da Extensionalidade e o
Axioma da Regularidade. O primeiro estabelece critérios para
a identificação de conjuntos. O segundo proíbe cadeias infini-
tas de pertinência. Entre os axiomas existenciais (aqueles que
garantem a existência de conjuntos) estão todos os demais.
• O ponto de partida para a existência de uma hierarquia de con-
juntos é o Axioma do Vazio. A partir deste, os Axiomas Par,
Potência, União, Separação, Substituição e Infinito permitem
construir uma infinidade de outros conjuntos. O Axioma da Es-
colha desempenha papel de destaque neste processo, por conta
de seu caráter não construtivo.
• Uma vez definida tal hierarquia de conjuntos, é possível dar
os primeiros passos para uma fundamentação de números na-
turais, incluindo as operações de adição e multiplicação entre
naturais. Mas ainda falta examinar as propriedades algébricas
de tais operações, algo que é feito na próxima parte.
• A linguagem de ZF permite qualificar relações. Relações de
equivalência particionam conjuntos, e partições induzem relações
de equivalência.
• A meta é fundamentar vastas porções da matemática. Isso jus-
tifica a formulação de ZF, do ponto de vista social.

Seção 28
Notas históricas

Sumário

Índice
Rede

m
Para encerrar essa breve introdução a ZFC, vale mencionar que
os axiomas dessa teoria são devidos a Ernst Zermelo, com exceção
de Substituição e Regularidade. O Esquema de Substituição foi uma
contribuição de Abraham Fraenkel, enquanto o Axioma de Regulari-
dade foi proposto por Thoralf Skolem e John von Neumann. Fraenkel
colaborou também com as primeiras discussões sobre a independên-
cia do Axioma da Escolha.
Uma fórmula F é independente dos axiomas de ZF se, e somente

se, 6`ZF F . Fraenkel estudou uma variação de ZF, conhecida como
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ZFU (alguns autores se referem a essa teoria como ZFA), na qual
ele esboçou as primeiras ideias para provar que 6`ZFU AE, onde AE
denota o Axioma da Escolha em ZFU [16].

Ernst Zermelo, no início do século 20
Fonte: Wikipedia.

m
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PARTE 4

Números naturais, inteiros e
racionais

&%
'$
��
��
"!
# 
��
��
ℵ

= ∈

Não há, em matemática, o conceito de número. Mas há números
naturais, números inteiros e números racionais, os quais são qualifi-
cados nesta quarta parte.

Seção 29
Aritmética

Sumário

Índice
RedeCertas relações são de especial interesse, além daquelas já discu-

tidas. São as funções.

Definição 4.1. Seja
r : x→ y

uma relação.
Neste caso são explicitados domínio x e co-domínio y de r.

Dizemos que r é uma função de x em y sss para todo a perten-
cente a x existe apenas um b pertencente a y tal que (a, b) ∈ r.

Funções são casos especiais de relações e, portanto, conjuntos.
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Exemplo 4.1. Se r = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)},
r é uma relação? É uma função?
Se existem x e y tais que r ⊆ x × y, então r é uma relação

r : x → y. Logo, r é uma relação com domínio e co-domínio
{1, 3}? Não! Com efeito, r 6⊆ {1, 3} × {1, 3}.
O mesmo conjunto r é uma relação com domínio e co-domínio

dados pelo conjunto {1, 2, 3, 4, 5, 6, 7}? Sim! Com efeito,
r ⊆ {1, 2, 3, 4, 5, 6, 7} × {1, 2, 3, 4, 5, 6, 7}.

É uma função com domínio e co-domínio dados por
{1, 2, 3, 4, 5, 6, 7}?

Não! Com efeito, apesar de r ser subconjunto de
{1, 2, 3, 4, 5, 6, 7} × {1, 2, 3, 4, 5, 6, 7},

o termo 7 pertence ao domínio de r mas não existe termo b
pertencente ao co-domínio de r tal que (7, b) pertença a r.
O mesmo conjunto r é uma função com domínio {1, 2, 3, 4, 5, 6}

e co-domínio {1, 2, 3, 4, 5, 6, 7, 8, 9}? Sim! Com efeito,
r ⊆ {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6, 7, 8, 9}

e, além disso, cada elemento a do domínio {1, 2, 3, 4, 5, 6} cor-
responde a um e apenas um b pertencente a {1, 2, 3, 4, 5, 6, 7, 8, 9}
tal que (a, b) ∈ r.

Se r : x→ y é uma função e (a, b) ∈ r, dizemos que ‘b é a imagem
de a pela função r’. Neste caso é usual a notação r(a) = b.

Como já vimos, se
r : x→ y

é uma relação e (a, b) ∈ r, podemos escrever arb.
Mas, apesar de toda função ser um caso particular de relação, no

caso em que r é uma função, no lugar de arb escreve-se b = r(a).
Um conceito muito usual é o que se segue.

Se r : x → y é uma função, dizemos que s : z → y é uma
restrição de r sss z ⊆ x e, para todo a pertencente a z, temos
s(a) = r(a).
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Em outras palavras, uma função s é restrição de uma função r sss

s ⊆ r. Em particular, toda função é restrição de si mesma. Revisi-
tamos este conceito de maneira mais circunstanciada na Definição
4.12.
A operação adição + entre números naturais, introduzida na Seção

23, pode ser definida como uma função
+ : ω × ω → ω

tal que +(m,n) = m + n (observar que +(m,n) é uma notação
abreviada para +((m,n)), ou seja, a imagem de (m,n) pela função
+). Analogamente, a operação multiplicação · entre números natu-
rais introduzida na mesma Seção pode ser definida como uma função

· : ω × ω → ω

tal que ·(m,n) = mn.
Vale observar também que, por exemplo, a função

⊕ : ω × {2} → ω,

tal que ⊕(m, 2) = m + 2, é uma restrição de +. Intuitivamente
falando, essa nova função adiciona a cada naturalm o número natural
2.
Lembrando que, por definição, m+0 = m, e m+S(n) = S(m+n),

provamos a seguir alguns teoremas importantes.

Teorema 4.1. 0 + 0 = 0.

Demonstração: De acordo com a definição de adição, m+
0 = m. Se m = 0, então 0 + 0 = 0.

Teorema 4.2. Se m é um número natural, então 0+m = m.

Demonstração: Usamos aqui uma técnica de demonstração
conhecida como indução infinita, a qual permite empregar
Modus Ponens para obter uma infinidade de teoremas. Para
isso é necessário dividir a demonstração em duas etapas. Na
primeira devemos provar que

0 + S(0) = S(0),
lembrando que S(0) = 1 (observar que já foi provado acima
que 0 + 0 = 0). Na segunda etapa devemos demonstrar que
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a fórmula

0 + S(n) = S(n)
implica na fórmula

0 + S(S(n)) = S(S(n)).
Dessa maneira cria-se um ‘efeito dominó’ no seguinte sen-
tido: Se 0 + 1 = 1 é teorema (de acordo com a primeira
etapa) e a fórmula 0 + 1 = 1 implica na fórmula 0 + 2 = 2
(de acordo com a segunda etapa), então 0+2 = 2 é teorema.
Mas, se a fórmula 0 + 2 = 2 implica na fórmula 0 + 3 = 3
(novamente usando a segunda etapa), então 0 + 3 = 3 é
teorema, e assim por diante.
Ou seja, Modus Ponens é aplicada ao longo de todos os

números naturais, produzindo uma infinidade de teoremas
(um para cada natural m).
Agora podemos finalmente iniciar a prova.
Etapa 1: 0 +S(0) = S(0 + 0), de acordo com a definição

de adição. Mas 0+0 = 0, de acordo com o Teorema 4.1.
Logo, S(0 + 0) = S(0), de acordo com a substitutivi-
dade da igualdade. Logo, a transitividade da igualdade
garante que 0 + S(0) = S(0).

Etapa 2: Supor que 0 + S(n) = S(n). De acordo com a
definição de adição, 0 + S(S(n)) = S(0 + S(n)). Mas,
como assumimos por hipótese que 0 + S(n) = S(n),
então 0 + S(S(n)) = S(S(n)). Logo, para qualquer
natural m temos 0 +m = m.

Em particular, 0 + 5 = 5, como foi anunciado na Seção 3.
Levando em conta que na célebre obra Principia Mathematica (de

Bertrand Russell e Alfred North Whitehead) foram consumidas mais
de 360 páginas para provar que 1 + 1 = 2, parece que estamos com
uma certa vantagem aqui. A demonstração de Russell e Whitehead
não é feita no contexto de ZF. A teoria formal explorada neste grande
clássico da literatura é a teoria de tipos, a qual emprega uma lin-
guagem e uma lógica diferentes daquelas de ZF.

Teorema 4.3. Se m e n são números naturais, então
m+ n = n+m.
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b A prova fica como exercício para o leitor, a qual também
pode ser feita por indução infinita. Este último teorema garante a
comutatividade da adição entre números naturais.

Teorema 4.4. Se m, n e p são números naturais, então
(m+ n) + p = m+ (n+ p).

b A prova fica como exercício para o leitor, a qual também
pode ser feita por indução infinita. Este último teorema garante a
associatividade da adição entre números naturais.
Observar que a associatividade da adição entre naturais é uma

propriedade facilitadora para fazer contas envolvendo adição. Com
efeito, levando em conta que + é uma operação binária (é aplicável
sobre duas ocorrências de termos), como calcular m+ n+ p ou m+
n + p + q, entre outras possibilidades? De acordo com o Teorema
4.4, não importa se calculamos

m+ (n+ (p+ q))

ou
(m+ n) + (p+ q),

sempre é obtida exatamente a mesma soma. Ou seja, a associa-
tividade da adição entre naturais dispensa o emprego de parênteses
para operar com três ou mais números naturais, ainda que + seja
uma operação binária.
O próximo teorema se refere à multiplicação entre naturais.

Teorema 4.5. Se m, n e p são números naturais, então
0m = 0,
1m = m,

mn = nm,

(mn)p = m(np)
e

m(n+ p) = mn+mp.

b A demonstração fica como exercício para o leitor.
Por conta do último teorema, uma convenção comum é a seguinte:

mn+ p = (mn) + p.
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Ou seja, diante de uma notação abusiva caracterizada por falta de

ocorrências de pares de parênteses, deve-se priorizar a multiplicação
sobre a adição.
Outra convenção usual é a seguinte, para qualquer natural m 6= 0:

i: m0 = 1;
ii: mn+1 = m ·mn, onde n é um natural.

Exemplo 4.2. 54 = 5 · 53, de acordo com item ii; logo, 54 =
5 · 5 · 52, de acordo com o mesmo item; logo, 54 = 5 · 5 · 5 · 51,
novamente de acordo com item ii; finalmente, 54 = 5 ·5 ·5 ·5 ·50,
que é igual a 625, uma vez que item i garante que 50 = 1. Nesta
demonstração tiramos proveito do fato da multiplicação entre na-
turais ser associativa.

Moral da História: A adição + entre números naturais é co-
mutativa, associativa e admite elemento neutro (0). A multiplicação
· entre números naturais é comutativa, associativa e admite elemento
neutro (1). Também temos como teorema a distributividade da mul-
tiplicação em relação à adição, ou seja, m(n + p) = mn + mp. Tais
propriedades algébricas de adição e multiplicação entre números na-
turais permitem qualificar o que é aritmética.

Aritmética é o estudo da tripla ordenada (ω,+, ·).

A tripla ordenada (ω,+, ·) permite definir números primos e com-
postos, bem como todos os resultados conhecidos na literatura sobre
o tema. Por exemplo, diversos sistemas de criptografia são definidos
a partir de (ω,+, ·), eventualmente exigindo outras ferramentas. Um
conjunto como (ω,+, ·) é capaz de garantir as bases para a segurança
em transações bancárias realizadas no mundo todo [32].

Definição 4.2. Um número natural n é primo sss
n 6= 0∧n 6= 1∧∀p∀q((p ∈ ω∧ q ∈ ω∧p 6= n∧ q 6= n)⇒ n 6= pq).
Se n 6= 0∧ n 6= 1, dizemos que n é composto sss n não é primo.

Exemplo 4.3. i: 5 é primo; afinal, não há fatoração pq =
5, onde ambos p e q são naturais diferentes de 5;

ii: 6 é composto, uma vez que 6 = 2(3).
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A título de curiosidade, a soma dos quadrados dos sete primeiros

primos é 666. Com efeito,
22 + 32 + 52 + 72 + 112 + 132 + 172 = 666.

Além disso, a soma dos primeiros 36 naturais diferentes de 0 é 666.
Isso se escreve usualmente como

36∑
k=1

k = 1 + 2 + 3 + · · ·+ 35 + 36 = 666.

Um dos resultados mais conhecidos e úteis da aritmética é o Teo-
rema Binomial para Naturais, como se segue.

Teorema 4.6. Sejam a, b e n naturais, onde n 6= 0. Logo,

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k,

onde
n∑
k=0

(
n

k

)
akbn−k

é a adição dos termos
(
n
k

)
akbn−k, com k variando de 0 a n, e(

n

k

)
= n!
k!(n− k)! ,

onde n − k é um natural p tal que n = p + k (observar que k é
inevitavelmente menor ou igual a n).

Demonstração: Demonstramos esse importante resultado
por indução infinita, de maneira análoga à prova do Teo-
rema 4.2.

Primeira Etapa: Provar que (a+ b)n = ∑n
k=0

(
n
k

)
akbn−k

é teorema para n = 1. Ou seja, devemos provar que

(a+ b)1 =
1∑

k=0

(
1
k

)
akb1−k.

Por um lado, (a+ b)1 = a+ b. Por outro,
1∑

k=0

(
1
k

)
akb1−k =

(
1
0

)
a0b1−0 +

(
1
1

)
a1b1−1.
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Mas o último termo é igual a

1!
0!(1− 0)!a

0b1−0 + 1!
1!(1− 1)!a

1b1−1,

o qual é idêntico a b+ a. Como adição entre naturais é
comutativa, isso encerra a Primeira Etapa.

Segunda Etapa: Devemos provar que

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k

implica em

(a+ b)n+1 =
n+1∑
k=0

(
n+ 1
k

)
akbn+1−k.

Observar que cada parcela do somatório que antecede
a condicional acima, envolvendo o fator ajbl, é tal que
j + l = n. Mas (a + b)n+1 = (a + b)(a + b)n. Logo,
(a+ b)n+1 = a(a+ b)n + b(a+ b)n. Portanto,

(a+ b)n+1 = a
n∑
k=0

(
n

k

)
akbn−k + b

n∑
k=0

(
n

k

)
akbn−k.

Ou seja, agora cada parcela da adição dos somatórios
do lado direito da igualdade acima, envolvendo fatores
ajbl, é tal que j + l = n+ 1. Logo,

(a+ b)n+1 =
n+1∑
k=0

(
n+ 1
k

)
akbn+1−k.

b Se o leitor não se convenceu da última parte da demonstração
acima, observar que(

n

k

)
+
(

n

k − 1

)
=
(
n+ 1
k

)
,

cuja demonstração pode ser um interessante exercício.
Se o leitor não se convenceu com a definição de somatório

n∑
k=0

zk,

introduzida no último teorema, essa pode ser escrita como se segue:
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i:

1∑
k=0

zk = z0 + z1;

ii:
n+1∑
k=0

zk =
n∑
k=0

zk + zn+1.

Apesar do Teorema Binomial para Naturais ser um resultado da
aritmética, ele pode ser estendido de modo a repercutir em áreas
como cálculo diferencial e integral, conforme vemos na Seção 49. Esse
é um dos aspectos mais marcantes da matemática: o surpreendente
alcance dos resultados mais relevantes.

Seção 30
Inteiros

Sumário

Índice
RedeNesta Seção iniciamos as primeiras aplicações de relações de equi-

valência.
Eventualmente relações podem ser definidas sobre relações, como

se faz a seguir. Afinal, toda relação é um conjunto.

Definição 4.3. Sejam (m,n) e (p, q) elementos da relação
ω × ω

em ω. Logo,

(m,n) ∼ (p, q) ... m+ q = n+ p.

(m,n) 6∼ (p, q) ... ¬((m,n) ∼ (p, q)).

Exemplo 4.4. i: (5, 2) ∼ (7, 4); isso porque 5 + 4 = 2 + 7;
ii: (7, 4) ∼ (32, 29); com efeito, 7 + 29 = 4 + 32;
iii: (5, 2) ∼ (32, 29);
iv: (5, 2) 6∼ (2, 5); com efeito, 5 + 5 6= 2 + 2.

Notar que ω×ω é uma relação em ω, e ∼ é uma relação em ω×ω.
Neste momento é importante não confundir uma relação em ω × ω
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com qualquer subconjunto de ω4. Com efeito,

ω4 = ω × (ω × (ω × ω)),
de acordo com Definição 3.9.
Porém, ∼ é subconjunto próprio de

(ω × ω)× (ω × ω).

Logo, ∼ não é subconjunto de ω4.

Teorema 4.7. A relação ∼ em ω × ω da Definição 4.3 é de
equivalência.

b A demonstração deste último resultado fica a cargo do leitor.
Resumidamente, tanto reflexividade quanto simetria de ∼ são conse-
quências da comutatividade da adição + entre naturais. Com relação
à transitividade de ∼, essa pode ser facilmente provada se o leitor
enunciar e demonstrar um teorema de cancelamento de termos para
a adição de naturais. Tal teorema de cancelamento diz o seguinte:
dados m, n e p naturais, então

m+ n = m+ p⇔ n = p.

Uma vez que toda relação de equivalência define uma partição
(Teorema 3.10), há aqui a oportunidade para introduzir números
inteiros. As classes de equivalência de ω × ω relativamente a ∼ são
denotadas como se segue.

Definição 4.4.
+n = [(n, 0)] = {(a, b) ∈ ω × ω | (a, b) ∼ (n, 0)}

−n = [(0, n)] = {(a, b) ∈ ω × ω | (a, b) ∼ (0, n) ∧ n 6= 0}

A classe de equivalência +n se lê ‘inteiro positivo n’. A classe de
equivalência −n se lê ‘inteiro negativo n’.

Exemplo 4.5. i: O inteiro positivo zero é 0 = [(0, 0)] =
{(0, 0), (1, 1), (2, 2), (3, 3), · · · };

ii: o inteiro positivo um é +1 = [(1, 0)] =
{(1, 0), (2, 1), (3, 2), (4, 3), · · · };

iii: o inteiro negativo um é −1 = [(0, 1)] =
{(0, 1), (1, 2), (2, 3), (3, 4), · · · };
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iv: o inteiro positivo dois é +2 = [(2, 0)] =
{(2, 0), (3, 1), (4, 2), (5, 3), · · · };

v: o inteiro negativo dois é −2 = [(0, 2)] =
{(0, 2), (1, 3), (2, 4), (3, 5), · · · }.

Um número inteiro é uma classe de equivalência de pares ordenados
de números naturais relativamente a∼. Um inteiro positivo (ver sinal
+) tem como representante um par ordenado (m,n) onde m ≥ n
(isso equivale a afirmar que n ≤ m). Um inteiro negativo (ver sinal
−) tem como representante um par ordenado (m,n) onde m < n.
Um inteiro estritamente positivo é um inteiro positivo diferente de
0. Eventualmente podemos omitir o sinal + entre inteiros positivos.
O emprego das notações +n e −n serve ao propósito de enfatizar

que nenhum inteiro é natural e nenhum natural é inteiro. Por exem-
plo, o natural 0 é o conjunto vazio, enquanto o inteiro positivo zero
é o conjunto 0 = [(0, 0)] = {(0, 0), (1, 1), (2, 2), (3, 3), · · · }. Logo, de
acordo com o Axioma da Extensionalidade, 0 6= 0.
Para definirmos operações de adição e multiplicação entre inteiros,

basta, portanto, definirmos operações sobre representantes quaisquer
de inteiros. Essa é a enorme vantagem do emprego de classes de
equivalência! Para operar entre inteiros não há necessidade alguma
de definir operações entre classes de equivalência. Definir operações
entre representantes de classes de equivalência induz operações entre
as próprias classes de equivalência.

Definição 4.5. Se (m,n) e (p, q) são representantes quais-
quer de inteiros, então

(m,n) + (p, q) = (m+ p, n+ q)
e

(m,n) · (p, q) = (mp+ nq,mq + np).

Se
(m,n) + (p, q) = (r, s),

dizemos que (r, s) é a soma das parcelas (m,n) e (p, q). Se
(m,n) · (p, q) = (r, s),

dizemos que (r, s) é o produto dos fatores (m,n) e (p, q). O
mesmo se diz sobre os respectivos inteiros com representantes
(m,n), (p, q) e (r, s).
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Em outras palavras, em virtude do que foi dito acima, se x e y são

inteiros, positivos ou negativos, então x + y = z sss (m,n) e (p, q)
forem representantes de x e y, respectivamente, e (m,n) + (p, q) for
representante de z. Situação análoga ocorre com a multiplicação
entre inteiros.

Exemplo 4.6. Como calcular 4 +−2?
Basta escolhermos representantes quaisquer dos inteiros 4 e
−2 e aplicarmos a Definição 4.5.
Por exemplo, um dos representantes de +4 é (5, 1), e um dos

representantes de −2 é (16, 18). Logo,
(5, 1) + (16, 18) = (5 + 16, 1 + 18) = (21, 19).

Mas (21, 19) é representante de +2. Com efeito, (21, 19) ∼ (2, 0)
(ver Definição 4.4), uma vez que 21 + 0 = 19 + 2.
Logo, 4 +−2 = 2.

Exemplo 4.7. Como calcular 4 · −2? Basta usar a mesma
estratégia do Exemplo anterior. Ou seja,
(4, 0) · (1, 3) = (4.1 + 0.3, 4.3 + 0.1) = (4 + 0, 12 + 0) = (4, 12).
Mas (4, 12) é representante de −8, uma vez que (4, 12) ∼ (0, 8)
e (0, 8) é representante de −8, de acordo com a Definição 4.4.

Importante observar que a operação de adição entre naturais é uma
função

+ : ω × ω → ω,

enquanto a adição entre inteiros é uma função

+ : ((ω × ω)/ ∼)× (ω × ω)/ ∼)→ ((ω × ω)/ ∼)

induzida pela Definição 4.5. Logo, são funções diferentes. Mais do
que isso, nenhuma é restrição da outra.
Do ponto de vista formal isso significa que tais funções deveriam

ser denotadas por símbolos diferentes. Mas, como já foi dito an-
teriormente, matemáticos estão mais interessados em rigor do que
formalismo. Do ponto de vista do rigor, naturalmente se sabe que
adição entre naturais é uma função e adição entre inteiros é outra.
Comentário análogo vale para a multiplicação entre naturais e a mul-
tiplicação entre inteiros.
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Teorema 4.8. 0 é neutro aditivo.

Demonstração: Seja (m,n) um representante de um inteiro
qualquer. Uma vez que todo representante de zero inteiro
é um par ordenado (p, p), onde p é natural, então basta
aplicar a Definição 4.5. Logo,

(m,n) + (p, p) = (m+ p, n+ p).
Mas (m,n) ∼ (m+ p, n+ p), uma vez que

m+ n+ p = n+m+ p,

graças à comutatividade e à associatividade da adição entre
naturais. Logo,

(m+ p, n+ p)
e

(m,n)
são representantes do mesmo inteiro.
Demonstração análoga para o caso da adição entre zero

inteiro e um inteiro qualquer. Logo, 0 é neutro aditivo.

Em outras palavras, no teorema acima foi provado que, se +n ou
−n são inteiros, então

+n+ 0 = +n,
−n+ 0 = −n,
0 + +n = +n

e
0 +−n = −n.

Para evitar notação sobrecarregada, eventualmente podemos nos
referir a inteiros simplesmente por letras latinas minúsculas em itálico,
i.e., sem a barra embaixo. Ou seja, foi provado acima que, para qual-
quer inteiro p,

p+ 0 = 0 + p = p

(observar que a última notação é uma abreviação metalinguística
equivalente a afirmar que p+ 0 = p ∧ 0 + p = p).

Teorema 4.9. Todo inteiro admite simétrico aditivo. Ou seja,
se p é um inteiro, então existe inteiro q tal que, tanto p+q quanto
q + p resulta no neutro aditivo 0.

Página 103



Matemática Pandêmica Parte 4 Seção 30

Demonstração: Seja (m,n) um representante qualquer de
um inteiro p. Se (n,m) é representante de um inteiro q,
então

(m,n) + (n,m) = (m+ n, n+m).
Uma vez que adição entre naturais é comutativa,

(m+ n, n+m) = (m+ n,m+ n).
Logo, este último par ordenado é representante de 0, o qual
é neutro aditivo. Portanto, todo inteiro p (com represen-
tante (m,n)) admite simétrico aditivo q (com representante
(n,m)).

b Observar que 0 é o único inteiro cujo simétrico aditivo é ele
mesmo. Consegue provar isso?
É uma prática comum denotar o simétrico aditivo de um inteiro p

por −p. Neste texto a mesma notação é empregada. Mas é preciso
cuidado: não confundir o sinal −, usado na definição de inteiros, com
simétrico aditivo −p de p. Isso porque, eventualmente, −p pode ser
um inteiro estritamente positivo.
O último teorema é de importância vital para compreender a dife-

rença entre naturais e inteiros. Todo inteiro admite simétrico aditivo.
No entanto, 0 é o único natural que admite simétrico aditivo rela-
tivamente à adição entre naturais. Por exemplo, não existe natural
n tal que n + 2 ou 2 + n seja igual a 0 (o neutro aditivo entre os
naturais).
Para uma definição precisa do conceito de simétrico relativamente a

uma operação binária qualquer (não apenas adição ou multiplicação),
ver Seção 68.
Graças à existência de simétrico aditivo entre inteiros, é possível

definir uma nova operação a partir da adição entre inteiros. A sub-
tração

p− q

entre inteiros é a adição
p+ (−q),

ou seja, a adição do inteiro p com o simétrico aditivo de q. Obvia-
mente não é possível definir conceito equivalente entre naturais.

Página 104



Matemática Pandêmica Parte 4 Seção 30

Teorema 4.10. Existe neutro multiplicativo entre os inteiros.

Demonstração: Seja (m,n) um representante de um inteiro
qualquer. Logo,

(m,n) · (1, 0) = (m.1 + n.0,m.0 + n.1) =
(m+ 0, 0 + n) = (m,n).

Demonstração análoga para o caso de (1, 0) ·(m,n). Logo, 1
é neutro multiplicativo, uma vez que (1, 0) é representante
de 1.

b Recomendamos ao leitor provar este último teorema usando
outro representante para o inteiro 1.

Teorema 4.11. O neutro aditivo entre os inteiros é absorvente
multiplicativo. Ou seja, se p é um inteiro, então p ·0 = 0 ·p = 0.

Demonstração: Seja (m,n) um representante de um inteiro
qualquer. Um representante do neutro aditivo entre os in-
teiros é (0, 0). Logo,

(m,n) · (0, 0) = (m(0) + n(0),m(0) + n(0)).
Mas este último é o par ordenado (0, 0), uma vez que a mul-
tiplicação entre naturais garante trivialmente que o natural
0 é absorvente multiplicativo. Demonstração análoga para
0 · p = 0. Logo, 0 é absorvente multiplicativo.

Obviamente, a demonstração acima poderia ser feita a partir de
qualquer outro representante de 0. Optamos pelo par ordenado (0, 0)
para destacar que o próprio natural 0 é absorvente multiplicativo
entre os naturais.
Outros teoremas podem ser demonstrados:
i: a adição entre inteiros é comutativa e associativa;
ii: a multiplicação entre inteiros é comutativa e associativa;
iii: se p, q e r são inteiros, então p(q + r) = pq + pr.

Moral da História: Todas as propriedades algébricas da adição
e da multiplicação entre naturais ocorrem também para a adição e
multiplicação entre inteiros. No entanto, os inteiros contam com
uma propriedade algébrica não replicada entre os naturais, a saber,
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a existência de simétricos aditivos. Esta é a relevante diferença entre
naturais e inteiros!

Teorema 4.12. A multiplicação entre um inteiro estritamente
positivo e um inteiro negativo é um inteiro negativo.

Demonstração: Um representante de um inteiro estritamen-
te positivo +m qualquer é o par ordenado (m, 0), onde
m 6= 0.
Um representante de um inteiro negativo qualquer −q é

o par ordenado (0, q), onde q 6= 0. Logo, a multiplicação
entre eles é simplesmente

(m, 0) · (0, q) = (m(0) + 0(q),mq + 0(0)) = (0,mq).
Mas este último é representante de um inteiro negativo.

As demais regras de sinais (tão propagadas no ensino médio, mas
sem justificativa alguma!) podem ser demonstradas de maneira aná-
loga:

i negativo multiplicado por estritamente positivo é negativo,
ii negativo multiplicado por negativo é estritamente positivo,

iii positivo multiplicado por positivo é positivo.

b Recomendamos ao leitor que prove esses últimos três teore-
mas.
Apesar de nenhum natural ser inteiro, como já foi discutido acima,

ainda é possível copiar os naturais entre os inteiros. Para tanto,
basta observar os seguintes teoremas:

• A adição entre inteiros positivos é fechada nos inteiros positivos,
ou seja, se p e q são inteiros positivos, então p+ q é um inteiro
positivo.
• A multiplicação entre inteiros positivos é fechada nos inteiros
positivos, ou seja, se p e q são inteiros positivos, então p · q é um
inteiro positivo.
• A adição entre inteiros positivos é comutativa, associativa e ad-
mite neutro aditivo.
• A multiplicação entre inteiros positivos é comutativa, associa-
tiva e admite neutro multiplicativo.
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• Entre os inteiros positivos temos como teorema a distributivi-
dade da multiplicação.
• Não é teorema a seguinte afirmação: ‘para todo inteiro positivo
existe simétrico aditivo que seja inteiro positivo’. Com efeito,
basta provar que o simétrico aditivo de qualquer inteiro estrita-
mente positivo é um inteiro negativo.

Ou seja, os inteiros positivos contam com as mesmas propriedades
algébricas dos naturais, no que se refere às respectivas operações de
adição e multiplicação.
Vale a pena notar que, em momento algum, foram definidas ope-

rações de adição ou multiplicação entre um natural e um inteiro, ou
entre um inteiro e um natural. Não há necessidade disso justamente
porque os inteiros positivos podem replicar os naturais.
Apesar de alguns autores afirmarem irresponsavelmente que todo

número natural é inteiro, o que se mostra aqui é que os inteiros
positivos copiam os naturais. Nada além disso. Mais detalhes na
Seção 41.
Observar também que, entre os inteiros, não é teorema a seguinte

afirmação: ‘todo inteiro admite simétrico multiplicativo’. Se existis-
se, o simétrico multiplicativo de um inteiro p, deveria ser um inteiro
q tal que pq = 1, sendo 1 o neutro multiplicativo entre os inteiros.
Obviamente o neutro multiplicativo dos inteiros admite ele mesmo
como simétrico multiplicativo. Analogamente, o simétrico aditivo do
neutro multiplicativo (ou seja, −1) também admite como simétrico
multiplicativo ele mesmo, uma vez que −1 · −1 = 1. Mas nenhum
outro inteiro conta com essa propriedade algébrica.
Considere, para fins de ilustração, o inteiro 2. Supor que ele admite

simétrico multiplicativo com representante (p, q). Logo,

(2, 0) · (p, q) = (2p+ 0q, 2q + 0p) = (2p, 2q).

Para que o resultado (2p, 2q) seja representante do neutro multi-
plicativo é necessário que

(2p, 2q) = (n+ 1, n)

para pelo menos algum n natural. No entanto, ambos 2p e 2q, in-
dependentemente dos valores de p e q, são naturais pares. Logo, é
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necessário que ambos n e n + 1 sejam pares. Mas, se n é par, en-
tão n + 1 é ímpar. Se n é ímpar, então n + 1 é par. Isso é uma
contradição!
O fato de não haver simétrico multiplicativo para todo e qualquer

inteiro serve como motivação para a definição dos números racionais.
A proposta é a seguinte:

Como definir um conjunto x e duas operações (+ e ·),
fechadas em x, de modo que este novo conjunto x consiga
copiar os inteiros e os naturais e ainda admitir a existên-
cia de simétrico multiplicativo para todos os termos perten-
centes a x?

Este problema é resolvido na próxima Seção.
Entre os inteiros é possível definir relações de ordem total ≥ (maior

ou igual) e ≤ (menor ou igual) como se segue:

Definição 4.6. Sejam r e s inteiros. Logo,
• r ≥ 0 ... r é inteiro positivo;
• r ≥ s

... r + (−s) ≥ 0;
• r ≤ s

... s ≥ r.

Além disso,

r < s sss r ≤ s ∧ r 6= s; e
r > s sss r ≥ s ∧ r 6= s.

Exemplo 4.8. 5 > 2. Com efeito, 5 + −2 = 3; Uma vez que
3 é um inteiro positivo, então 5 + −2 ≥ 0. Uma vez que 5 6= 2,
então 5 > 2.

Para encerrar essa discussão, o conjunto dos números inteiros é
denotado por Z. Em outras palavras,

Z = (ω × ω)/ ∼ .

Estudar os números inteiros significa estudar o conjunto
(Z,+, ·).
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Seção 31

Racionais

Sumário

Índice
RedeAssim como os inteiros foram definidos a partir dos naturais, os

racionais são definidos a partir dos inteiros, novamente usando classes
de equivalência.

Definição 4.7. Sejam (a, b) e (c, d) elementos de
Z× (Z− {0}).

Logo,
(a, b) ≈ (c, d) ... ad = bc.
(a, b) 6≈ (c, d) ... ¬((a, b) ≈ (c, d)).

Observar que ad é uma multiplicação entre inteiros. O mesmo vale
para bc.
Por abuso de notação, de agora em diante omitimos a barra sob

cada inteiro. Dessa maneira, para evitar confusão, sempre qualifi-
camos se n denota um inteiro ou um natural. Nesta Seção, quaisquer
pares ordenados (m,n) são tais que ambos m e n são inteiros.

Exemplo 4.9. i: (1, 2) ≈ (2, 4); com efeito, 1(4) = 2(2);
ii: (2, 4) ≈ (3, 6); com efeito, 2(6) = 4(3);
iii: (1, 2) ≈ (3, 6);
iv: (1, 2) 6≈ (2, 1); com efeito, 1(1) 6= 2(2).

É claro que poderíamos ter escrito, por exemplo, 1 · 4 ou 2 · 2 no
lugar de 1(4) e 2(2), respectivamente. Mas é uma boa ideia o leitor
se habituar com diferentes possíveis notações. O que realmente está
em jogo aqui são os conceitos envolvidos e como lidar com eles.

Teorema 4.13. A relação ≈ em Z− {0} (ver Definição 4.7)
é de equivalência.

b A prova, muito simples, fica a cargo do leitor. Com relação
ao termo Z − {0}, ver a definição de diferença entre conjuntos ao
final da Seção 22 (a qual nada tem a ver com diferença entre inteiros,

Página 109



Matemática Pandêmica Parte 4 Seção 31
introduzida na Seção 30). O termo Z−{0} é simplesmente o conjunto
de todos os inteiros diferentes de 0.

Definição 4.8. Um número racional é o termo
[(0, 1)] = {(a, b) ∈ Z× (Z− {0}) | (a, b) ≈ (0, 1)}

ou qualquer classe de equivalência
[(m,n)] = {(a, b) ∈ (Z− {0})× (Z− {0}) | (a, b) ≈ (m,n)}

pertencente a (Z− {0})/ ≈.

Oportunamente é provado adiante que o racional [(0, 1)] é neutro
aditivo relativamente à operação de adição a ser definida abaixo. O
conjunto [(0, 1)] obviamente não é uma classe de equivalência per-
tencente a (Z − {0})/ ≈. A razão para tal manobra é a seguinte:
mantemos neste texto a prática usual de não definir divisão por zero,
onde ‘zero’ é como se lê o racional [(0, 1)]. Uma vez que a definição
de divisão depende da existência de simétricos multiplicativos (assim
como a definição de subtração entre inteiros depende da existência
de simétricos aditivos), dessa maneira garantimos que divisão por
zero não é definida.
No entanto, é perfeitamente possível definir racionais (ou até mesmo

números reais e números complexos) de maneira a permitir divisão
por zero. Detalhes podem ser encontrados em [53].
O racional [(0, 1)] é denotado por

0
1 .

Os demais racionais [(m,n)] são denotados por
m

n
.

Se m
n

é um racional, chamamos m de numerador e n de denomi-
nador . Logo, a Definição 4.8 não permite a existência de racionais
com denominador 0. Uma vez que racionais são conjuntos de pares
ordenados, o que permite discriminar numerador de denominador em
um racional é a definição de par ordenado de Kuratowski.
Para fins de notação, supor que [(m,n)] seja um racional tal que

ambos m e n são inteiros estritamente positivos ou ambos negativos.
Neste caso, m

n
dispensa qualquer sinal dos inteiros m e n. Se m é um
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inteiro negativo e n é um inteiro estritamente positivo, basta nova-
mente escrever m

n
, mas explicitando o sinal negativo de m. Porém,

se m é um inteiro estritamente positivo e n é um inteiro negativo,
observar que (−m,−n) também pertence a [(m,n)]. Com efeito,
(m,n) ≈ (−m,−n), uma vez que m(−n) = n(−m). Neste caso, fica
mais conveniente representar o racional [(m,n)] com o sinal negativo
de −m (lembrar que −m é um inteiro negativo se m é um inteiro
estritamente positivo). Essa convenção se mostra consistente com
resultados colocados adiante.

Exemplo 4.10.
1
2 = [(1, 2)] = {(a, b) ∈ Z× (Z− {0}) | (a, b) ≈ (1, 2)}.

−1
2 = [(1,−2)] = {(a, b) ∈ Z× (Z− {0}) | (a, b) ≈ (1,−2)}.

2
1 = [(2, 1)] = {(a, b) ∈ Z× (Z− {0}) | (a, b) ≈ (6, 3)}.

11
23 = [(−11,−23)] =

{(a, b) ∈ Z× (Z− {0}) | (a, b) ≈ (−22,−46)}.

Apesar do racional zero 0
1 não ser uma classe de equivalência per-

tencente a (Z− {0})/ ≈, fica fácil perceber que a interseção entre 0
1

e qualquer classe de equivalência de (Z−{0})/ ≈ é o conjunto vazio.
Logo, não há risco de confusão (no sentido de confundir o racional
0
1 com os demais). Os elementos de 0

1 também são chamados de
representantes de 0

1 . Isso por conta do fato de que
0
1 = [(0, 1)] = [(0,−1)] = [(0, 2)] = [(0,−2)] = · · · = [(0, n)],

para qualquer n inteiro diferente de 0.
Uma vez que racionais são definidos a partir de classes de equiva-

lência, basta usar representantes para definir operações de adição +
e multiplicação ·, de maneira análoga àquilo que foi feito na Seção
anterior.

Definição 4.9. Sejam m, n, p e q inteiros. Logo,
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(m,n) + (p, q) = (mq + np, nq)
e

(m,n) · (p, q) = (mp, nq).

Se (m,n)+(p, q) = (r, s), dizemos que (r, s) é a soma das parcelas
(m,n) e (p, q). Se (m,n) · (p, q) = (r, s), dizemos que (r, s) é o
produto dos fatores (m,n) e (p, q). O mesmo se diz sobre os
respectivos racionais com representantes (m,n), (p, q) e (r, s).

Exemplo 4.11. i: Como calcular
1
3 + −2

5 ?

Basta escolher representantes quaisquer de cada racional en-
volvido e usar a Definição 4.9. O par ordenado (3, 9) é um
dos representantes de 1

3 . O par ordenado (2,−5) é um dos
representantes do racional −2

5 . Logo,
(3, 9) + (2,−5) = (3.(−5) + 9(2), 9(−5)) =

(−15 + 18,−45) = (3,−45).
Mas (3,−45) é representante do racional −1

15 . Com efeito,
3(15) = −45(−1). Logo,

1
3 + −2

5 = −1
15 .

ii: Como calcular
1
3 ·
−2
5 ?

Basta usar a mesma estratégia do item acima:
(3, 9).(2,−5) = (3.2, 9.(−5)) = (6,−45).

Mas (6,−45) é representante de
−2
15 .

b De agora em diante, por abuso de notação, todo racional n
1

é denotado simplesmente por n. Essa notação é conveniente, uma
vez que racionais n

1 copiam os inteiros (consegue provar isso?). Se n
for um inteiro positivo, esses mesmos racionais copiam os naturais
(consegue provar isso?).
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Teorema 4.14. Adição + entre racionais é comutativa e as-
sociativa.

Demonstração: Sejam (m,n) e (p, q) representantes quais-
quer de racionais. Logo,

(m,n) + (p, q) = (mq + np, nq).
Mas

(mq + np, nq) = (pn+ qm, qn),
uma vez que adição e multiplicação entre inteiros são comu-
tativas. No entanto,

(pn+ qm, qn) = (p, q) + (m,n),
de acordo com a Definição 4.9. Logo, a transitividade da
igualdade garante que

(m,n) + (p, q) = (p, q) + (m,n).

Isso prova a comutatividade da adição entre racionais.b
A demonstração da associatividade fica como exercício para
o leitor.

Teorema 4.15. Multiplicação · entre racionais é comutativa
e associativa.

b A prova fica como exercício para o leitor.

Teorema 4.16. O racional 0 é neutro aditivo e absorvente
multiplicativo. O racional 1 é neutro multiplicativo.

Demonstração: Seja (m,n) um representante de um racio-
nal qualquer. Então,

i:
(m,n) + (0, 1) = (m(1) + n(0), n(1)).

Mas
(m(1) + n(0), n(1)) = (m,n).

Isso prova que o racional 0 (com representante escolhido
(0, 1)) é neutro aditivo.

ii: Além disso,
(m,n) · (0, 1) = (m(0), n(1)).
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Mas

(m(0), n(1)) = (0, n).
Uma vez que (0, n) é representante do racional 0, isso
prova que o mesmo é absorvente multiplicativo.

iii: Outrossim,
(m,n) · (1, 1) = (m(1), n(1)).

Mas
(m(1), n(1)) = (m,n).

Isso prova que o racional 1 (com representante escolhido
(1, 1)) é neutro multiplicativo.

b As operações + e · entre racionais contam com as mesmas
propriedades algébricas de adição e multiplicação entre inteiros (in-
cluindo distributividade, a qual, naturalmente, precisa ser demons-
trada pelo leitor).
Porém, entre os racionais há uma propriedade algébrica nova:

Teorema 4.17. Todo racional diferente de 0 admite simétrico
multiplicativo.

Demonstração: Seja (a, b) um representante de um racional
diferente de 0, ou seja, a é diferente do inteiro 0 (lembrar que
b jamais é o inteiro 0, de acordo com a definição de número
racional). Logo, (a, b) · (b, a) = (ab, ba). Mas (ab, ba) é
representante do racional 1, uma vez que a multiplicação
entre inteiros é comutativa. Logo, (b, a) é representante
do simétrico multiplicativo do racional com representante
(a, b).

Exemplo 4.12. i: 1
2 é simétrico multiplicativo de 2, assim

como 2 é simétrico multiplicativo de 1
2 ;

ii: −3
4 é simétrico multiplicativo de −8

6 ;
iii: o simétrico multiplicativo do simétrico multiplicativo do

racional r é o próprio r, desde que r seja diferente do ra-
cional 0;

iv: o simétrico aditivo do neutro multiplicativo entre os racio-
nais é −1.
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b Usualmente o simétrico multiplicativo de um racional r di-
ferente de 0 é denotado por r−1. Analogamente àquilo que é feito
entre inteiros, o simétrico aditivo de um racional r é denotado por
−r (naturalmente, o leitor precisa saber provar que todo racional
admite simétrico aditivo). Logo, a subtração entre racionais é
definida de maneira análoga à subtração entre inteiros.

Por conta do último teorema é possível definir uma nova operação
binária entre os racionais, a partir da multiplicação entre racionais.

Se r e s são racionais, a divisão entre r e s é
r/s = r(s−1),

desde que s 6= 0.

Podemos também nos referir a r/s como a divisão de r por s.

Exemplo 4.13. A divisão entre 5 e 3 é o racional 5
3 .

Entre os racionais é possível definir uma relação de ordem total ≤.

r < 0 ... qualquer representante (a, b) de r é tal que a e b não
compartilham o mesmo sinal. Caso contrário, dizemos que r > 0.
r < s

... r−s < 0, sendo r−s = r+(−s), onde −s é o simétrico
aditivo de s.
r ≤ s

... r < s ∨ r = s.

b Cabe ao leitor provar que ≤ é uma relação de ordem total
entre os racionais.
O conjunto dos racionais é denotado por Q.

Seção 32
Bijetividade e composição de funções

Sumário

Índice
RedeNesta Seção apresentamos conceitos estratégicos sobre funções.

Uma vez que funções são essenciais para a prática matemática, há a
necessidade de conhecê-las melhor.
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Se o leitor está se perguntando por que não estamos tratando sobre

reais nesta Seção, por enquanto a mensagem é a seguinte: paciência.
Não há caminho fácil para os números reais. Mas vamos chegar lá!

Teorema 4.18. Seja d a diagonal de um conjunto x. Logo d
é uma função d : x→ x.

Demonstração: Se d é a diagonal de x, então todo elemento
de d é um par ordenado (a, a), onde a ∈ x. Logo, d ⊆ x×x.
Isso prova que d é uma relação em x. Além disso, para todo
a pertencente a x, existe um único b pertencente a x tal
que (a, b) pertence a d; tal b é simplesmente a. Em outras
palavras, d satisfaz à definição de função d : x → x, onde
d(a) = a para todo a pertencente a x.

O teorema acima motiva o conceito de função identidade.

Definição 4.10. Se x é um conjunto não vazio, então a fun-
ção identidade em x é a diagonal de x. Ela é denotada por Ix.
Ou seja,

Ix : x→ x

é uma função tal que
Ix(a) = a

para todo a pertencente a x.

Definição 4.11. Seja f : a→ b uma função. Dizemos que f
é injetora (ou injetiva) sss

∀x∀y((x ∈ a ∧ y ∈ a ∧ x 6= y)⇒ f(x) 6= f(y)).

Em outras palavras, elementos distintos do domínio de uma função
injetora correspondem a imagens distintas. Equivalentemente,

f(x) = f(y)⇒ x = y,

no caso em que f é injetora.

Exemplo 4.14. i: Seja f : Q→ Q uma função tal que
f(x) = 3x;

se x 6= y, então 3x 6= 3y; logo, f(x) 6= f(y); logo, f é
injetora;
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ii: seja g : Q→ Q uma função tal que

g(x) = x2;
g(−1) = g(1); logo, g não é injetora;

iii: toda função identidade é injetora.

Definição 4.12. Seja
f : x→ y

uma função qualquer.
Uma função

g : z → y

é restrição de f ao domínio z sss z ⊆ x e g ⊆ f .

Na Seção 29 foi introduzido o conceito de restrição de uma função.
A única novidade aqui é a menção explícita ao domínio da restrição.
É uma prática comum não mencionar o domínio da restrição se o
contexto já deixa essa questão clara.

Exemplo 4.15. Como visto no item ii do Exemplo 4.14, se
g : Q→ Q é uma função tal que

g(x) = x2,

então g não é injetora.
No entanto, g admite uma infinidade de restrições injetoras.

Uma delas, por exemplo, é a função
h : {x ∈ Q | x ≥ 0} → Q

dada por h(x) = x2. Neste caso, h ⊂ g e h é injetora.

b Recomendamos que o leitor crie outros exemplos de res-
trições injetoras de g. Exemplos interessantes podem envolver
domínios que incluam tanto racionais positivos quanto racionais
negativos.

Definição 4.13. Seja
f : a→ b

uma função. Dizemos que f é sobrejetora (ou sobrejetiva) sss
∀z(z ∈ b⇒ ∃x(x ∈ a ∧ f(x) = z)).
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Em outras palavras, f é uma função sobrejetora sss todo elemento

do co-domínio de f é imagem de um termo do domínio de f .

Exemplo 4.16. i: Seja f : Q→ Q uma função tal que
f(x) = 3x;

para todo z pertencente ao co-domínio Q existe x perten-
cente ao domínio Q tal que f(x) = z; basta fazer x = z 1

3 :

f
(
z

1
3

)
= 3

(
z

1
3

)
= z;

logo, f é sobrejetora;
ii: seja g : Q→ Q uma função tal que

g(x) = x2;
não existe x pertencente a Q tal que g(x) = −1, uma vez
que não existe racional x tal que x2 = −1; logo, g não é
sobrejetora;

iii: toda função identidade é sobrejetora.

Definição 4.14. Sejam f : a → b e g : b → c funções. A
composição de g com f é a função g ◦ f : a→ c tal que

(g ◦ f)(x) = g(f(x))
para todo x pertencente a a.

Exemplo 4.17. Sejam f : Q→ Q e g : Q→ Q tais que
f(x) = 2x e g(x) = x+ 2.

Logo, g ◦ f : Q→ Q é dada por
(g ◦ f)(x) = g(f(x)) = g(2x) = (2x) + 2 = 2x+ 2,

enquanto f ◦ g : Q→ Q é dada por
(f ◦ g)(x) = f(g(x)) = f(x+ 2) = 2(x+ 2) = 2x+ 4.

Esse exemplo deixa claro que composição é uma operação binária
não comutativa. Com efeito, o Axioma da Extensionalidade
garante que f ◦ g 6= g ◦ f

Importante notar que o fato de existir a composição f ◦ g não
implica necessariamente que existe a composição g ◦f . Por exemplo,
sejam g : x → y e f : y → z funções tais que x 6= y, y 6= z e x 6= z.
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Neste caso, existe f ◦ g, mas não g ◦ f , uma vez que o domínio de
f coincide com o co-domínio de g, mas o domínio de g não coincide
com o co-domínio de f .
Outra questão importante é que composição ◦ não é uma função

◦ : h× h→ h,

onde h é o conjunto de todas as funções e ◦(f, g) = f ◦g. Isso porque
o Esquema de Separação não permite definir o conjunto h de todas
as funções. Com efeito, funções são casos particulares de relações,
as quais são casos particulares de conjuntos. Uma vez que não há o
conjunto de todos os conjuntos em ZF, logo não é possível escolher
um conjunto universo que permita definir h através do Esquema de
Separação.

i Não obstante, alguns autores se referem à composição ◦ como
uma ‘função’ com domínio h × h e co-domínio h. Este é um abuso
de linguagem, no contexto de ZF. Em certas teorias de conjuntos
como NBG, é possível qualificar h como uma classe própria e, então,
garantir que ◦ também é uma classe própria. Isso porque, diferente-
mente de ZF e ZFC, em NBG nem todos os termos são conjuntos.
Em NBG todos os termos são classes. Entre as classes há aquelas
que são conjuntos, enquanto as classes que não são conjuntos são
chamadas de classes próprias. Mas este é um assunto que extrapola
os objetivos deste livro.

Teorema 4.19. Composição é uma operação associativa, i.e.,
(f ◦ g) ◦ h = f ◦ (g ◦ h),

se todas as composições envolvidas existirem.

b A demonstração é imediata.

Definição 4.15. Uma função f : a → b admite inversa sss
existe g : b→ a tal que

g ◦ f = Ia
e

f ◦ g = Ib,
sendo Ia e Ib as funções identidade sobre a e b, respectivamente
(ver Teorema 4.18 e o parágrafo que segue a sua demonstração).
Denota-se a inversa g de f , quando existe, por f−1.
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Não confundir f−1(x) com (f(x))−1. O primeiro caso se refere

à imagem de x pela função inversa de f . O segundo se refere ao
simétrico multiplicativo da imagem de x por f , pelo menos no caso
em que f(x) é um racional diferente do neutro aditivo.

Exemplo 4.18. Seja f : Q→ Q tal que
f(x) = 3x.

Logo, f−1 : Q→ Q é tal que

f−1(x) = x
1
3 .

Com efeito,

(f−1 ◦ f)(x) = f−1(f(x)) = f−1(3x) = 3x1
3 = x,

ou seja, f−1 ◦ f = IQ; além disso,

(f ◦ f−1)(x) = f(f−1(x)) = f
(
x

1
3

)
= 3

(
x

1
3

)
= x,

ou seja, f ◦ f−1 = IQ.

Observar que a definição de função inversa não oferece qualquer
procedimento efetivo para a determinação de f−1, caso esta exista.
Em outras palavras, a definição em si não ‘ensina como calcular f−1’.
Apenas ‘ensina’ como verificar se uma dada g é inversa de f .
A definição de função inversa garante que, se (x, y) ∈ f , então

(y, x) ∈ f−1. Esse fato é importante para o próximo teorema, o qual
estabelece que a inversa da inversa de uma função, quando existe, é
a própria função.

Teorema 4.20. Se f admite inversa f−1, então (f−1)−1 = f .

Demonstração: Seja f : a→ b uma função com inversa
f−1 : b→ a.

Se f(x) = y para algum x ∈ a, então (x, y) ∈ f . Logo,
(y, x) ∈ f−1. Logo, (x, y) ∈ (f−1)−1. A partir da mesma
estratégia, se (x, y) ∈ (f−1)−1, então (y, x) ∈ f−1(x, y).
Logo, (x, y) ∈ f . Ou seja, o Axioma da Extensionalidade
garante que f = (f−1)−1.
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Definição 4.16. f : a → b é bijetora (ou bijetiva) sss f é
injetora e sobrejetora.

A definição de bijetividade (também chamada de bijeção) dada
acima é necessária por pelo menos dois motivos:

i: injetividade e sobrejetividade são propriedades independentes
uma da outra; isso porque podem existir funções sobrejetoras
injetoras, funções sobrejetoras não injetoras, funções injetoras
não sobrejetoras e funções que não são nem injetoras e nem
sobrejetoras;

ii: há uma estreita relação entre funções bijetoras e aquelas que
admitem inversa, como se percebe no próximo teorema.

Teorema 4.21. Uma função f : a → b admite inversa sss f
é bijetora.

Demonstração: Uma vez que este teorema envolve uma bi-
condicional, a prova é dividida em duas partes. Isso porque
bicondicional é uma conjunção de duas condicionais.
Parte ⇒. Se f : a → b admite inversa f−1 : b → a, é
necessário provar que f é sobrejetora e injetora. Seja y ∈ b,
de modo que f−1(y) = x. Então

f(x) = f(f−1(y)) = (f ◦ f−1)(y) = Ib(y) = y.

Logo, f é sobrejetora. Agora, sejam x1 e x2 elementos do
domínio a de f , tais que f(x1) = f(x2). Se a fórmula
f(x1) = f(x2) implicar na fórmula x1 = x2, provamos a
injetividade de f . Sejam y = f(x1) e x = f−1(y). Logo,

x2 = Ia(x2) = (f−1 ◦ f)(x2) = f−1(f(x2)) =
f−1(f(x1)) = f−1(y) = x.

No entanto,
x1 = Ia(x1) = (f−1 ◦ f)(x1) = f−1(f(x1)) = f−1(y) = x.

Logo, a transitividade da igualdade garante que x1 = x2.
Isso conclui a prova da primeira parte.
Parte ⇐. Se f : a→ b é bijetiva, precisamos apenas provar
que ela admite inversa. Seja r : b→ a uma relação definida
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da seguinte maneira: uma vez que f é sobrejetora, para
qualquer y pertencente a b existe x pertencente a a tal que
f(x) = y; logo, basta fazer r(y) = x; uma vez que f é
injetora, tal x é único; logo, r é uma função; além disso,

f ◦ r = Ib
e

r ◦ f = Ia.
Ou seja, r = f−1.

Em outras palavras, bijetividade e inversibilidade são conceitos
equivalentes. Funções que admitem inversa são também conhecidas
como inversíveis.

Teorema 4.22. Se f é uma função bijetora, sua inversa f−1

também é.

b A prova fica a cargo do leitor.

Teorema 4.23. A composição entre funções injetoras, quando
existe, é uma função injetora. Ademais, a composição entre
funções sobrejetoras, quando existe, é uma função sobretora.

b Ou seja, a composição entre funções bijetoras, quando existe,
é uma função bijetora. A prova deste último teorema fica por conta
do leitor.
Seja f : x→ y uma função. Logo,

f ◦ Ix
e

Iy ◦ f
sempre existem, independentemente da função f . Além disso,

f ◦ Ix = f

e
Iy ◦ f = f.

Isso significa que funções identidade operam como elementos neu-
tros relativamente à composição, desde que seja tomado cuidado com
o domínio (o qual coincide com o co-domínio) de cada função iden-
tidade. Se f : x → y admite inversa f−1, então f−1 é um simétrico
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composicional de f , uma vez que f−1 ◦ f = Ix e f ◦ f−1 = Iy. No
caso em que

f−1 ◦ f = Ix,

diz-se que f−1 é a inversa à esquerda de f . No caso em que

f ◦ f−1 = Iy,

diz-se que f−1 é a inversa à direita de f . Logo, f é inversível sss f
admite inversa à esquerda e à direita.

b Para uma função admitir inversa à direita, basta ser injetiva.
Para admitir inversa à esquerda, basta ser sobrejetiva. Recomen-
damos ao leitor provar essas duas últimas afirmações.

Seção 33
Conjuntos infinitos

Sumário

Índice
RedeUm ordinal finito é qualquer elemento de ω (ver Definição 3.5), e

apenas elementos de ω são ordinais finitos. A motivação para esse
conceito reside no fato de que ordinais podem ser estendidos para
outros, além dos ordinais finitos. Detalhes podem ser encontrados
em [28].

Exemplo 4.19. i: 2022 é um ordinal finito;
ii: ω não é um ordinal finito, uma vez que ω 6∈ ω;
iii: S(ω) não é um ordinal finito;

iv: b o sucessor de um ordinal finito é um ordinal finito,
uma vez que ω é indutivo. Recomendamos ao leitor que
prove isso.

Definição 4.17. Um conjunto x é equipotente a y sss existe
bijeção f : x→ y. Denotamos isso por x ∼ y.

Não confundir a notação ∼ para equipotência entre conjuntos com
a mesma notação empregada na Seção 30 para definir inteiros a partir
de naturais.
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A ideia intuitiva por trás da última definição é milenar, muito

anterior ao advento das teorias de conjuntos. Matemáticos apren-
deram a ‘contar’ fazendo correspondências um-para-um. Uma bi-
jeção f : x → y é uma ‘correspondência’ de cada elemento de x a
um, e apenas um, elemento de y, e de cada elemento de y a um, e
apenas um, elemento de x. Tal ‘correspondência’ é possível graças
ao fato da linguagem S aqui empregada contar com a igualdade =.
Onde há igualdade, há a negação dela (pelo menos sob os cânones
da lógica clássica), para garantir a discernibilidade dos elementos de
x, bem como dos elementos de y. Logo, por exemplo, o conjunto

x = {∅, {∅}, {{∅}}}
tem três elementos porque x é equipotente ao natural 3. Com efeito,
uma vez que o natural 3 é o conjunto

3 = {∅, {∅}, {∅, {∅}}}
(conforme Seção 23), é possível definir uma bijeção f : x→ 3, dada,
digamos, por

f(∅) = ∅, f({∅}) = {∅}, f({{∅}}) = {∅, {∅}}.

O mérito da ideia acima reside no fato de que é possível qualificar
que um conjunto x tem três elementos, ainda que x seja diferente do
ordinal finito 3.
Se n é um ordinal finito, um conjunto x tem n elementos sss x
for equipotente a n.

Teorema 4.24. Equipotência entre conjuntos é reflexiva, si-
métrica e transitiva.

Demonstração: i: Todo conjunto x é equipotente a si mes-
mo. Com efeito, basta definir f : x→ x tal que f(a) = a
para todo a pertencente a x. Tal f é bijetora. Logo,
x ∼ x.

ii: Se x ∼ y então existe bijeção f : x → y. Logo, existe
inversa de f dada por f−1 : y → x, a qual é bijetora
(Teorema 4.22). Logo, y ∼ x.

iii: Se x ∼ y e y ∼ z, então existem f : x→ y e g : y → z
bijetoras. Logo, g ◦f : x→ z é bijetora (Teorema 4.23).
Logo, x ∼ z.

Página 124



Matemática Pandêmica Parte 4 Seção 33
Por conta do Esquema da Separação, não existe em ZF o conjunto

de todos os conjuntos. Isso porque, para definir o conjunto de todos
os conjuntos via Separação é necessário um conjunto universo, o qual
deveria ser o conjunto de todos os conjuntos. Mas essa estratégia é
uma circularidade, no sentido de que não permite discernir definien-
dum de definiens. Logo, equipotência entre conjuntos não é uma
relação no sentido da Seção 25. No entanto, é usual se referir a ∼
como uma relação de equivalência no sentido do Teorema 4.24, por
conta da reflexividade, simetria e transitividade de ∼.

Definição 4.18. Um conjunto x é finito sss x é equipotente
a um ordinal finito. Caso contrário, dizemos que x é infinito.

Teorema 4.25. Todo ordinal finito é um conjunto finito.

A prova deste último teorema é imediata. Se n é um ordinal finito,
basta definir f : n→ n como f(a) = a, para todo a ∈ n. Isso porque
a diagonal de qualquer ordinal finito é uma bijeção.
A recíproca do último teorema não é teorema. Com efeito, basta

exibir um conjunto finito que não seja um ordinal finito. Por exem-
plo, x = {3, 4} não é um ordinal finito. Para provar que x é finito,
considere a função f : x → 2 tal que f(3) = 0 e f(4) = 1. Logo,
{3, 4} ∼ 2.

b O conjunto ω é infinito. Com efeito, seja n um ordinal finito.
Logo, qualquer f : ω → n é não injetora. Igualmente, qualquer fun-
ção g : n→ ω é não sobrejetora. Consegue provar esses resultados?

Definição 4.19. Um conjunto x é Dedekind-infinito sss exis-
te y ⊂ x tal que y ∼ x. Caso contrário, x é Dedekind-finito.

Exemplo 4.20. ω é um conjunto Dedekind-infinito. Com efeito,
seja

p = {n ∈ ω | ∃m(m ∈ ω ∧ n = 2m)}.
O termo p dado é o conjunto dos naturais pares e, portanto,
subconjunto próprio de ω. Seja agora

f : ω → p

dada por f(n) = 2n. Se m 6= n, então 2m 6= 2n. Logo, f(m) 6=
f(n). Logo, f é injetora. Além disso, todo natural par é o dobro
de um natural, o que garante que f é sobrejetora. Logo, p ∼ ω.
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Exemplo 4.21. b O conjunto x = {3, 4} é Dedekind-finito.
Com efeito, se y ⊂ x, então y = {3}, ou y = {4} ou y = ∅. Em
qualquer um dos casos não há bijeção f : x→ y.

Nos primórdios dos estudos sobre teoria de conjuntos, alguns ma-
temáticos acreditavam que conjuntos infinitos e conjuntos Dedekind-
infinitos eram conceitos equivalentes. Mas, com o tempo, foi perce-
bido que este não é necessariamente o caso, especialmente em for-
mulações de ZF nas quais o Axioma da Escolha não é teorema. Via
Teoria de Modelos (Seção 111) é possível provar a existência de con-
juntos infinitos que são Dedekind-finitos. Mas este é um assunto que
está fora do escopo deste livro.

Definição 4.20. Seja x um conjunto não vazio. Um conjunto
m pertencente a x é maximal relativamente à inclusão (ou sim-
plesmente maximal, se não houver risco de confusão) sss

∀r((r ∈ x ∧m ⊆ r)⇒ m = r).

Em outras palavras, o maximal m de x não está contido em qual-
quer outro elemento de x além dele mesmo.
Conjuntos quaisquer podem ter um único maximal, nenhum, ou

vários maximais, conforme ilustrado a seguir.

Exemplo 4.22. Seja x um conjunto não vazio. Logo, ℘(x)
admite um único maximal, a saber, x.

Exemplo 4.23. Seja x um conjunto não vazio. Seja também
y o conjunto

y = {r ∈ x | r é singleton},
o qual foi definido usando o Esquema de Separação. Neste caso,
todo elemento de y é maximal.

Exemplo 4.24. b Seja
y = {r ∈ ℘(ω) | r é finito},

onde ω é o conjunto dos naturais. Neste caso, y não admite
qualquer maximal. Em termos mais gerais, se x é infinito e y
é o conjunto de todos os subconjuntos finitos de y, então y não
admite qualquer maximal. Sugerimos que o leitor prove isso.
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Uma das possíveis aplicações do conceito de maximal de um con-

junto é a definição de base para um espaço vetorial qualquer, con-
forme Seção 97.

b
i: Prove que o conjunto x = {3, 4, 5} é finito e Dedekind-finito;
ii: prove que o conjunto dos números naturais ímpares é infinito

e Dedekind-infinito.

Seção 34
Preliminares para os reais

Sumário

Índice
RedeQO leitor pode ignorar esta discussão e avançar para Seção 35,

sem prejuízo significativo para o que vem adiante. O objetivo aqui é
apenas motivar os mais sedentos pelo conhecimento.
Até o presente momento foi mostrado como ZF permite edificar

números naturais, inteiros e racionais. Naturais são construídos a
partir do conjunto vazio e da operação monádica Sucessor, em parce-
ria com o Axioma do Infinito. Inteiros são definidos como classes de
equivalência de pares ordenados de naturais. Racionais são definidos
como classes de equivalência de pares ordenados de inteiros. No
entanto, qualquer tentativa de definir números reais como classes de
equivalência de pares ordenados de racionais está fadada ao fracasso.
Apresentamos aqui um esboço da prova deste resultado, o qual é di-
vidido em duas partes.
Na primeira parte provamos que é impossível existir bijeção entre

ω e o conjunto dos números reais. Ainda que a definição de número
real não tenha sido dada até este momento, qualquer que seja a
definição, ela deve ser consistente com a representação de números
reais na notação decimal usual dada a seguir:

inin−1in−2 · · · i2i1i0, d0d1d2 · · ·

onde cada ij e cada dk é um dos dez símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 e
9, exceto possivelmente in. Isso porque, no caso da sequência finita
inin−1in−2 · · · i2i1i0 contar com mais de uma ocorrência de símbolos,
então in 6= 0.
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Exemplo 4.25. i: 1945, 00689 é a representação de um nú-
mero real na notação decimal usual; com efeito, i3 = 1,
i2 = 9, i1 = 4, i0 = 5, d0 = 0, d1 = 0, d2 = 6, d3 = 8,
d4 = 9 e os demais dn são 0, com n > 4;

ii: 0, 3333 · · · é a representação de um número real na notação
decimal usual; com efeito, i0 = 0 e todos os dn, onde n é
um natural, são iguais a 3.

Observar que empregamos, no Exemplo acima, uma linguagem
infinitária para representar números reais em base decimal usual.
Linguagens infinitárias são aquelas que admitem sentenças de com-
primento não finito, enquanto sentenças de linguagens finitárias sem-
pre são sequências finitas de símbolos da linguagem. O item ii do
último Exemplo ilustra uma sentença de comprimento não finito.
Um dos aspectos mais fascinantes de ZF é o fato desta teoria formal
empregar uma linguagem finitária (conforme Seção 7) que permite
conceituar números reais (como é mostrado na Seção 39).
Ademais, os números reais devem contar com relações de ordem

total ≤ (menor ou igual) e ≥ (maior ou igual) análogas às relações
de ordem total entre inteiros e racionais, de modo que os reais sejam
capazes de copiá-los.
Neste contexto, qualquer número real maior ou igual ao real 0 (o

qual deve ser neutro aditivo) e menor ou igual a 1 (o qual deve ser
neutro multiplicativo) pode ser representado da seguinte maneira:

0, d0d1d2d3d4 · · ·

onde cada dk é um dos dez dígitos do sistema decimal usual, para
todo k natural.

Exemplo 4.26. i: 0, 00689;
ii: 0, 3333 · · · ; neste caso dk é igual a 3, para cada k natural.

Item ii é um caso particular daquilo que é conhecido como
dízima periódica.

Agora, seja [0, 1] o conjunto de todos os números reais maiores
ou iguais a 0 e menores ou iguais a 1. Supor que [0, 1] e ω são
equipotentes, i.e., existe uma bijeção

f : ω → [0, 1].
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Logo, a cada natural de ω corresponde um e apenas um real do

conjunto [0, 1]; e cada real deste conjunto corresponde a um ape-
nas um natural de ω. Podemos representar tal bijeção da seguinte
maneira:

0 −→ 0, d00d01d02d03d04d05 · · ·
1 −→ 0, d10d11d12d13d14d15 · · ·
2 −→ 0, d20d21d22d23d24d25 · · ·
3 −→ 0, d30d31d32d33d34d35 · · ·
4 −→ 0, d40d41d42d43d44d45 · · ·
5 −→ 0, d50d51d52d53d54d55 · · ·

...
sendo que cada dij é um dos dez símbolos do sistema decimal.
Neste contexto, cada natural n corresponde a um real

0, dn0dn1dn2dn3dn4dn5 · · ·
pertencente a [0, 1], no sentido de que

f(n) = 0, dn0dn1dn2dn3dn4dn5 · · · .

No caso particular em que o real correspondente a um n natural
é 0, temos dnk igual a 0, para todo k natural. No caso particular
em que o real correspondente a um natural m é 1, temos dmk igual
a 9, para todo k natural. Com efeito, a dízima periódica 0, 999 · · ·
é igual à dízima periódica 0, 333 · · · multiplicada por 3. No entanto,
0, 333 · · · = 1

3 . Mas, 1
3 multiplicado por 3 é 1. Ou seja, 0, 999 · · · e 1

são apenas notações distintas para o mesmo número real, a saber, o
neutro multiplicativo entre reais.
Agora considere o seguinte número real r do conjunto [0, 1]:

r = 0, r0r1r2r3r4r5 · · ·
sendo que cada ri é igual a 9− dii, para cada natural i.
Ou seja,
• se dii = 9, então ri = 0;
• se dii = 8, então ri = 1;
• se dii = 7, então ri = 2;
• se dii = 6, então ri = 3;
• se dii = 5, então ri = 4;
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• se dii = 4, então ri = 5;
• se dii = 3, então ri = 6;
• se dii = 2, então ri = 7;
• se dii = 1, então ri = 8;
• se dii = 0, então ri = 9.

Logo, ri é sempre diferente de dii.
Neste caso, r será diferente de

0, d00d01d02d03d04d05 · · · ,

uma vez que r0 6= d00. Analogamente, r será diferente de

0, d10d11d12d13d14d15 · · · ,

uma vez que r1 6= d11. De maneira análoga, r será diferente de cada

dn0dn1dn2dn3dn4dn5 · · · ,

uma vez que cada ri é diferente de dii.
Isso significa que r é diferente de toda e qualquer imagem f(n).

Logo, qualquer função injetora f : ω → [0, 1] jamais pode ser sobre-
jetora. Com efeito, sempre restará pelo menos um real r pertencente
a [0, 1] que não é igual a f(n) para natural n algum do domínio
de f . Na verdade é possível provar que existe uma infinidade de
reais r diferentes de todo e qualquer f(n). Mas basta exibir um r
de [0, 1] que não é igual a qualquer f(n), para garantir que f não
é sobrejetora. Logo, f não pode ser bijetora, como foi inicialmente
assumido.
Se nenhuma função f : ω → [0, 1] pode ser bijetora, então ω não é

equipotente ao conjunto [0, 1] de números reais entre 0 e 1, incluindo
0 e 1. Uma consequência imediata disso é que ω não é equipotente
ao próprio conjunto dos números reais, uma vez que [0, 1] deve ser
subconjunto do conjunto dos números reais.
Na segunda parte da prova é mostrado que, qualquer tentativa de

construir os reais a partir de pares ordenados de racionais implica
que o conjunto de números reais deve ser, na melhor das hipóteses,
equipotente a ω. Uma vez que isso contradiz o que foi provado na
primeira parte, logo, não é possível definir números reais a partir de
pares ordenados de racionais.
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Em primeiro lugar, é possível provar que existe bijeção

f : ω × ω → ω

(a qual garante uma bijeção f−1 : ω → ω × ω), ou seja, ω é equipo-
tente a ω × ω. Com efeito, considere f da seguinte maneira (apenas
esboço a definição de f):

i: f(0, n) = 2n; dessa maneira teremos f(0, 0) = 0, f(0, 1) = 2,
f(0, 2) = 4 e assim por diante, cobrindo todos os naturais pares;

ii: uma vez que restaram apenas os naturais ímpares para serem
imagens de elementos do domínio ω × ω via a bijeção f , faze-
mos f(1, 0) = 1 (o primeiro ímpar) e, para os demais f(1, n),
‘pulamos’ sempre um ímpar, de modo que f(1, 1) = 5 (pulamos
o 3), f(1, 2) = 9 (pulamos o 7), f(1, 3) = 13 (pulamos o 11) e
assim por diante;

iii: ainda resta uma infinidade de ímpares para serem imagens de
elementos de ω×ω (os ímpares ‘pulados’ no passo anterior); uma
vez que o primeiro ímpar ‘pulado’ foi 3, fazemos f(2, 0) = 3 e,
para os demais f(2, n) novamente ‘pulamos’ um ímpar por vez,
entre aqueles que ainda não são imagens de algum (m,n); de
modo que f(2, 1) = 11 (pulamos o 7), f(2, 2) = 19 (pulamos o
15), f(2, 3) = 27 (pulamos o 23) e assim por diante;

iv: repetimos o processo por indução infinita, de modo a cobrir
todos os ímpares. Logo, f é uma bijeção.

Em segundo lugar, ω é equipotente a Z. Com efeito, basta consi-
derar a seguinte bijeção f : ω → Z dada por f(0) = 0, f(1) = −1,
f(2) = 1, f(3) = −2, f(4) = 2, f(5) = −3, f(6) = 3 e assim por
diante.
Outro resultado espantoso é o fato de ω ser equipotente a Q.
Antes de provar isso, vale ressaltar que todas as técnicas aqui usa-

das podem ser empregadas para provar também que Q é equipotente
a Q × Q. Uma vez que equipotência é transitiva, todos esses resul-
tados apontam para o fato de que Q × Q é equipotente a ω. Logo,
qualquer tentativa de estabelecer uma bijeção entre o conjunto dos
números reais e Q×Q deve fracassar, no sentido de que tal bijeção
simplesmente não existe.
Observar que a existência de tal bijeção é indispensável, uma vez

que eventuais partições de Q×Q devem ser definidas por classes de
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equivalência [(r, s)] (onde r e s são racionais) de modo que cada uma
delas corresponde a um e apenas um número real.
Com relação à demonstração de que ω é equipotente a Q, considere

f : ω → Q dada como se segue: f(0) = 0 e as demais imagens f(n)
são dadas de acordo com a tabela abaixo, na qual estão representados
todos os racionais diferentes de 0.

�
�

�=

�
�
�

�
�

�=

�
�

�
�

�
�
�

�
�=

�
�
�

�
�
�

�
�
�

�
�
�=

+1
1

−1
1

+1
2

−1
2

+1
3

−1
3

+1
4

−1
4

+2
1

−2
1

+2
2

−2
2

+2
3

−2
3

+2
4

−2
4

+3
1

−3
1

+3
2

−3
2

+3
3

−3
3

+3
4

−3
4

+4
1

−4
1

+4
2

−4
2

+4
3

−4
3

+4
4

−4
4

... ... ... ... ... ... ... ...
· · ·

· · ·

· · ·
· · ·

. . .

Argumento da diagonal de Cantor

Seguindo as flechas da esquerda para a direita, conforme os sentidos
indicados,

f(1) = +1
1 , f(2) = −1

1 , f(3) = +2
1 , f(4) = +1

2 , f(5) = −2
1 ,

f(6) = +3
1 , f(7) = −1

2 , f(8) = −3
1 , f(9) = +4

1 , f(10) = +1
3

e assim por diante.
O cuidado a ser tomado é evitar imagens repetidas, para garantir

a injetividade de f . Afinal, por exemplo,

+2
4 = +1

2 .

Toda vez que ocorrer um racional repetido, basta ignorá-lo e ir
para o próximo na diagonal correspondente, para definir f .
As técnicas usadas acima para provar a equipotência dos racionais

com os naturais e a não equipotência dos naturais com os reais são
conhecidas na literatura como o argumento da diagonal de Cantor .
Isso porque essas técnicas foram concebidas por Georg Cantor, e
publicadas em 1891.
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Seção 35

Sequências
Sumário

Índice
RedeSequências são casos especiais de funções.

Definição 4.21. x é uma sequência sss x é uma função com
domínio de racionais que copia ω.

Por abuso de notação chamamos esse domínio de ω. Eventual-
mente, por questão de conveniência, podemos omitir o natural 0 do
domínio de uma sequência. No caso especial de uma sequência x,
usualmente x(n) (a imagem de n por x) é denotada por xn.
Uma sequência racional é uma sequência cujas imagens são núme-

ros racionais.
Exemplo 4.27. i: x : ω → Q tal que xn = 7.

Neste caso, x0 = 7, x1 = 7, x2 = 7, · · · . Observar que
(0, 7) ∈ x, (1, 7) ∈ x e assim por diante;

ii: y : ω − {0} → Q tal que yn = 1
n
.

Neste caso, y1 = 1, y2 = 1
2 , y3 = 1

3 , · · · ; ou seja (1, 1) ∈ y,
(2, 1

2) ∈ y, (3, 1
3) ∈ y e assim por diante.

De agora em diante, por questão de conveniência, são empregados
quantificadores relativizados, os quais são amplamente empregados
em Cálculo Diferencial e Integral Padrão.

Seja P uma fórmula. Logo:

∀ε > 0(P) ... ∀ε(ε > 0⇒ P);

∃δ > 0(P) ... ∃δ(δ > 0 ∧ P).

Lê-se ∀ε > 0(P) como ‘para todo ε maior do que zero, P ’. Lê-se
∃δ > 0(P) como ‘existe δ maior do que zero tal que P ’. Obviamen-
te quantificadores relativizados representam economia de notação.
Adotamos essa convenção para que este texto fique em sintonia com
práticas comuns encontradas em livros de cálculo diferencial e inte-
gral e análise matemática, entre outros.
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No primeiro caso da última definição, o quantificador universal

está relativizado à fórmula ε > 0. No segundo caso, o quantificador
existencial está relativizado à fórmula δ > 0.
Na próxima definição pretende-se capturar a seguinte ideia: uma

sequência racional xn converge para um racional L se, e somente se,
independentemente de qualquer valor racional para ε estritamente
positivo, as imagens xn ficam confinadas ao intervalo aberto

(L− ε, L+ ε),
desde que n seja suficientemente grande.
O intervalo aberto em questão é apenas o conjunto de todos os

racionais r tais que L − ε < r < L + ε (isso é uma abreviação para
a fórmula L − ε < r ∧ r < L + ε). Uma vez que a terminologia
‘confinadas’ e ‘suficientemente grande’ é vaga, há a necessidade de
traduzir essa ideia na linguagem de ZF, como se segue:

Definição 4.22.

xn → L
... ∀ε > 0 ∃δ > 0(n > δ ⇒ |xn − L| < ε).

Lê-se xn → L como ‘xn converge para L’.

É uma prática comum se referir a uma sequência x como xn, se
não houver risco de confusão.
Seguem algumas observações.
i: Todos os termos envolvidos na última definição são racionais:
L, ε, δ, 0, n, xn.

ii: Se x é racional, então |x| = x se x ≥ 0, e |x| = −x se x < 0
(lê-se |x| como ‘valor absoluto de x’).
Por exemplo, |5| = | − 5| = 5.

b É teorema em ZF a seguinte fórmula:
|a+ b| ≤ |a|+ |b|,

para quaisquer a e b racionais (recomendamos provar esse resul-
tado).

iii: O termo |xn − L| é uma distância entre xn e L. Aqui cabe
um breve comentário: no estudo de espaços métricos (Seção 86)
qualifica-se o que é a distância entre um termo a e um termo
b; neste sentido é possível provar que, de fato, |xn − L| é uma
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distância entre xn e L; no entanto, para os propósitos deste
texto, basta saber que |xn −L| captura a ideia intuitiva do que
deve ser a distância entre duas ocorrências de racionais; por
exemplo, a distância entre −1

3 e 3
5 é

|−1
3 −

3
5 | = |

3
5 −
−1
3 | =

14
15 .

iv: Nem toda sequência racional xn converge para algum racional
L, como é ilustrado em alguns exemplos adiante.

v: O valor racional L é chamado de limite da sequência xn.
vi: Excepcionalmente estão sendo usadas letras latinas maiúsculas

em itálico, na definição de sequência convergente, por ummotivo
de caráter pragmático: faz parte da literatura padrão esse tipo
de notação.

A definição de sequência racional convergente (ou seja, com limite
L) dada acima captura exatamente a interpretação pretendida que
foi anteriormente sugerida. O valor racional estritamente positivo ε
define, para efeitos práticos, o que é confinar xn ao intervalo aberto
(L− ε, L+ ε). Com efeito, a fórmula

|xn − L| < ε

é equivalente à fórmula
xn ∈ (L− ε, L+ ε).

O valor racional estritamente positivo δ define, para os mesmos
efeitos práticos, o que são naturais suficientemente grandes: são
aqueles n tais que n > δ.
Logo, afirmar que a sequência racional xn converge para o racional

L é equivalente a afirmar o seguinte: dado um intervalo de confina-
mento

(L− ε, L+ ε),
é necessário exibir um δ racional estritamente positivo tal que todo
n maior do que δ garante que

xn ∈ (L− ε, L+ ε).

Ou seja, se δ não puder ser arbitrário, deve depender única e exclu-
sivamente de ε. Garantir que uma sequência racional xn tem limite
é equivalente a exibir δ nas condições impostas pela definição.
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Exemplo 4.28. A sequência racional xn = 7 converge para 7.
Neste caso, o valor de δ pode ser qualquer racional estritamente

positivo, uma vez que qualquer n > δ implica que
xn ∈ (7− ε, 7 + ε).

Isso porque, independentemente do valor estritamente positivo
de ε, 7 (a imagem de qualquer n via x) sempre pertence ao in-
tervalo aberto (7− ε, 7 + ε).
Uma extensão deste resultado é o tema do próximo teorema.

No teorema abaixo adota-se uma notação bastante comum na li-
teratura para sequências constantes (aquelas cujas imagens xn têm
todas o mesmo valor) xn = c, a saber, c.

Teorema 4.26.
c→ c.

Demonstração: Seja xn = c, onde c é racional. Logo, deve-
mos provar que

∀ε > 0 ∃δ > 0(n > δ ⇒ |c− c| < ε),
o que é equivalente a

∀ε > 0 ∃δ > 0(n > δ ⇒ 0 < ε).
Mas já temos como hipótese que ε > 0 (ver Teorema 2.1).
Logo, qualquer δ racional maior do que 0 satisfaz a condi-
cional da definição. Com efeito, basta perceber que n > δ é
apenas uma hipótese a mais (ver Proposição 2.3).

Teorema 4.27.
1
n
→ 0.

Demonstração: Devemos provar que

∀ε > 0 ∃δ > 0
(
n > δ ⇒

∣∣∣∣ 1n − 0
∣∣∣∣ < ε

)
.

Podemos reescrever isso como

∀ε > 0 ∃δ > 0
(
n > δ ⇒

∣∣∣∣ 1n
∣∣∣∣ < ε

)
,
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que é equivalente a

∀ε > 0 ∃δ > 0
(
n > δ ⇒ 1

n
< ε

)
,

uma vez que n > δ e δ > 0, o que faz de n estritamente
positivo. Essa última é equivalente a

∀ε > 0 ∃δ > 0
(
n > δ ⇒ 1

ε
< n

)
.

Finalmente, isso equivale a

∀ε > 0 ∃δ > 0
(
n > δ ⇒ n >

1
ε

)
.

Se escolhermos
δ = 1

ε
,

teremos uma fórmula implicando nela mesma; isso, de acordo
com Teorema 2.1, é um teorema.

Com relação à última demonstração, notar que qualquer δ′ maior
do que δ = 1

ε
também garante que

(
n > δ′ ⇒

∣∣∣∣ 1n − 0
∣∣∣∣ < ε

)

é teorema. Portanto, δ = 1
ε
não é o único possível valor para δ que

garante a demonstração de que 1
n
converge para 0. Mas, levando em

conta que a definição de sequência racional convergente exige que
exista pelo menos um δ que satisfaça o definiens, a prova acima é
suficiente.

Exemplo 4.29. Supor ε = 1
1000 . Neste caso, δ = 1000. Todo

n maior do que 1000 garante que a distância entre 1
n
e 0 é menor

do que 1
1000 .

Supor ε = 1
3 . Neste caso, δ = 3. Todo n maior do que 3

garante que a distância entre 1
n
e 0 é menor do que 1

3 .

Teorema 4.28. @L((−1)n → L).

Demonstração: As imagens de (−1)n são −1 e 1. Se, e.g.,
ε = 1

10 , nenhum δ racional maior do que 0 poderá satisfazer
a definição.

Página 137



Matemática Pandêmica Parte 4 Seção 36
Para o leitor não familiarizado com a expressão ‘e.g.’, esta abrevia

‘exempli gratia’, a qual se traduz como ‘por exemplo’, do latim.

b Provar que
2
n2 → 0.

Para resolver o exercício acima proposto, demonstrar os seguintes
teoremas.
• O produto entre racionais é um racional.
• O quadrado r2 de um racional r (ou seja, r2 = rr) é um racional.
• Se r é um racional, então existe racional s tal que s > r.
• Se, para qualquer ε > 0, existe δ > 0 tal que

n > δ ⇒ |xn − L| < ε,

e δ′ > δ, então
n > δ′ ⇒ |xn − L| < ε.

Feito isso, temos o que se segue:

2
n2 → 0 sss ∀ε > 0 ∃δ > 0

(
n > δ ⇒ | 2

n2 − 0| < ε
)
.

Logo,
2
n2 → 0 sss ∀ε > 0 ∃δ > 0

(
n > δ ⇒ n2 >

2
ε

)
.

Logo,

2
n2 → 0 sss ∀ε > 0 ∃δ > 0

(
n2 > δ2 ⇒ n2 >

2
ε

)
.

b Ou seja, basta escolher δ tal que δ2 > 2
ε
. Os demais detalhes

ficam a cargo do leitor.
Uma das vantagens da introdução de números reais (a ocorrer na

Seção 39) é que a demonstração do teorema
2
n2 → 0

se torna extraordinariamente mais simples, se 2
n2 é uma sequência

cujas imagens são números reais.
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Seção 36

Sequências de Cauchy

Sumário

Índice
RedeUma notação muito comum para sequências racionais convergentes

é a seguinte.

Definição 4.23.

lim
n→∞

xn = L
... xn → L.

limn→∞ xn = L se lê como ‘limite de xn, com n tendendo a infinito,
é L’.
Observar que o símbolo ∞ não corresponde a termo algum da lin-

guagem de ZF. Trata-se tão somente de um símbolo metalinguístico
que serve ao propósito de destacar a condição n > δ na definição
de sequência racional convergente. Neste sentido, uma sequência de
racionais é convergente sss existe L tal que

lim
n→∞

xn = L.

! Levando em conta que muitos alunos insistem em tratar ∞
como um termo, recomendamos que o leitor diga, diante do espelho,
a seguinte frase: ‘infinito não é um termo’. Repetir o procedimento
cinco vezes consecutivas.
O fato de que ∞ não é um termo implica, entre outras coisas, que

não são termos sentenças como ‘∞+∞’, ‘∞−∞’, ‘∞+ 7’ etc.
Entre sequências racionais é possível definir operações de adição,

multiplicação, subtração e divisão:

Definição 4.24. Sejam x, y e z sequências racionais. Logo,
i: x+ y = z sss zn = xn + yn, para todo n ∈ ω;
ii: x− y = z sss zn = xn − yn, para todo n ∈ ω;
iii: xy = z sss zn = xnyn, para todo n ∈ ω; e
iv: x/y = z sss zn = xn/yn, para todo n ∈ ω, desde que
yn 6= 0.
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Exemplo 4.30. Sejam x e y sequências dadas por xn = 2n e
yn = 7; logo, xy é uma sequência z dada por zn = 14n e x+ y é
uma sequência w dada por wn = 2n+ 7.

Importante perceber que a adição de sequências racionais é definida
a partir da adição de imagens das mesmas sequências. Consequente-
mente, a adição de sequências racionais é definida a partir da adição
de racionais. Isso implica que as propriedades algébricas de adição
entre racionais são replicadas na adição de sequências racionais. Por
exemplo, a adição se sequências racionais é comutativa, associativa
e admite simétrico aditivo, bem como neutro aditivo. Comentário
análogo vale para as demais operações acima definidas.
O próximo teorema expressa o fato de que o limite da soma de

sequências racionais é a soma dos limites das mesmas, caso estes
existam.

Teorema 4.29. (xn → L ∧ yn →M)⇒ (xn + yn → L+M).

Demonstração: Temos, por hipótese, a conjunção de duas
fórmulas, a saber,

i: ∀ε > 0 ∃δ′ > 0(n > δ′ ⇒ |xn − L| < ε) e
ii: ∀ε > 0 ∃δ′′ > 0(n > δ′′ ⇒ |yn −M | < ε).

Uma vez que a definição de sequência racional convergente
exige que sejam considerados todos os ε racionais estri-
tamente positivos, não há problema algum em assumir o
mesmo ε para ambas as fórmulas i e ii. No entanto, a partir
do momento em que x e y são sequências racionais quais-
quer, é possível que δ′ seja eventualmente diferente de δ′′.
Isso justifica o emprego dos rótulos δ′ e δ′′.
Uma vez que

|xn + yn − (L+M)| ≤ |xn − L|+ |yn −M |
(ver item (ii) das Observações logo após a Definição 4.22
na Seção 35), se δ for o maior valor entre δ′ e δ′′ (ou igual a
ambos no caso em que δ′ = δ′′), então

∀ε > 0 (n > δ ⇒ |(xn + yn)− (L+M)| ≤
|xn − L|+ |yn −M | < ε+ ε = 2ε).
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Levando em conta que ε é arbitrário (desde que seja ra-

cional estritamente positivo), o fator 2 em 2ε é irrelevante.
Ou seja, a existência de δ para o caso xn + yn é garantida
pela hipótese assumida no teorema de que δ′ e δ′′ existem.

Os teoremas a seguir são bastante úteis para a prova do Teorema
4.32, o qual se refere a limite de uma multiplicação entre funções
reais.

Teorema 4.30. Seja x uma sequência de racionais. Logo,
xn → L sss (xn − L)→ 0.

Demonstração: Basta usar a definição de sequência racional
convergente e observar que

|xn − L| = |(xn − L)− 0|.

b Observar que o termo L, que ocorre em
(xn − L)→ 0

no último teorema, é uma abreviação para a sequência constante
yn = L, enquanto o termo L que ocorre em

xn → L

é um número racional.
Logo, temos aqui mais um exemplo de notação abusiva. Um e-

xercício que sempre se revela interessante é escrever formalmente,
usando apenas o vocabulário de S, enunciados de teoremas que, na
literatura, são escritos com abusos de linguagem.
Ou seja, como já foi discutido anteriormente, toda definição ex-

plícita abreviativa é matematicamente supérflua (eliminável).

Teorema 4.31. Se xn → L, então cxn → cL.

Demonstração: Se a constante c for 0, a prova é trivial, de
acordo com o Teorema 4.26. Agora consideremos o caso em
que c 6= 0. Temos, por hipótese,

∀ε > 0 ∃δ > 0(n > δ ⇒ |xn − L| < ε).
Logo,

∀ε > 0 ∃δ > 0(n > δ ⇒ |c||xn − L| < |c|ε).
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Ou seja,

∀ε > 0 ∃δ > 0(n > δ ⇒ |cxn − cL| < |c|ε).
Levando em conta que ε é arbitrário (desde que seja racional
estritamente positivo), o fator |c| é irrelevante.

O teorema a seguir estabelece que o limite do produto entre se-
quências racionais é o produto entre os limites das mesmas, caso
estes existam.

Teorema 4.32. (xn → L ∧ yn →M)⇒ (xn · yn → L ·M).

Demonstração: Temos, por hipótese, a conjunção de duas
fórmulas, a saber,

i: ∀ε > 0 ∃δ′ > 0(n > δ′ ⇒ |xn − L| < ε) e
ii: ∀ε > 0 ∃δ′′ > 0(n > δ′′ ⇒ |yn −M | < ε).
Uma vez que

|(xn − L)(yn −M)− 0| =
|(xn − L)(yn −M)| = |xn − L| · |yn −M |,

se escolhermos δ como o maior valor entre δ′ e δ′′, então
∀ε > 0(n > δ ⇒ |(xn − L)(yn −M)− 0| < ε · ε = ε2.

Levando em conta que ε é arbitrário (desde que seja racional
estritamente positivo), a condição |(xn−L)(yn−M)−0| < ε2

(desde que n seja maior do que δ) é equivalente a
(xn − L)(yn −M)→ 0.

No entanto,
xn · yn = (xn − L)(yn −M) +Mxn + Lyn − LM.

Logo, usando Teoremas 4.26, 4.29, 4.30 e 4.31, temos que
lim
n→∞

(xn · yn) =

lim
n→∞

((xn−L)(yn−M))+ lim
n→∞

(Mxn)+ lim
n→∞

(Lyn)+ lim
n→∞

(−LM) =
0 +ML+ LM − LM = LM.

A transitividade da igualdade encerra a demonstração.

O próximo teorema trata do limite da diferença entre sequências
racionais.
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Teorema 4.33. (xn → L ∧ yn →M)⇒ (xn − yn → L−M).

Finalmente,

Teorema 4.34.
(xn → L ∧ yn →M ∧M 6= 0)⇒ (xn/yn → L/M).

b As provas dos dois últimos ficam como sugestões de exercícios
ao leitor.

Exemplo 4.31. Se xn = 7 e yn = 1
n
, então xn → 7 e yn → 0;

logo,
xn + yn → 7

e
xn · yn → 0.

Como o leitor deve ter observado, Teoremas 4.26 (limite de se-
quência constante), 4.27 (limite de 1

n
), 4.29 (limite da soma), 4.32

(limite do produto), 4.33 (limite da diferença) e 4.34 (limite da razão)
oferecem poderosas ferramentas para o efetivo cálculo de limites de
sequências racionais. Obviamente a definição de sequência racional
convergente não é ‘amigável’ para fins de cálculos, até porque tal
definição não oferece explicitamente qualquer procedimento efetivo
para determinar limites (caso existam). Neste momento deve ficar
claro o papel altamente relevante de teoremas. Teoremas, neste caso,
representam considerável economia de pensamento.
Uma possível crítica em relação aos teoremas até aqui provados é a

seguinte: como garantir que não pode haver ambiguidade no cálculo
de limite? Em particular, se o limite da sequência constante xn = c
é a própria constante c (Teorema 4.26), como garantir que o limite
não pode ser também um valor racional d diferente de c? Pois bem,
o próximo teorema garante que jamais pode ocorrer tal ambiguidade
para sequência alguma que admite limite.

Teorema 4.35. O limite de uma sequência x de racionais, se
existe, é único.

Demonstração: Temos, por hipótese, que existe L racional
tal que xn → L. Supor que existe L′ 6= L tal que L′ é
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racional e xn → L′. Logo, basta escolher

ε = 1
2 |L− L

′| ,

ou seja, a metade da distância entre L e L′. Neste caso não
existe racional xn tal que

xn ∈ (L− ε, L+ ε) ∧ xn ∈ (L′ − ε, L′ + ε).
Logo, não há δ tal que n > δ implique em xn ∈ (L−ε, L+ε)
e xn ∈ (L′ − ε, L′ + ε). ⊥

Ou seja, o último teorema foi demonstrado por redução ao absurdo.
Esta é uma técnica muito usual em teoremas de unicidade, como o
caso do Teorema 3.2.
Um conceito relacionado ao de sequência racional convergente é

o de sequência racional de Cauchy. A ideia intuitiva é a seguinte:
uma sequência racional xp de Cauchy é aquela em que imagens xm
ficam confinadas ao intervalo (xn − ε, xn + ε) e imagens xn ficam
confinadas ao intervalo (xm − ε, xm + ε) na medida em que ambos
m e n se tornam arbitrariamente grandes. Em outras palavras, xp é
de Cauchy sss suas imagens xm e xn ‘se aproximam cada vez mais
umas das outras’, na medida em que se aumentam os valores de
m e n. Neste sentido, uma sequência racional de Cauchy não é
necessariamente convergente.

Definição 4.25. xp é de Cauchy sss
∀ε > 0 ∃δ > 0((m > δ ∧ n > δ)⇒ |xm − xn| < ε).

Exemplo 4.32. Seja x a sequência dada por
x0 = 2

e
xn+1 =

(
xn + 2

xn

)
/2.

Logo,

x1 = 3
2 , x2 = 17

12 , x3 = 577
408 , x4 = 665857

470832 , · · · .

A sequência x do exemplo acima é definida recursivamente, no
seguinte sentido:

i: x0 é igual a 2;
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ii: sabendo que xn+1 = (xn + 2

xn
)/2, logo, x1 = (x0 + 2

x0
)/2;

iii: logo, x2 = (x1 + 2
x1

)/2; e assim por diante.

Observar que, no Exemplo acima, as distâncias entre as imagens
xm e xn se tornam cada vez menores, na medida em que m e n
aumentam.

Exemplo 4.33.

|x0 − x1| =
1
2 , |x1 − x2| =

1
12 ,

|x2 − x3| =
1

408 , |x3 − x4| =
1

470832 , · · · .

É possível provar que a sequência acima é de Cauchy. Não faze-
mos tal demonstração neste livro, a qual pode ser feita por indução
infinita mas é bastante árdua. No entanto, é fácil provar que a se-
quência dada no último Exemplo não é convergente. A partir de
sua definição, observar que

2xn+1 = xn + 2
xn
.

Supor que existe racional L tal que L = limn→∞ xn. Logo,

lim
n→∞

(2xn+1) = lim
n→∞

(xn + 2
xn

),

por conta do Teorema 4.35. Além disso, limn→∞ xn+1 = limn→∞ xn,
se existir limn→∞ xn. Afinal, n > δ ⇒ n+ 1 > δ. Logo,

lim
n→∞

2 · lim
n→∞

xn+1 = lim
n→∞

xn + lim
n→∞

2
xn
,

por conta dos Teoremas 4.29 e 4.32. Isso implica em

2L = L+ 2
L
.

Finalmente,

L = 2
L
,

o que implica em
L2 = 2.
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Porém, não existe racional L tal que L2 = 2. Com efeito, se L for

racional, então
L = p

q
,

sendo p e q inteiros e q 6= 0. Logo, a substitutividade da igualdade
garante que

p2

q2 = 2,

o que implica em
p2 = 2q2.

Mas, uma vez que p e q são inteiros, então p e q são primos ou com-
postos (ou 1) (ver Definição 4.2). Logo, p2 conta com uma quantia
par de fatores primos, enquanto 2q2 conta com uma quantia ímpar
de fatores primos (lembrar que 2 é primo). Isso é uma contradição
com o Teorema Fundamental da Aritmética (o qual estabelece que
qualquer fatoração de um natural em primos é única, a menos de
arranjos dos fatores)! Consequentemente, L não é racional. Logo,

@L
(
L = lim

n→∞
xn

)
.

Apesar de sequências de Cauchy não serem necessariamente con-
vergentes, o fato é que toda sequência racional convergente é de
Cauchy, como se mostra a seguir.

Teorema 4.36. Se x é uma sequência racional convergente,
então é de Cauchy.

Demonstração: Temos, por hipótese, que existe racional L
tal que xn → L. Logo,

∀ε > 0 ∃δ > 0(n > δ ⇒ |xn − L| < ε).
Logo,

∀ε > 0 ∃δ > 0(m > δ ⇒ |xm − L| < ε).
Uma vez que

|xm − xn| = |(xm − L)− (xn − L)| ≤
|xm − L|+ |xn − L|,

logo,
∀ε > 0 ∃δ > 0((m > δ ∧ n > δ)⇒ |xm − xn| < 2ε).
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Sequências de racionais constituem uma ótima ferramenta para

definir números reais a partir de racionais, como se vê na próxima
Parte. Observar que isso não conflita com a discussão na Seção 34,
uma vez que a proposta não é o emprego de pares ordenados de
racionais, mas algo muito mais rico: sequências racionais de Cauchy.
Isso ajuda a ilustrar o enorme poder de funções.

Seção 37
Resumo da ópera

Sumário

Índice
RedeEsta quarta parte pode ser resumida como se segue.

• ZF permite conceituar, no contexto de sua linguagem, números
naturais, inteiros e racionais.
• A lógica de ZF permite conhecer diversas propriedades algébri-
cas das operações de adição e multiplicação entre naturais, in-
teiros e racionais.
• Naturais e suas operações usuais são definidos a partir de um
conjunto indutivo em particular, denotado por ω.
• Inteiros são classes de equivalência de pares ordenados de na-
turais, enquanto racionais são classes de equivalência de pares
ordenados de inteiros.
• O que diferencia naturais de inteiros e racionais são as pro-
priedades algébricas das operações de adição e multiplicação.
Propriedades algébricas da adição entre naturais são preservadas
entre os inteiros. Mas os últimos contam com a existência de
simétrico aditivo, algo que não ocorre entre naturais. As pro-
priedades algébricas de adição e multiplicação entre inteiros são
preservadas entre os racionais. Mas os últimos contam com a
existência de simétrico multiplicativo (exceto para o neutro adi-
tivo), algo que não acontece entre inteiros ou naturais.
• Uma vez que reais não podem ser definidos como classes de
equivalência de pares ordenados de racionais, alguns conceitos
são desenvolvidos na linguagem de ZF para contornar essa difi-
culdade. Entre esses conceitos, sequências racionais de Cauchy
são de interesse estratégico a ser explorado na próxima Parte.
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Seção 38

Notas históricas
Sumário

Índice
Rede

m
Durante a transição do século 19 para o século 20 houve extensas
discussões sobre as ideias originais de Cantor. Leopold Kronecker
chegou a dizer que o infinito (na acepção da Definição 4.18) de seu
ex-aluno Georg Cantor era filosofia ou religião, mas não matemática.

Georg Cantor, no início do século 20
Fonte: Wikipedia.

Afirmando que Cantor era um corruptor das novas gerações de
matemáticos, Kronecker exerceu severas interferências na carreira
de seu ex-aluno, impedindo-o de se tornar professor na Universidade
de Berlim. No entanto, esse tipo de resistência não era novidade.
Na Grécia Antiga, por exemplo, os números irracionais eram aqueles
sobre os quais nada se falava. Por isso o nome! Irracionais eram
números ‘ilógicos’. Preconceito é uma inevitável condição humana,
mesmo quando o assunto é matemática.

m
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Nesta quinta parte finalmente iniciamos os primeiros passos na
direção de cálculo diferencial e integral padrão.

Seção 39
Reais

Sumário

Índice
RedeDefinimos números reais como certas classes de equivalência de

sequências de Cauchy de racionais. Antes, porém, precisamos intro-
duzir uma nova relação.

Definição 5.1. Sejam xn e yn sequências de racionais. Logo,

xn ≡ yn
... (xn − yn)→ 0.

Lemos xn ≡ yn como ‘xn é equivalente a yn’.

Seja ω uma notação abusiva para a cópia do conjunto dos números
naturais em Q. Se

r = {t ∈ ℘(ω ×Q) | t é sequência}
é o conjunto de todas as sequências racionais, então ≡ define uma
relação em r.
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Exemplo 5.1. i: xn = 1
n
e yn = 2

n2 são equivalentes, ou
seja,

1
n
≡ 2
n2 .

Com efeito, ( 1
n
− 2
n2

)
→ 0.

ii: xn = 1
n
e zn = 5 não são equivalentes, uma vez que( 1

n
− 5

)
→ −5

e −5 6= 0.
iii: Seja v uma sequência racional tal que vn = (−1)n. Seja
w uma sequência racional tal que

wn =
{

n2 se n ≤ 10
(−1)n se n > 10.

Logo, para todo n > 10 temos vn = wn. Isso implica que
(vn − wn)→ 0.

Portanto, v ≡ w.

b É obviamente recomendável que o leitor prove o item iii acima.

Teorema 5.1. A relação ≡ da Definição 5.1 é de equivalên-
cia.

Demonstração: Uma vez que xn − xn = 0, de acordo com
Teorema 4.26,

(xn − xn)→ 0.
Logo, xn ≡ xn, o que prova que ≡ é reflexiva.
Se xn ≡ yn, então (xn − yn)→ 0 (Definição 5.1). Mas

yn − xn = (−1)(xn − yn).
Logo,

(yn − xn)→ (−1) lim
n→∞

(xn − yn),
de acordo com os Teoremas 4.26 e 4.32. Logo, (yn−xn)→ 0,
uma vez que o racional 0 é absorvente multiplicativo. Logo,
yn ≡ xn, o que prova a simetria de ≡.
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Se xn ≡ yn e yn ≡ zn, então (xn − yn)→ 0 e (yn − zn)→ 0.
Logo,

((xn − yn) + (yn − zn))→ 0,
de acordo com o Teorema 4.29. Mas,

((xn − yn) + (yn − zn)) = (xn − zn).
Logo, a substitutividade da igualdade garante que

(xn − zn)→ 0.

Isso implica em xn ≡ zn, o que prova a transitividade de
≡.

Consequentemente, a relação ≡ definida sobre o conjunto r das
sequências racionais é de equivalência.
Se r é o conjunto das sequências racionais e c é o conjunto das

sequências racionais de Cauchy, então c ⊂ r e novamente ≡ define
uma relação de equivalência, desta vez sobre c. Notar que item iii
do Exemplo 5.1 prova que, de fato, c é subconjunto próprio de r.
Com efeito, as sequências vn e wn daquele item não são de Cauchy,
apesar de serem sequências racionais equivalentes entre si.
Teorema 5.1, em parceria com Teorema 3.10, permite finalmente

definir números reais, bem como reais racionais e reais irracionais.

Definição 5.2. Seja c o conjunto das sequências racionais de
Cauchy. Logo,

R = c/≡
é o conjunto dos números reais.
Cada elemento de c/≡ é chamado de número real. Se qualquer

representante xn de [xn] (onde [xn] é uma classe de equivalência
pertencente a c/≡) é uma sequência de Cauchy convergente, en-
tão [xn] é um número real racional. Caso contrário, [xn] é um
número real irracional.

Lembrar que c/≡ é o quociente do conjunto das sequências racionais
de Cauchy pela relação de equivalência ≡ (ver parágrafo imediata-
mente após a demonstração do Teorema 3.11).
O conjunto R dos números reais é também conhecido como o corpo

dos números reais. Existem outros corpos além de R. Detalhes na
Seção 96.

Página 151



Matemática Pandêmica Parte 5 Seção 39

b Em R toda sequência de Cauchy é convergente. Recomen-
damos que o leitor prove isso.
Se os reais r e s têm, respectivamente, representantes xn e yn,

então r+ s (adição entre reais) é um real com representante xn + yn,
e r · s (ou, simplesmente, rs, a multiplicação entre reais) é um real
com representante xn · yn.

Exemplo 5.2. i: Seja x a sequência racional dada por

x0 = 2 e xn+1 =
(
xn + 2

xn

)
/2;

logo,

x1 = 3
2 , x2 = 17

12 , x3 = 577
408 , x4 = 665857

470832 , · · · .

Este é o mesmo Exemplo 4.32, apresentado na Seção 36.
Neste caso, x é de Cauchy, mas não convergente entre os
racionais (como já discutido). Isso significa que x é repre-
sentante de um real r = [xn] irracional, a saber, um real
r tal que r2 = 2. Este número real é usualmente denotado
por
√

2. Para que o leitor tenha uma ideia melhor sobre os
demais representantes de

√
2, ver o próximo item.

ii: Seja y a sequência racional dada por

y0 = 5 e yn+1 =
(
yn + 2

yn

)
/2;

logo,

y1 = 27
10 , y2 = 929

540 , y3 = 1446241
1003320 , · · · .

Neste caso, xn ≡ yn, apesar de xn 6= yn. Observar que, em
notação decimal, x1 − y1 = 1, 2, x2 − y2 = 0, 303, x3 − y3 =
0, 0272, · · · .
Ambas as sequências x e y são de Cauchy, porém não con-
vergentes. Afinal, analogamente à discussão na Seção 36, se
x ou y convergissem, deveriam convergir para um racional
L tal que L2 = 2, o que não pode ser o caso.
No entanto, [xn], a qual é igual a [yn], é o número real

r tal que r2 = 2, ou seja,
√

2. b Outros exemplos de
representantes de

√
2 podem ser dados pelo leitor.
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Se xn + yn = zn, dizemos que zn é a soma das parcelas xn e yn.

Se xn · yn = zn, dizemos que zn é o produto dos fatores xn e yn. O
mesmo se diz sobre os respectivos reais com representantes xn, yn e
zn.

Exemplo 5.3.
√

2(
√

2) = 2.

Se r é um real racional, empregamos a mesma notação introduzida
para racionais.
Obviamente, as propriedades algébricas de adição e multiplicação

entre racionais induzem as mesmas propriedades para a adição + e a
multiplicação · entre números reais. Logo, são teoremas as seguintes
fórmulas:

i: a adição entre reais é comutativa e associativa;
ii: a adição entre reais admite neutro aditivo (denotado por

0) e simétrico aditivo para qualquer real r (denotado por
−r);

iii: a multiplicação entre reais é comutativa e associativa;
iv: a multiplicação entre reais admite neutro multiplicativo

(denotado por 1) e simétrico multiplicativo para qualquer
real r diferente de 0 (denotado por r−1);

v: o neutro aditivo é absorvente multiplicativo;
vi: a multiplicação é distributiva em relação à adição.

A nova propriedade algébrica entre números reais, inexistente entre
racionais, é o fato de que sequências e Cauchy e sequências conver-
gentes são conceitos equivalentes em R.
Entre os números reais há uma relação de ordem total ≤:

r < 0 ... para todo representante xn de r há δ tal que n > δ ⇒
xn < 0, sendo a última a relação de ordem < entre racionais.
r < s

... r− s < 0 (lembrar que r− s = r+ (−s), sendo que −s
é o simétrico aditivo de s)
r ≤ s

... r < s ∨ r = s.
s ≥ r

... r ≤ s

s > r
... r < s
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Graças às relações de ordem ≤ e < em R, é possível introduzir

conceitos muito úteis para os estudos da Seção 44:

• Um intervalo aberto (a, b) é o conjunto
{x ∈ R | a < x ∧ x < b};

• Um intervalo fechado [a, b] é o conjunto
{x ∈ R | a ≤ x ∧ x ≤ b};

• Um intervalo fechado degenerado [a, b] é um intervalo fechado
tal que a = b;
• Um intervalo fechado não degenerado é um intervalo fechado
que não é degenerado;
• Um intervalo aberto à esquerda e fechado à direita (a, b] é o
conjunto

{x ∈ R | a < x ∧ x ≤ b};

• Um intervalo fechado à esquerda e aberto à direita [a, b) é o
conjunto

{x ∈ R | a ≤ x ∧ x < b};

• Uma vizinhança de um número real r é qualquer intervalo
aberto (a, b) tal que r ∈ (a, b).

Exemplo 5.4. i: (3, 8) é uma vizinhança de 5, mas não de
3;

ii: b todo número real r admite uma vizinhança (a, b) (con-
segue provar isso?).

b
i: Exibir a classe de equivalência de sequências de Cauchy de

racionais correspondente ao real
√

5;
ii: provar que nenhum representante xn de

√
5 é convergente em

Q;
iii: provar que, para quaisquer reais a, b e c tais que a < b e b < c,

temos que (a, b) ∩ (b, c) = ∅. Este último é de importância
estratégica para a compreensão de limites de funções reais, a
serem discutidos na Seção 44.
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Análise na reta é o estudo da tripla ordenada (R,+, ·),
incluindo funções com domínios e co-domínios contidos em R.

Seção 40
Complexos

Sumário

Índice
RedeLembrando que R2 é o conjunto R × R dos pares ordenados de

números reais, podemos agora introduzir o que são complexos.

Definição 5.3. O corpo C dos números complexos é o con-
junto C = (R2,+, ·), onde
• + : R2 × R2 → R2 é a função dada por

+((a, b), (c, d)) = (a, b) + (c, d) = (a+ c, b+ d) e

• · : R2 × R2 → R2 é a função dada por
·((a, b), (c, d)) = (a, b) · (c, d) = (ac− bd, ad+ bc).

Cada (a, b) ∈ R2 é um número complexo. A função + é chamada
de adição de complexos, enquanto · é a multiplicação de complexos.
Se (m,n) + (p, q) = (r, s), dizemos que (r, s) é a soma das parcelas

(m,n) e (p, q).
Se (m,n) · (p, q) = (r, s), dizemos que (r, s) é o produto dos fatores

(m,n) e (p, q).

Exemplo 5.5. A adição entre o complexo (5,−2) e o com-
plexo (

√
3, 0) é o complexo (5,−2) + (

√
3, 0) = (5 +

√
3,−2).

A multiplicação entre o complexo (5,−2) e o complexo (
√

3, 0)
é o complexo (5,−2) · (

√
3, 0) = (5

√
3− (−2)0, 5(0) + (−2)

√
3).

Ou seja, (5,−2) · (
√

3, 0) = (5
√

3,−2
√

3).

Teorema 5.2. A adição entre complexos é comutativa. For-
malmente, isso se traduz como

(a, b) + (c, d) = (c, d) + (a, b),
onde (a, b) e (c, d) são complexos.
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Demonstração:
(a, b) + (c, d) = (a+ c, b+ d) =
(c+ a, d+ b) = (c, d) + (a, b).

Teorema 5.3. A multiplicação entre complexos é comutativa.
Formalmente, isso se traduz como

(a, b) · (c, d) = (c, d) · (a, b),
onde (a, b) e (c, d) são complexos.

Demonstração:
(a, b) · (c, d) = (ac− bd, ad+ bc) =
(ca− db, da+ cb) = (c, d) · (a, b).

Teorema 5.4. Existe neutro multiplicativo entre os complexos.
Ademais, ele é único. Formalmente, isso se traduz como
∃!c ∃!d((c, d) ∈ R2 ∧ ∀a∀b((a, b) ∈ R2 ⇒ (a, b) · (c, d) = (a, b))).

Demonstração: Basta fazer (c, d) = (1, 0). Com efeito,
(a, b) · (1, 0) = (a.1− b.0, a.0 + b.1) = (a, b).

Ou seja, (1, 0) é neutro multiplicativo.
Para provar a unicidade do neutro multiplicativo, supor

que existe outro. b Cabe ao leitor verificar que essa hi-
pótese produz uma contradição. Portanto, o par ordenado
(c, d) mencionado é apenas (1, 0).

Outra maneira para demonstrar o último teorema é a seguinte.
Uma vez que (a, b) · (c, d) = (ac− bd, ad+ bc), basta provar que

(ac− bd, ad+ bc) = (a, b) sss c = 1 ∧ d = 0.

Graças à comutatividade da multiplicação, (1, 0) · (c, d) = (c, d).

Teorema 5.5. Existe neutro aditivo entre os complexos. Além
disso, ele é único. Formalmente, isso se traduz como
∃!c ∃!d((c, d) ∈ R2 ∧ ∀a∀b((a, b) ∈ R2 ⇒ (a, b) + (c, d) = (a, b))).
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Demonstração:
(a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b).

Ou seja, (0, 0) é neutro aditivo. Para provar a unicidade
do neutro aditivo, supor que existe outro. b Cabe ao
leitor verificar que essa hipótese produz uma contradição.
Portanto, o par ordenado (c, d) mencionado é (0, 0).

Teorema 5.6. Todo complexo admite simétrico aditivo. For-
malmente, isso se traduz como
∀a∀b((a, b) ∈ R2 ⇒ ∃c∃d((c, d) ∈ R2 ∧ (a, b) + (c, d) = (0, 0))),
sendo (0, 0) o neutro aditivo do Teorema 5.5.

Demonstração:
(a, b) + (−a,−b) = (a+ (−a), b+ (−b)) = (0, 0).

Logo, (−a,−b) é simétrico aditivo de (a, b), onde −a e −b
são os simétricos aditivos dos reais a e b, respectivamente.
Portanto, o par ordenado (c, d) mencionado é (−a,−b). No-
tar que, para cada (a, b) complexo, (−a,−b) é único.

Em particular, (−1, 0) é o simétrico aditivo do neutro multiplica-
tivo entre os complexos. Essa informação se revela particularmente
relevante para discernirmos complexos de reais.

b É teorema a seguinte fórmula: a multiplicação entre com-
plexos é associativa. Recomendamos que o leitor prove isso. Esse
fato facilita bastante o cálculo dado pela seguinte definição.

Definição 5.4. Se (a, b) é um complexo diferente do neutro
aditivo e n é um natural, então

i: (a, b)0 = (1, 0);
ii: (a, b)n+1 = (a, b) · (a, b)n.

Exemplo 5.6. (0, 1)3 = (0, 1) · (0, 1)2 = (0, 1) · (0, 1) · (0, 1)1 =
(0, 1) · (0, 1) · (0, 1) · (0, 1)0 = (0, 1) · (0, 1) · (0, 1) · (1, 0) = (0,−1);
o leitor escolhe a ordem em que deseja realizar as operações de
multiplicação, uma vez que multiplicação entre complexos é co-
mutativa e associativa.
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Lemos (a, b)n como ‘(a, b) elevado a n’. Em particular, (a, b)2 se lê

também como ‘(a, b) ao quadrado’ e (a, b)3 se lê também como ‘(a, b)
ao cubo’.
Entre os complexos existe uma propriedade algébrica que não ocorre

entre os reais, os racionais, os inteiros ou os naturais, conforme o
próximo teorema.

Teorema 5.7. Existe um complexo cujo quadrado é o simétrico
aditivo do neutro multiplicativo.

Demonstração: (0, 1)·(0, 1) = (0.0−1.1, 0.1+1.0) = (−1, 0).

O simétrico aditivo do neutro multiplicativo entre os reais é −1.
No entanto, não existe real r tal que r2 = −1, sendo r2 = r · r.
Comentário análogo vale para os racionais e os inteiros. Entre os
naturais, em particular, o simétrico aditivo do neutro multiplicativo
sequer existe.
O complexo (0, 1) cujo quadrado (0, 1)2 é o simétrico aditivo do

neutro multiplicativo (1, 0) (ou seja, (−1, 0)) é conhecido como uni-
dade imaginária. Comumente abrevia-se (0, 1) pelo símbolo i. Ou
seja,

i = (0, 1).

Teorema 5.8. Os complexos da forma (e, 0) copiam os números
reais.

Demonstração: Basta observar que
(a, 0) · (c, 0) = (ac− 0.0, a.0 + 0.c) = (ac, 0)

e
(a, 0) + (c, 0) = (a+ c, 0 + 0) = (a+ c, 0).

Logo, adição a + c entre reais é copiada por (a, 0) + (c, 0).
Resultado análogo vale para multiplicação.

Este último teorema justifica a prática comum de abreviar com-
plexos (a, 0) como a. Neste contexto, se z = (a, b) é um complexo
qualquer, então

(a, b) = (a, 0) · (1, 0) + (b, 0) · (0, 1)
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(basta fazer as contas para confirmar). Abreviadamente, isso corres-
ponde a afirmar que

z = a+ bi,

onde a e b são complexos que copiam reais (lembrar que a · 1 = a) e
i é a unidade imaginária.
Logo,

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i
e

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i,
de acordo com a Definição 5.3.
Se z = (a, b) é um complexo, chamamos a de parte real de z, e b de

parte imaginária do complexo z. Essa convenção é consistente com
o fato de que complexos (a, 0) copiam os reais, enquanto complexos
(0, b) contam com uma propriedade algébrica não replicável pelos
reais, por consequência do Teorema 5.7.
Uma vez que complexos são definidos como pares ordenados (ver

Teorema 3.4) de reais, um complexo z é igual a um complexo z′ sss
a parte real de z for igual à parte real de z′ e a parte imaginária de z
for igual à parte imaginária de z′. Obviamente essa última afirmação
é um teorema.
A partir de agora adotamos a notação abreviada a para complexos

(a, 0) e i para a unidade imaginária (0, 1). Logo, bi abrevia o com-
plexo (0, b), enquanto a + bi abrevia (a, b). Neste contexto, são teo-
remas as seguintes fórmulas (lembrar que multiplicação entre com-
plexos é associativa):

i0 = 1, i1 = i, i2 = −1, i3 = −i, i4 = 1, i5 = i e assim por diante.

Ou seja,

i4n = 1, i4n+1 = i, i4n+2 = −1, i4n+3 = −i,
onde n é um natural.

Esses resultados são usados na Seção 57.
Observar que, apesar dos complexos estenderem os reais em termos

das operações algébricas de adição e multiplicação, eles não fazem o
mesmo para a relação de ordem total ≤ entre reais. Com efeito, se
r e s são reais tais que r 6= 0 ou s 6= 0, então r2 + s2 > 0.
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No entanto, entre os complexos isso não é teorema. Por exemplo,

i2 + 12 = 0.
Pior ainda, (2i)2 + 12 = −3 < 0.
Por conta disso, entre os complexos não é possível definir uma

relação de ordem total ≤ que seja compatível com as operações de
adição e multiplicação entre complexos, e que ainda seja uma cópia
da relação usual ≤ entre reais.
Copiar a relação de ordem total ≤ dos reais entre complexos que

copiam os reais é algo trivial:
(a, 0) ≤ (b, 0) sss a ≤ b.

O problema sem solução é estender essa relação para todos os com-
plexos.

Análise complexa é o estudo da tripla ordenada (C,+, ·) e das
funções com domínio e co-domínio contidos em C.

Seção 41
ω ⊂ Z ⊂ Q ⊂ R ⊂ C?

Sumário

Índice
RedeUm discurso usual na literatura diz que todo natural é um inteiro,

todo inteiro é um racional, todo racional é um real e todo real é um
complexo. Usualmente isso se traduz como

ω ⊂ Z ∧ Z ⊂ Q ∧Q ⊂ R ∧ R ⊂ C.

No entanto, obviamente não é o caso aqui. O zero natural é o
conjunto vazio, enquanto o zero inteiro é uma classe de equivalência
de pares ordenados de naturais. Dadas as construções aqui exibidas,
nenhum natural é inteiro, nenhum inteiro é racional, nenhum racional
é real e nenhum real é complexo. Ou seja, a fórmula

ω 6⊂ Z ∧ Z 6⊂ Q ∧Q 6⊂ R ∧ R 6⊂ C
é teorema.
Por outro lado, vimos que inteiros positivos copiam naturais; racio-

nais p
q
, tais que q = 1, copiam os inteiros; reais cujos representantes

são sequências de Cauchy convergentes copiam os racionais; e com-
plexos (a, 0) copiam os reais (incluindo a ordem total ≤ entre reais).
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Isso significa que complexos podem ser usados para copiar também
racionais, inteiros e naturais. Logo, o que temos é o seguinte:

c(ω) ⊂ c(Z) ∧ c(Z) ⊂ c(Q) ∧ c(Q) ⊂ c(R) ∧ c(R) ⊂ C,

onde c(ω), c(Z), c(Q) e c(R) são, respectivamente, cópia dos natu-
rais entre os complexos, cópia dos inteiros entre os complexos, cópia
dos racionais entre os complexos e cópia dos reais entre os complexos.
Apenas por abuso de notação que se afirma que ω ⊂ Z∧Z ⊂ Q∧Q ⊂
R ∧ R ⊂ C.

i Na literatura especializada há muitos outros conjuntos numéri-
cos, como os quatérnions, os hiperreais, os hipercomplexos, os sur-
reais, os perplexos, os transfinitos, entre outros. As relações entre
esses conjuntos não são óbvias. Por exemplo, a multiplicação entre
quatérnions é não comutativa.

Seção 42
Funções reais

Sumário

Índice
RedePor enquanto voltamos a discutir sobre números reais, deixando os

complexos de lado. Mais adiante fica evidente que o conhecimento so-
bre certas funções reais − aquelas cujas imagens são apenas números
reais − depende de considerações sobre os complexos.
A definição recursiva a seguir é usual.

Definição 5.5. Seja x um número real diferente do neutro
aditivo. Logo,

i: x0 = 1;
ii: xn+1 = x · xn, onde n é um real que copia um inteiro posi-
tivo.

Exemplo 5.7.
x4 = x ·x3 = x ·x ·x2 = x ·x ·x ·x1 = x ·x ·x ·x ·x0 = x ·x ·x ·x;
uma vez que multiplicação entre reais é associativa, não há ne-
cessidade de qualquer preocupação com parênteses.
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O termo

√
x (lê-se ‘raiz quadrada de x’) é uma abreviação para

um real y não negativo tal que y2 = x. Ou seja,
y =
√
x ∨ y = −

√
x sss y2 = x.

Obviamente isso somente pode ser o caso se x ≥ 0. Se y2 = x,
onde x é positivo, então y =

√
x ou y = −

√
x, o que se abrevia como

y = ±
√
x.

É uma convenção adotar que
√
x ≥ 0 se x ≥ 0. Logo, −

√
x é

o simétrico aditivo de
√
x. Se

√
x for estritamente positivo, então

−
√
x é um real negativo.

O termo n
√
x (lê-se ‘raiz n-ésima de x’) é uma abreviação para um

real y tal que yn = x, onde n ≥ 2 é um real que copia um natural.
Se n for ímpar, então n

√
x é definido para qualquer real x; se n for

par, então n
√
x está definido apenas para os reais x positivos. No

caso particular 3
√
x, lê-se ‘raiz cúbica de x’.

O principal propósito, de agora em diante, é o estudo de funções
f : a→ b

tais que ambos a e b são subconjuntos de R.
Qualquer função cujo co-domínio é subconjunto de R é dita uma

função real. A Definição 5.5 para xn e seu correspondente n
√
x são

úteis para o estudo de muitas funções reais.

Exemplo 5.8. i: f : R→ R tal que f(x) = x (função iden-
tidade); observar que

f = {(x, y) ∈ R× R | y = x},
ou seja, f = {(x, x) | x ∈ R};

ii: Sejam c um número real e g : R → R tal que g(x) = c
(função constante); observar que

g = {(x, c) ∈ R2 | x ∈ R};

iii: Seja h : d→ R tal que d ⊆ R e
h(x) = anx

n + an−1x
n−1 + an−2x

n−2 + · · ·+ a2x
2 + a1x+ a0,

onde a0, a1, · · · , an são números reais e n é uma cópia de
um número natural entre os reais. Função h é conhecida
como função polinomial de grau menor ou igual a n; o grau
dessa função polinomial h é n se an 6= 0;
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iv: A função identidade é uma função polinomial de grau 1;
v: j : R→ R tal que

j(x) = 4x− 2x4 +
√

2
é uma função polinomial de grau 4; neste caso a0 =

√
2,

a1 = 4, a2 = 0, a3 = 0 e a4 = −2.
vi: k : R→ R tal que k(x) = c, onde {c} é o conjunto escolha

obtido por aplicação do Axioma da Escolha sobre o conjunto
unitário {R}. Essa função k é conhecida como função es-
colha de R. Uma vez que o Axioma da Escolha foi usado
apenas sobre um singleton, a função escolha aqui ilustrada
é uma função real constante. Obviamente não sabemos qual
foi a constante c ‘escolhida’.

Na Seção 102 é usada uma função escolha para ilustrar exemplo
de evento que, apesar de ter probabilidade zero, ocorre.
Funções polinomais são extremamente versáteis para expressar até

mesmo funções não polinomiais, conforme se percebe a partir da
Seção 54. Portanto, é de grande interesse conhecê-las.
Na próxima Seção há uma breve discussão sobre os zeros de funções

polinomiais. Naturalmente, o assunto não é esgotado apenas com
isso. Mas já é um começo.

Seção 43
Zeros de funções polinomiais

Sumário

Índice
RedeOs zeros de uma função real f qualquer (polinomial ou não),

com domínio d ⊆ R, são os valores r ∈ d tais que
f(r) = 0.

Exemplos são dados nos próximos parágrafos. Mas, antes, pre-
cisamos de algumas considerações básicas.
Existe uma estreita relação entre zeros de funções reais e certas

equações. Para evitar possíveis confusões muito comuns entre alunos,
é essencial que o leitor tenha consciência sobre a importante diferença
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entre funções e equações. Funções são casos particulares de conjun-
tos, conforme discutido na Seção 29. Logo, funções são termos de ZF
(conforme Seção 7). Equações, por outro lado, são fórmulas atômicas
da forma u = v, onde u e v são termos (conforme Seção 7). Uma vez
que nenhuma fórmula é um termo e nenhum termo é uma fórmula,
nenhuma equação é uma função e nenhuma função é uma equação.
Se o termo r é um zero da função f , nas condições acima colocadas,

então (r, 0) pertence a f . No entanto, cada elemento de f é um par
ordenado (r, f(r)). Logo, determinar os zeros de f é equivalente a
determinar os reais r tais que

(r, f(r)) = (r, 0).

Por conta do Teorema 3.4,
(r, f(r)) = (r, 0) se, e somente se, f(r) = 0.

Mas a igualdade
f(r) = 0

é uma equação, uma fórmula atômica que estabelece uma igualdade
entre a imagem de r, via f , e 0. Neste contexto, a equação f(r) = 0
é equivalente a outra fórmula atômica, a saber, (r, 0) ∈ f .
Ou seja, determinar os zeros de uma função real f implica em

responder quais são os valores r que satisfazem a equação f(r) = 0.
Em outras palavras, determinar os zeros de uma função real f

implica em responder quais são os valores r tais que a equação f(r) =
0 é teorema.

Polinomiais de grau 0

Seja p : R→ R uma função polinomial de grau 0 qualquer, ou seja,
p(x) = α.

Se a constante α for diferente de 0, então p não admite zero algum.
Se a constante α for 0, então cada elemento do domínio R de p é um
zero de p.
Nos próximos parágrafos promovemos uma breve discussão sobre

zeros de funções polinomiais de grau maior do que 0. Deve ficar
claro que polinomiais de grau 0 são as únicas polinomiais que podem
admitir uma infinidade de zeros.
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−2 −1 1 2

−2

−1

1

2

x

y
p(x) = −1

Na imagem acima temos uma representação gráfica de uma poli-
nomial p(x) = α para o caso α = −1.

Polinomiais de grau 1

Seja f : R → R uma função polinomial de grau 1 qualquer, ou
seja,

f(x) = αx+ β,

sendo α 6= 0. Determinar os zeros de f é equivalente a determinar
os números reais x tais que αx+ β = 0 (ou seja, tais que a equação
αx+ β = 0 é teorema, onde α 6= 0). Neste caso,

x = −β
α
.

Ou seja,

x = −β
α
⇔ αx+ β = 0

é teorema. Isso equivale a afirmar que

x = −β
α

é o único zero de f .
Observar que, de acordo com a discussão anterior, f é uma função

e, portanto, um conjunto. Neste sentido, determinar os zeros de f é
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equivalente a determinar quais são os pares ordenados (x, 0) tais que
(x, 0) ∈ f . Já a equação αx + β = 0 é uma fórmula atômica u = v
(onde u é o termo αx+β e v é o termo 0) usada como ferramenta para
auxiliar na busca por zeros da função f . Comentário análogo vale
para cada uma das funções polinomiais apresentadas nos próximos
parágrafos.

−2 −1 1 2

−2

−1

1

2

x

y
f(x) = 2x− 1

Na imagem acima temos uma representação gráfica de uma poli-
nomial f(x) = αx+ β para o caso α = 2 e β = −1.

Polinomiais de grau 2

Seja g : R→ R uma função polinomial de grau 2 qualquer, ou seja,

g(x) = αx2 + βx+ γ,

sendo α 6= 0. Determinar os zeros de g é equivalente a definir os
números reais x tais que αx2 + βx+ γ = 0.
Mas αx2 + βx + γ = 0 equivale a 4α2x2 + 4αβx + 4αγ = 0, uma

vez que α 6= 0. Logo,

4α2x2 + 4αβx+ 4αγ + β2 = β2,

o que implica em 4α2x2 + 4αβx+ β2 = β2 − 4αγ.
A última equivale a (2αx + β)2 = β2 − 4αγ, a qual implica em

2αx + β = ±
√
β2 − 4αγ, sendo que o símbolo ± serve ao propósito
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de destacar que existem até dois possíveis valores reais 2αx+ β tais
que (2αx+ β)2 = β2 − 4αγ.
Logo,

2αx = −β ±
√
β2 − 4αγ,

o que implica em

x = −β ±
√
β2 − 4αγ

2α .

Logo, g admite um único zero sss β2 − 4αγ = 0.
A mesma função polinomial g de grau 2 admite dois zeros se, e

somente se, β2 − 4αγ > 0. Finalmente, g não admite zero algum sss
β2 − 4αγ < 0.
Notar que os zeros da função g foram obtidos por meio de uma

raiz quadrada envolvendo apenas os coeficientes α, β e γ.
Aparentemente Brasil é o único país do mundo a se referir à equação

x = −β ±
√
β2 − 4αγ

2α
como fórmula de Bhāskara, em homenagem ao famoso matemático
e astrônomo indiano do século 12. A comunidade internacional se
refere a ela como fórmula quadrática.

−2 −1 1 2

−2

−1

1

2

x

y
g(x) = −3x2 + 2x+ 1

Na imagem acima temos uma representação gráfica de uma poli-
nomial g(x) = αx2 + βx+ γ para o caso α = −3, β = 2 e γ = 1.
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Polinomiais de grau 3

Seja h : R→ R uma função polinomial de grau 3 dada por

h(x) = αx3 + βx2 + γx+ δ,

sendo α 6= 0. Estabelecer os zeros de h é equivalente a determinar
os números reais x tais que αx3 + βx2 + γx+ δ = 0. A mudança de
variáveis

x = t− β

3α
permite reescrever a igualdade anterior como se segue:

αt3 + rt+ s = 0,

sendo

r = 3αγ − β2

3α e s = 2β3 − 9αβγ + 27α2δ

27α2 .

Observar que a igualdade αt3 + rt + s = 0 envolve um polinômio
no qual o coeficiente real que multiplica t2 é 0.
Os valores t que satisfazem a última equação são os mesmos que

satisfazem

t3 + r

α
t+ s

α
= 0.

i Logo, o problema pode ser resolvido por raízes n
√ , seguindo o

Método de Cardano (em homenagem a Girolamo Cardano, polímata
italiano do século 16). O Método de Cardano pode ser encontrado
em inúmeras referências da literatura.
Uma vez obtidos os valores t que satisfazem a última equação em

destaque (via Método de Cardano), o fato de que

x = t− β

3α

permite obter os zeros da função polinomial h de grau 3, a qual
admite pelo menos um zero real, independentemente dos valores de
α, β, γ e δ. Em contrapartida, h admite no máximo três zeros reais.
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−1 1 2 3

−2

−1

1

2

x

y
h(x) = x3 − 3x2 + 2x+ 1

Na imagem acima temos uma representação gráfica de uma poli-
nomial h(x) = αx3 + βx2 + γx+ δ para o caso α = 1, β = −3, γ = 2
e δ = 1.

Polinomiais de grau 4

Seja i : R→ R uma função dada por
i(x) = αx4 + βx3 + γx2 + δx+ ε,

sendo α 6= 0. Ou seja, i é uma função polinomial de grau 4. Deter-
minar os zeros de i (aqui o símbolo i nada tem a ver com a unidade
imaginária dos complexos!) é equivalente a determinar os números
reais x tais que

αx4 + βx3 + γx2 + δx+ ε = 0.

A mudança de variáveis

x = t− β

4α
permite reescrever a igualdade anterior como se segue:

αt4 + rt2 + st+ u = 0.
sendo

r = −3β2

4α + γ, s = β3

4α2 −
βγ

2α + δ, u = −3β4

256α3 + γβ2

16α2 −
βδ

4α + ε.
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i Os valores de t que satisfazem a equação

t4 + r

α
t2 + s

α
t+ u

α
= 0

podem ser obtidos a partir do Método de Ferrari (em homenagem a
Lodovico Ferrari, matemático italiano do século 16). O Método de
Ferrari pode ser encontrado em diversas referências.
Uma vez obtidos os valores t que satisfazem a última equação (via

Método de Ferrari), o fato de que

x = t− β

4α
permite obter os zeros da função polinomial i de grau 4, a qual admite
no máximo quatro zeros reais, podendo também não ter um único
zero.

−2 −1 1 2

−1

1

2

x

y
i(x) = x4 − 2x2

Na imagem acima temos uma representação gráfica de uma poli-
nomial i(x) = αx4 + βx3 + γx2 + δx + ε para o caso α = 1, β = 0,
γ = −2, δ = 0 e ε = 0.

Polinomiais de grau maior ou igual a 5

Seja j : R→ R uma função dada por
j(x) = αx5 + βx4 + γx3 + δx2 + εx+ ζ,
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sendo α 6= 0. Determinar os zeros de j é equivalente a definir os
números reais x tais que

αx5 + βx4 + γx3 + δx2 + εx+ ζ = 0.

O Teorema de Abel-Ruffini (1799, 1824) garante a impossibilidade
de estabelecer soluções de equações polinomiais de grau maior ou
igual a 5, para coeficientes reais arbitrários, em termos de raízes dos
coeficientes que multiplicam cada monômio xm. A Teoria de Galois
(devida a Évariste Galois), a qual trata de conexões entre teoria de
corpos e teoria de grupos, estende consideravelmente este resultado.
Para certos casos particulares de funções polinomiais, de grau

maior ou igual a 5, ainda é possível determinar os zeros por meio
de raízes dos coeficientes envolvidos. Um exemplo simples é a fun-
ção q : R→ R tal que

q(x) = x8 − 1.

Neste caso, os zeros de q são os reais x tais que x8 = 1, ou seja,

x = ± 8
√

1,

o que equivale a x = ±1. Mas o Teorema de Abel-Ruffini impede que
um método envolvendo raízes seja desenvolvido para toda e qualquer
função polinomial de grau maior do que 4.
No entanto, ainda é possível obter zeros de funções polinomiais

quaisquer (entre outras) via aproximações obtidas pelo truncamento
de funções definidas recursivamente. Funções recursivas f que podem
ser programadas em máquinas são da forma

xn+1 = f(xn),

onde f(x0) = f0. Essas funções são simplesmente sequências reais. O
truncamento de f para algum número natural m é necessário como
critério de parada do algoritmo executado pela máquina, desde que
existam condições de convergência para f. Detalhes sobre casos par-
ticulares de tais métodos implementáveis em máquinas são examina-
dos na Seção 108.
Rudimentos de métodos numéricos definidos por funções recursivas

são conhecidos há milênios, muito antes do advento do computador
digital. Ver, por exemplo, o método babilônico para a obtenção da
raiz quadrada de qualquer número real positivo, o qual também é
discutido na Seção 108.
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Observação final

Como última observação, vale a pena mencionar um fato de grande
importância. O célebre Teorema Fundamental da Álgebra garante,
como uma de suas consequências, que qualquer equação polinomial
de grau n, ou seja, qualquer fórmula
anx

n + an−1x
n−1 + an−2x

n−2 + · · ·+ a3x
3 + a2x

2 + a1x+ a0 = 0,
onde an 6= 0, admite no máximo n valores reais x que satisfazem
tal igualdade. Ou seja, ainda que não seja possível determinar −
por raízes dos coeficientes an, an−1, · · · , a0 − todos os reais x que
satisfazem essa equação (no caso de n ≥ 5), pelo menos se sabe
que há sempre uma quantia finita desses valores (quantia finita essa
menor ou igual a n).
Logo, sejam u : R → R e v : R → R funções polinomiais quais-

quer. O Teorema Fundamental da Álgebra garante, como outra con-
sequência, que u = v se, e somente se, os coeficientes dos monômios
de mesmo grau de u e v forem idênticos. Se
u(x) = anx

n + an−1x
n−1 + an−2x

n−2 + · · ·+ a3x
3 + a2x

2 + a1x+ a0,

cada parcela ajxj é chamada de monômio de grau j; além disso, o
fator aj é o coeficiente do monômio ajxj. Ou seja, a última afirmação
é simplesmente a seguinte: se
u(x) = anx

n + an−1x
n−1 + an−2x

n−2 + · · ·+ a3x
3 + a2x

2 + a1x+ a0

e
v(x) = bnx

n + bn−1x
n−1 + bn−2x

n−2 + · · ·+ b3x
3 + b2x

2 + b1x+ b0,

então u(x) = v(x) para todo x ∈ R sss aj = bj para todo j tal que
0 ≤ j ≤ n.
A prova desse resultado pode ser feita por reductio ad absurdum.

Com efeito, se houver algum j tal que aj 6= bj, então a igualdade
u(x) = v(x) passa a ser uma equação polinomial que somente pode
ser satisfeita para uma quantia finita de possíveis valores reais x.
Logo, não há igualdade entre u(x) e v(x) para todo x real.
Qualquer soma finita de monômios é um polinômio.
A demonstração do Teorema Fundamental da Álgebra está fora do

escopo deste livro. No entanto, este é um resultado usado com muita
frequência aqui e em diversas áreas da matemática.
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Seção 44

Limite de função real
Sumário

Índice
RedeO que se segue é fortemente relacionado com o conceito de sequên-

cia racional convergente. No caso desta Seção, porém, o foco é sobre
funções reais. Também não há qualquer preocupação com valores
arbitrariamente grandes. Estes são os primeiros passos na direção
do Cálculo Diferencial e Integral Padrão.

Definição 5.6. Seja f : d → R uma função tal que d ⊆ R e
a ∈ (b, c) para algum intervalo aberto (b, c) ⊆ d. Logo,

lim
x→a

f(x) = L
... ∀ε > 0 ∃δ > 0 (0 < |x−a| < δ ⇒ |f(x)−L| < ε).

O termo |x−a| é uma distância entre x e a, assim como |f(x)−L|
é uma distância entre f(x) e L. A justificativa formal para essas afir-
mações é dada no Exemplo 8.44, Seção 88, Parte 8. Por enquanto,
basta uma visão intuitiva sobre distâncias em R.
O definiens na Definição 5.6 é equivalente à seguinte fórmula:

∀ε > 0 ∃δ > 0 (x ∈ (a− δ, a+ δ)− {a} ⇒ f(x) ∈ (L− ε, L+ ε)).

Observar que novamente estamos usando quantificadores relativiza-
dos, os quais foram introduzidos na Seção 35. A diferença é que agora
estamos lidando com termos que são números reais.
Lê-se limx→a f(x) = L como ‘limite de f(x), com x tendendo a a,

é L’. A ideia intuitiva é a seguinte: afirmar

lim
x→a

f(x) = L

equivale a dizer que, para toda vizinhança (L− ε, L+ ε) de L, deve
existir uma vizinhança (a−δ, a+δ) de a de modo que todo x perten-
cente a (a− δ, a + δ), exceto o próprio a, admite uma imagem f(x)
pertencente a (L− ε, L+ ε).
É usual se referir ao conjunto (L − ε, L + ε) como um intervalo

aberto centrado em L e com raio ε. Analogamente, (a − δ, a + δ) é
um intervalo aberto centrado em a e com raio δ. Obviamente, todo
intervalo aberto centrado em um real b, com raio γ real estritamente
positivo, é uma vizinhança de b.
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O conceito de vizinhança de um real, introduzido ao final da Seção

39, permite capturar a intuição de pontos ‘próximos’ de r. Neste
contexto, em geral, quanto ‘mais próximo’ um x estiver de a, ‘mais
próximo’ f(x) está de L. Para efeitos práticos, quanto menor o valor
de ε, menores os valores admissíveis para δ, caso o limite L exista. O
único caso em que δ não depende de ε é aquele que envolve funções
constantes, como se verifica no próximo teorema.

Teorema 5.9. Seja f : R → R tal que f(x) = c. Logo,
limx→a f(x) = c.

Demonstração: Devemos provar que limx→a c = c. Logo,
devemos provar que
∀ε > 0 ∃δ > 0 (0 < |x− a| < δ ⇒ |c− c| < ε).

Mas essa última fórmula equivale a
∀ε > 0 ∃δ > 0 (0 < |x− a| < δ ⇒ 0 < ε).

Qualquer δ real maior do que 0 satisfaz essa fórmula! Com
efeito, basta aplicar Teorema 2.1 e Proposição 2.3. Afinal,
ε > 0 ⇒ ε > 0 é teorema, independentemente de qualquer
hipótese envolvendo δ.

O último teorema pode ser estendido para funções localmente cons-
tantes, i.e., para funções f tais que existe intervalo aberto (α, β) de
modo que f(x) = c, para todo x pertencente a (α, β). Neste caso,
limx→a f(x) = c para todo a pertencente a (α, β). Obviamente a
demonstração deste resultado exige um cuidado extra com relação
ao valor de δ, a saber, δ pode ser qualquer real estritamente positivo
menor ou igual ao menor dos dois valores a seguir: a− α e β − a.

Teorema 5.10. Seja f : R→ R tal que f(x) = x. Logo,
lim
x→a

f(x) = a.

Demonstração: Devemos provar que limx→a x = a. Logo,
devemos provar que
∀ε > 0 ∃δ > 0 (0 < |x− a| < δ ⇒ |x− a| < ε).

Faça δ = ε. Com efeito, se δ = ε, então a fórmula
0 < |x− a| < δ ⇒ |x− a| < ε
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é teorema. Isso porque a fórmula

|x− a| < ε⇒ |x− a| < ε

é teorema, mesmo que |x − a| < ε não seja teorema (ver
Teorema 2.1 e Proposições 2.3 e 2.5).

O último teorema pode ser estendido para funções f tais que, lo-
calmente, se comportam como a função identidade, i.e., f(x) = x
para todo x pertencente a um intervalo aberto (α, β). Neste caso δ
deve ser menor ou igual ao menor entre dois possíveis valores: a−α
e β − a.

Sejam f e g funções reais que compartilham o mesmo domínio d
tal que d ⊆ R. Neste caso,

i (f + g) é uma função com domínio d tal que
(f + g)(x) = f(x) + g(x),

para todo x ∈ d;
ii (f − g) é uma função com domínio d tal que

(f − g)(x) = f(x)− g(x),
para todo x ∈ d;

iii (fg) é uma função com domínio d tal que
(fg)(x) = f(x)g(x),

para todo x ∈ d;
iv (f/g) é uma função com domínio d tal que

(f/g)(x) = f(x)/g(x),
desde que g(x) 6= 0 para todo x pertencente a d.

Observar que, na última definição, foram conceituadas adição,
subtração, multiplicação e divisão entre funções reais, a partir de
adição, subtração, multiplicação e divisão entre reais, respectiva-
mente. Logo, as propriedades algébricas de adição e multiplicação
entre funções reais são análogas àquelas entre reais, como comuta-
tividade, associatividade e as demais.

Exemplo 5.9. Sejam f : R→ R e g : R→ R funções tais que
f(x) = x
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e

g(x) = 5.

Logo, f + g é uma função real com domínio R tal que
(f + g)(x) = x+ 5.

Teorema 5.11. Se f e g são funções que compartilham o mesmo
domínio d ⊆ R e

lim
x→a

f(x) = L

e
lim
x→a

g(x) = M,

então:
i: limx→a(f + g)(x) = L+M ,
ii: limx→a(f − g)(x) = L−M ,
iii: limx→a(fg)(x) = LM e
iv: limx→a(f/g)(x) = L/M (se M 6= 0).

Em particular,
lim
x→a

cf(x) = cL,

se
lim
x→a

f(x) = L.

b A demonstração do Teorema 5.11 é análoga às provas dos Teo-
remas 4.29, 4.32, 4.33 e 4.34. Basta fazer as adaptações necessárias.
Recomendamos que o leitor faça isso como exercício.

Teorema 5.12. Seja p : R→ R uma função tal que
p(x) = anx

n+an−1x
n−1 +an−2x

n−2 + · · ·+a3x
3 +a2x

2 +a1x+a0,

onde a0, a1, · · · , an são números reais e n é uma cópia de um
inteiro positivo entre os reais. Então,

lim
x→a

p(x) = p(a).

Demonstração: b Basta usar os Teoremas 5.9, 5.10 e
5.11, uma vez que qualquer função polinomial é redutível
a operações de adição e multiplicação envolvendo funções
constantes e a função identidade. Lembrar também que
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essa prova tira proveito do fato de adição e multiplicação
entre funções reais serem associativas. Com efeito, essas
são definidas a partir de adição e multiplicação entre reais,
como já mencionado. Essa prova exige paciência, mas é
muito simples.

O último teorema pode ser estendido para funções localmente poli-
nomiais, i.e., funções p tais que
p(x) = anx

n + an−1x
n−1 + an−2x

n−2 + · · ·+ a3x
3 + a2x

2 + a1x+ a0

para todo x pertencente a um intervalo aberto (α, β). Neste caso,
lim
x→a

p(x) = p(a),

se a pertence a (α, β).

Uma função real f é racional sss

f(x) = p(x)
q(x) ,

sendo p e q funções polinomiais.

Não confundir funções racionais (aquelas cujas imagens são núme-
ros racionais) com funções reais racionais, acima definidas.

Exemplo 5.10. i: f : R→ R tal que

f(x) = x3 − 2x
x2 + 4

é uma função real racional; afinal, m : R→ R dada por
m(x) = x3 − 2x

e n : R→ R dada por
n(x) = x2 + 4

são funções polinomiais, e

f(x) = m(x)
n(x) ,

onde n(x) 6= 0 para todo x pertencente a R;
ii: toda função polinomial p : R→ R é real racional, uma vez
que

p = p

1
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e a função constante g : R → R dada por g(x) = 1 é poli-
nomial de grau 0;

iii: A função h : R→ R dada por h(x) = |x| não é polinomial
e nem real racional.

Neste e no próximo parágrafo justificamos a afirmação feita no item
iii dado acima. Supor que h : R→ R, dada por

h(x) = |x|,
é polinomial. Logo, existem n, an, an−1, · · · , a0, tais que
h(x) = anx

n + an−1x
n−1 + an−2x

n−2 + · · ·+ a3x
3 + a2x

2 + a1x+ a0.

No entanto,

h(x) =
{

x se x ≥ 0
−x se x < 0

Logo, de acordo com a Observação final da Seção 43, h(x) = x
e h(x) = −x para todo x real. ⊥.

b Aqui cabe outra observação. A função k : d→ R dada por
k(x) = |x|

é polinomial se todos os elementos de d forem reais positivos ou todos
os elementos forem reais menores ou iguais a 0. Consegue provar?
O parágrafo acima deixa claro que o conceito de função polinomial

depende do domínio da função.

Exemplo 5.11. Seja f : R− {0} → R uma função tal que

f(x) = |x|
x
.

Neste caso, não existe L tal que
lim
x→0

f(x) = L.

Com efeito, se existisse o limite, então
∀ε > 0 ∃δ > 0 (x ∈ (0− δ, 0 + δ)−{0} ⇒ f(x) ∈ (L− ε, L+ ε)).
No caso em que

ε = 1
10 ,

não existe δ que satisfaça a condicional da definição. Isso porque
f(x) assume apenas os valores 1 e −1.
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Além disso, a distância entre 1 e −1 é 2, um número real bem

maior do que
1
10 .

Logo, nem toda função admite limite.
Observar que a função do último Exemplo não é uma função real

racional, uma vez que |x| não define uma polinomial em R− {0}.
Notar também que a função f : R− {0} → R tal que

f(x) = |x|
x

admite limite

lim
x→a

f(x)

para qualquer a diferente de 0. Para provar isso, não esquecer que
f é localmente polinomial em qualquer ponto a pertencente ao seu
domínio.

Definição 5.7. Uma função real f é contínua em um ponto
a sss

lim
x→a

f(x) = f(a).

Exemplo 5.12. i: Toda função p : R→ R polinomial é con-
tínua em todos os pontos de seu domínio, conforme Teorema
5.12;

ii: f : R− {0} → R tal que

f(x) = |x|
x

não é contínua em 0, apesar de ser contínua em todos os
pontos de seu domínio. b Fortemente recomendamos a
demonstração deste teorema.

Teorema 5.13. O limite de uma função real, quando existe,
é único.

A prova deste último é análoga à do Teorema 4.35.
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Seção 45

Estendendo limites
Sumário

Índice
RedeNesta Seção estendemos a Definição 5.6 sobre limite de função real,

de modo a incluir doze outras definições de tipos especiais de limites.
Tratam-se de conceitos úteis, por exemplo, na prova do importante
Teorema 6.19, na Seção 61.

Definição 5.8. Seja f : d → R uma função tal que d ⊆ R.
Logo,

lim
x→a+

f(x) = L
... ∀ε > 0 ∃δ > 0 (a < x < a+δ ⇒ |f(x)−L| < ε).

Lemos limx→a+ f(x) como ‘limite de f(x), com x tendendo ao ponto
a pela direita’. A ideia é semelhante à Definição 5.6. A única diferen-
ça reside no fato de que aqui estamos interessado apenas nos reais x
tais que

x ∈ (a, a+ δ).

Na Definição 5.6 estamos interessado em todos os x tais que
x ∈ (a− δ, a) ∪ (a, a+ δ).

A expressão ‘tendendo pela direita’ remete ao fato de que δ é es-
tritamente positivo; portanto, a + δ > a, o que implica que todo x
pertencente ao intervalo aberto (a, a+ δ) está ‘à direita’ de a.

Exemplo 5.13. Seja f : R− {0} → R uma função tal que

f(x) = |x|
x
.

Neste caso, como já foi discutido anteriormente, não existe L
tal que

lim
x→0

f(x) = L.

Com efeito, se existisse o limite, então
∀ε > 0 ∃δ > 0 (x ∈ (0− δ, 0 + δ)−{0} ⇒ f(x) ∈ (L− ε, L+ ε)).
No caso em que ε = 1

10 , não existe δ que satisfaça a condicional
da definição. Isso porque f(x) assume apenas os valores 1 e −1.
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No entanto, existe limx→0+ f(x). Além disso, limx→0+ f(x) =

1. Com efeito,
∀ε > 0 ∃δ > 0 (0 < x < 0 + δ ⇒ |1− 1| < ε).

Isso porque todo x entre 0 e 0 + δ (excluindo 0 e 0 + δ) é estrita-
mente positivo, o que implica em |x| = x e, portanto, f(x) = 1.
Novamente Teorema 2.1 e Proposição 2.3 concluem a prova.

Definição 5.9. Seja f : d → R uma função tal que d ⊆ R.
Logo,

lim
x→a−

f(x) = L
... ∀ε > 0 ∃δ > 0 (a−δ < x < a⇒ |f(x)−L| < ε).

Lemos limx→a− f(x) como ‘limite de f(x), com x tendendo ao ponto
a pela esquerda’. A ideia aqui é análoga à discussão acima, mas desta
vez estamos lidando com reais x à esquerda de a.
Os termos

lim
x→a+

f(x) e lim
x→a−

f(x),

quando existem, são chamados de limites laterais.

Exemplo 5.14. b Seja f : R − {0} → R uma função tal
que

f(x) = |x|
x
.

Neste caso, limx→0− f(x) = −1. Cabe ao leitor justificar.

Teorema 5.14. Seja f uma função real. Logo,
lim
x→a

f(x) = L sss lim
x→a+

f(x) = L ∧ lim
x→a−

f(x) = L.

b A discussão acima sobre limites laterais dá uma boa ideia
de como provar esse último resultado. Por conta disso, deixamos a
tarefa ao leitor. O teorema acima apenas afirma que limite existe
sss os limites laterais existirem e forem coincidentes. Graças a esse
teorema, os dois últimos Exemplos ficam bem mais fáceis de jus-
tificar. Afinal, uma mesma função admite limites laterais distintos.
Logo, neste caso, ela não admite limite.
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As próximas definições desta Seção são conhecidas como limites

envolvendo infinito. Elas se dividem em dois grupos não necessa-
riamente excludentes entre si, a saber, limites infinitos e limites no
infinito.

Definição 5.10. Seja f : d→ R uma função tal que d ⊆ R.

lim
x→a+

f(x) =∞ ... ∀ε > 0 ∃δ > 0 (a < x < a+ δ ⇒ f(x) > ε).

! Este é o primeiro caso de limite infinito. A definição acima
segue uma notação abusiva que comumente confunde alunos. Isso
porque no definiendum há uma igualdade na qual ocorre à sua direi-
ta o símbolo metalinguístico ∞. Mas é imprescindível que o leitor
entenda que ∞ não é um termo da linguagem S aqui usada. Além
disso, ∞ também não abrevia termo algum de S. No entanto, a
sentença metalinguística limx→a+ f(x) =∞ abrevia a fórmula

∀ε > 0 ∃δ > 0 (a < x < a+ δ ⇒ f(x) > ε),

na qual não há uma única ocorrência do símbolo ∞.
Do ponto de vista intuitivo, a última definição captura a seguinte

ideia: na medida em que x se aproxima de a pela direita, as imagens
f(x) se tornam arbitrariamente grandes. A ideia de imagens f(x) se
tornarem arbitrariamente grandes se caracteriza pela desigualdade

f(x) > ε,

a qual deve ser satisfeita para qualquer real ε estritamente positivo.
Levando em conta que, nas condições acima ditadas, f(x) não fica
confinado a qualquer intervalo (L− ε, L + ε), fica claro então que o
limite lateral acima é um caso particular de limite que não existe.
Justamente por isso que insistimos que a notação acima é abusiva.
Todo limite infinito, como vemos nas próximas discussões, é um caso
particular de limite que não existe.
Limites laterais são aqueles em que x pertence ao intervalo (a, a+δ)

(limite lateral pela direita) ou (a−δ, a) (limite lateral pela esquerda).
A título de curiosidade, o símbolo ∞ foi introduzido em 1655, por

John Wallis, em um tratado sobre seções cônicas. Contemporâneo
de Isaac Newton, Wallis foi um dos responsáveis pela concepção do
cálculo diferencial e integral.
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Exemplo 5.15. Seja f : R− {0} → R uma função dada por

f(x) = 1
x
.

Logo,
lim
x→0+

f(x) =∞.
Com efeito, a fórmula

∀ε > 0 ∃δ > 0
(

0 < x < 0 + δ ⇒ 1
x
> ε

)
(a qual é o definiens na Definição 5.10) é equivalente à fórmula

∀ε > 0 ∃δ > 0
(

0 < x < δ ⇒ x <
1
ε

)
,

uma vez que x é estritamente positivo. Logo, Teorema 2.1 e
Proposição 2.3 garantem que basta fazer

δ = 1
ε
.

Definição 5.11. Seja f : d→ R uma função tal que d ⊆ R.

lim
x→a+

f(x) = −∞ ... ∀ε > 0 ∃δ > 0 (a < x < a+ δ ⇒ f(x) < −ε).

Este é um segundo exemplo de limite infinito. Neste caso, na
medida em que x se aproxima pela direita de a, as imagens f(x) se
tornam arbitrariamente grandes em valor absoluto, mas com sinais
negativos.

Exemplo 5.16. b Seja f : R− {0} → R dada por

f(x) = −1
x
.

Logo,
lim
x→0+

f(x) = −∞.
Recomendamos que o leitor faça a prova.

b O leitor pode escrever os conceitos de
lim
x→a−

f(x) =∞

e
lim
x→a−

f(x) = −∞,
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bem como exemplificar.
As próximas duas definições são mais dois casos de limites infinitos.

Definição 5.12. Seja f : d→ R uma função tal que d ⊆ R.

lim
x→a

f(x) =∞ ... ∀ε > 0 ∃δ > 0 (0 < |x− a| < δ ⇒ f(x) > ε).

A ideia intuitiva é a seguinte: na medida em que x se aproxima
de a (tanto pela esquerda quanto pela direita) as imagens f(x) se
tornam arbitrariamente grandes. Ou seja, mais um caso particular
de limite que não existe.

Exemplo 5.17. Seja f : R− {0} → R uma função dada por

f(x) = 1
x2 .

Logo,
lim
x→0

f(x) =∞.
Com efeito, a fórmula

∀ε > 0 ∃δ > 0
(

0 < |x− 0| < δ ⇒ 1
x2 > ε

)
é equivalente à fórmula

∀ε > 0 ∃δ > 0
(

0 < |x| < δ ⇒ |x| < 1√
ε

)
.

Logo, basta fazer δ = 1√
ε
.

Definição 5.13. Seja f : d→ R uma função tal que d ⊆ R.

lim
x→a

f(x) = −∞ ... ∀ε > 0 ∃δ > 0 (0 < |x− a| < δ ⇒ f(x) < −ε).

A ideia intuitiva é a seguinte: na medida em que x se aproxima
de a (tanto pela esquerda quanto pela direita) os valores absolutos
das imagens f(x) se tornam arbitrariamente grandes mas com sinal
negativo.

Exemplo 5.18. b Seja f : R− {0} → R uma função dada
por

f(x) = −1
x2 .
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Logo,

lim
x→0

f(x) = −∞.
Recomendamos ao leitor que prove isso.

Teorema 5.15. Seja f uma função real. Logo,
lim
x→a

=∞ sss lim
x→a+

=∞∧ lim
x→a−

=∞.

Analogamente,
lim
x→a

= −∞ sss lim
x→a+

= −∞∧ lim
x→a−

= −∞.

b A prova fica a cargo do leitor.

Exemplo 5.19. Seja f : R − {0} → R uma função dada por
f(x) = 1

x
. Logo, como discutido anteriormente,

lim
x→0+

f(x) =∞∧ lim
x→0−

f(x) = −∞.

Ou seja, além de não existir limx→0 f(x), este é um caso de
limite inexistente que não é limite infinito. Em outras palavras,
todo limite infinito é um caso particular de limite inexistente.
Mas nem todo limite inexistente é um limite infinito. b A
propósito, essa função f é contínua em todos os pontos de seu
domínio. Consegue provar isso?

Definição 5.14. Seja f : d→ R uma função tal que d ⊆ R.
lim
x→∞

f(x) = L sss ∀ε > 0 ∃δ > 0 (x > δ ⇒ |f(x)− L| < ε).

Este é o primeiro caso de limite no infinito, pelo menos neste breve
estudo sobre funções reais.
A ideia intuitiva aqui é a seguinte: na medida em que x se torna

arbitrariamente grande (conceito esse dado por x > δ), as imagens
f(x) ficam confinadas ao intervalo

(L− ε, L+ ε),
para todo e qualquer real ε estritamente positivo.

Exemplo 5.20. Seja f : R− {0} → R uma função dada por

f(x) = 1
x
.
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Logo,

lim
x→∞

f(x) = 0.
Com efeito, a fórmula

∀ε > 0 ∃δ > 0
(
x > δ ⇒

∣∣∣∣1x − 0
∣∣∣∣ < ε

)
é equivalente à fórmula

∀ε > 0 ∃δ > 0
(
x > δ ⇒

∣∣∣∣1x
∣∣∣∣ < ε

)
,

a qual é equivalente a

∀ε > 0 ∃δ > 0
(
x > δ ⇒ |x| > 1

ε

)
.

A última, por sua vez, é equivalente a

∀ε > 0 ∃δ > 0
(
x > δ ⇒ x >

1
ε

)
,

uma vez que x é estritamente positivo por conta da premissa
x > δ. Logo, basta fazer

δ = 1
ε
.

Definição 5.15. Seja f : d→ R uma função tal que d ⊆ R.
lim

x→−∞
f(x) = L sss ∀ε > 0 ∃δ > 0 (x < −δ ⇒ |f(x)− L| < ε).

Exemplo 5.21. b Seja f : R− {0} → R dada por

f(x) = 1
x
.

Logo,
lim

x→−∞
f(x) = 0.

O leitor deve justificar.

Definição 5.16. Seja f : d→ R uma função tal que d ⊆ R.
lim
x→∞

f(x) =∞ sss ∀ε > 0 ∃δ > 0 (x > δ ⇒ f(x) > ε).

Este é o primeiro caso de um limite infinito no infinito, entre
funções reais. A ideia intuitiva é a seguinte: na medida em que x
se torna arbitrariamente grande, as imagens f(x) também assumem
valores reais arbitrariamente grandes.
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Exemplo 5.22. Seja f : R→ R dada por f(x) = 6x.
Logo,

lim
x→∞

f(x) =∞.
Com efeito, a fórmula

∀ε > 0 ∃δ > 0 (x > δ ⇒ 6x > ε)
é equivalente a

∀ε > 0 ∃δ > 0
(
x > δ ⇒ x >

ε

6

)
.

Logo, basta fazer
δ = ε

6 .

b Para as três últimas definições de limites infinitos no infinito
o próprio leitor pode criar seus exemplos.

Definição 5.17. Seja f : d → R uma função tal que d ⊆ R.
Logo,

lim
x→∞

f(x) = −∞ sss ∀ε > 0 ∃δ > 0 (x > δ ⇒ f(x) < −ε).

Definição 5.18. Seja f : d → R uma função tal que d ⊆ R.
Logo,

lim
x→−∞

f(x) =∞ sss ∀ε > 0 ∃δ > 0 (x < −δ ⇒ f(x) > ε).

Definição 5.19. Seja f : d → R uma função tal que d ⊆ R.
Logo,

lim
x→−∞

f(x) = −∞ sss ∀ε > 0 ∃δ > 0 (x < −δ ⇒ f(x) < −ε).

Seção 46
Mergulhando nas águas de limites

Sumário

Índice
RedeQbEsta Seção é um grande exercício.

A definição de limite de funções reais foi uma das grandes con-
quistas da matemática, introduzida por Karl Weierstraß e Augustin-
Louis Cauchy no século 19. O padre católico Bernardus Bolzano
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teve ideias semelhantes muito antes de Weierstraß e Cauchy, mas a
proposta dele passou completamente despercebida na época.
Não é uma tarefa fácil para pessoas em geral perceberem o que os

quantificadores alternados ∀ε > 0 ∃δ > 0 realmente estão dizendo
na definição de limite de função real. Uma ótima maneira para com-
preender a definição de limite é ‘navegar’ por ela, resolvendo exercí-
cios, como aqueles já propostos até aqui. Outra, porém, é ‘mergu-
lhar’ na definição, levantando a seguinte questão: o que aconteceria
se a Definição 5.6 fosse diferente?
Uma vez que certas definições, como a de limite, estão socialmente

consolidadas na comunidade matemática, não faz sentido propor
qualquer alteração nelas. Mas, para fins de exercício investigativo,
podemos propor novos conceitos inspirados na definição de limite.
Por exemplo, digamos que o matemático ficcional Dick Tate (alter

ego de Dinah Mite) proponha o seguinte conceito:

limix→af(x) = L
... ∀ε > 0 ∀δ > 0 (0 < |x− a| < δ ⇒ |f(x)− L| < ε,

onde lemos limix→af(x) como ‘limitante de f(x) com x tendencioso
a a’.
Neste caso, o limitante de f(x) com x tendencioso a um real a

existiria apenas para funções constantes f : R→ R tais que f(x) = c.
Além disso, temos que limix→af(x) = c. Recomendamos ao leitor
provar esse atípico teorema do misterioso senhor Tate.
Logo, o conceito de limitante seria algo trivial e completamente

inútil.
Digamos agora que Hugh Jass, oponente de Dick Tate, proponha

a seguinte definição:

limiarx→af(x) = L
... ∃ε > 0 ∃δ > 0 (0 < |x−a| < δ ⇒ |f(x)−L| < ε,

onde lemos limiarx→af(x) como ‘limiar de f(x) com x se aproxi-
mando de a’.
Nesta situação, o limiar de qualquer função f : R → R existiria

para qualquer real a, algo bem mais abrangente do que os limitantes
do senhor Tate. No entanto, o limiar de uma função real não seria
único, tornando o conceito proposto por Jass como algo novamente
inútil, uma vez que não poderia ser usado para definir o desejável con-
ceito de derivada como caso particular de limiar. Uma das grandes
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vantagens da unicidade de limite radica no seu emprego para definir
derivada de uma função, tema da próxima Seção.
Propomos ao leitor provar esses resultados sugeridos.
Outras propostas podem ser introduzidas para rivalizar (ou não)

com a definição de limite. Esse tipo de atividade é um excelente
exercício de criatividade, aparentemente nunca explorado em livros
de cálculo diferencial e integral ou salas de aula.
Questões como ‘o que aconteceria se a matemática fosse diferente’

são altamente pertinentes para fins investigativos. Com efeito, tais
questões podem provocar estimulantes discussões. Mas é necessário
que os Tates e Jasses da vida não levem para o lado pessoal eventuais
críticas que receberem às suas ideias.

Seção 47
Derivada

Sumário

Índice
RedeLimites permitem definir derivadas e integrais de Riemann.

Derivadas são uma das ferramentas mais comumente empregadas
para mapear fenômenos do mundo real. Isso porque derivadas cap-
turam as ideias intuitivas de ‘dinâmica’, ‘gradiente’, ‘velocidade’,
‘aceleração’, ‘taxa de variação’, entre muitos outros. Neste sentido é
uma prática comum a proposta de modelos matemáticos para des-
crever fenômenos físicos a partir de derivadas.
Integrais de Riemann, por sua vez, permitem lidar com os modelos

propostos via derivadas, para que seja possível fazer previsões de
longo termo. Detalhes são dados na medida em que avançamos por
aqui. Exemplos são dados também adiante.

Definição 5.20. Seja f uma função real. A derivada de f
em relação a x no ponto a, se existir, é definida como

d

dx
f(x)

∣∣∣∣
x=a

= lim
h→0

f(a+ h)− f(a)
h

.

Obviamente, duas condições necessárias para

d

dx
f(x)

∣∣∣∣
x=a
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existir são as seguintes:

i: f(a) deve existir, ou seja, a é um elemento do domínio de f , e
ii: f(x) deve existir para todos os reais x pertencentes a algum

intervalo aberto I tal que a ∈ I.

Com efeito, uma vez que
d

dx
f(x)

∣∣∣∣
x=a

é um limite com ‘h tendendo a 0’, isso corresponde a dizer que h
pertence a um intervalo aberto

(0− δ, 0 + δ),

exceto o ponto 0, de acordo com a definição de limite.
Logo, a+ h (termo usado na Definição 5.20) pertence ao conjunto

(a− δ, a+ δ)− {a},

o qual é uma vizinhança de a (lembrar que δ é estritamente positivo)
na qual se ignora o próprio ponto a.
No entanto, essas duas condições (f(a) existe e f(x) existe para

qualquer x de uma vizinhança de a), apesar de necessárias, não são
suficientes para garantir a existência de d

dx
f(x)

∣∣∣∣
x=a

, conforme exem-
plificamos mais adiante.
Com relação à visão intuitiva da Definição 5.20, ela expressa a
taxa de variação de f(x), em relação à variação de x, no ponto a.

Conforme discutido na Seção 1, matemática pode ser usada para
mapear fenômenos do mundo real. Neste contexto, digamos que x
seja interpretado como tempo em segundos, enquanto f(x) é inter-
pretado como a posição, em metros, de um corpo material ao longo
de uma estrada retilínea. Diante desta interpretação é sugerido que a
posição f(x), em metros, do corpo material depende do tempo x em
segundos: a cada instante x de tempo o corpo está em uma posição
f(x).
A velocidade média do corpo material, ao longo de dez segundos,

pode ser obtida da seguinte maneira:
i: no instante, digamos, 7s (a letra s abrevia ‘segundos’) avalia-se

a posição f(7)m (a letra m abrevia metros) do corpo;
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ii: no instante (7 + 10)s (ou seja, 17s) avalia-se a posição f(17)m;
iii: a razão

f(17)− f(7)
17− 7

é a velocidade média do corpo ao longo de dez segundos na
estrada retilínia. Tal velocidade média é dada em metros por
segundo, uma vez que temos uma divisão entre distância per-
corrida e intervalo de tempo transcorrido.

No contexto da Definição 5.20, a discussão acima corresponde ao
termo

f(a+ h)− f(a)
h

,

uma vez que h = (a+ h)− a.
No entanto, Definição 5.20, no contexto do mapeamento proposto,

não informa velocidade média do corpo material em questão, mas
velocidade instantânea. Isso ocorre por conta do limite aplicado sobre
a função

f(a+ h)− f(a)
h

,

com ‘h tendendo a 0’.
Em outras palavras, a derivada de f em relação a x, no ponto a, é

o limite de uma função g(h) com h tendendo a zero, sendo

g(h) = f(a+ h)− f(a)
h

.

Um carro viajando de Curitiba a São Paulo pode ter uma veloci-
dade média de 50 quilômetros por hora ao longo de todo o tempo de
viagem, ainda que em alguns trechos da estrada atinja a velocidade
instantânea de 120 quilômetros por hora e, em outros, permaneça
com uma velocidade instantânea de 0 quilômetros por hora (por
conta de um engarrafamento). Velocidade instantânea, neste sen-
tido, corresponde àquilo que é registrado no velocímetro do carro.
Retornando à Definição 5.20, uma vez que ‘h tende a zero’, isso

corresponde ao fato de h pertencer ao intervalo aberto

(0− δ, 0 + δ),

exceto possivelmente o ponto 0.
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Logo, h pode assumir tanto valores reais estritamente positivos (à

direita de 0) quanto valores reais negativos (à esquerda de 0). Se

lim
h→0

f(a+ h)− f(a)
h

existir, porém, obviamente o valor de d
dx
f(x)

∣∣∣∣
x=a

deve ser um único
real, estritamente positivo, negativo ou nulo, por conta do Teorema
5.13.
Observar que a possível interpretação de derivada de uma função

real, em um ponto a, como velocidade instantânea, não é única. Se
x for interpretado como tempo em segundos e f(x) for interpretado
como velocidade em metros por segundo,

d

dx
f(x)

∣∣∣∣
x=a

é uma aceleração (variação de velocidade em relação a tempo) ins-
tantânea em metros por segundo por segundo, no instante a.
Se x for associado com posição em metros numa reta vertical (al-

tura) e f(x) for associado com temperatura em graus Celsius, o
mesmo valor

d

dx
f(x)

∣∣∣∣
x=a

corresponde a um gradiente de temperatura na altura vertical a.
Aplicações de derivadas para lidar com fenômenos físicos são am-

plamente documentadas e muito bem sucedidas há mais de três sécu-
los, ajudando a moldar até mesmo a economia de nações, no que se
refere a avanços tecnológicos.
No entanto, em momento algum é sugerido que o mapeamento

matemático de fenômenos físicos implica que a posição de um au-
tomóvel numa estrada é uma função de tempo, no sentido do que
se entende por funções em ZF. Assim como o mapa de uma cidade
não é a cidade, a matemática opera tão somente como uma forma
de retratar certos aspectos do universo onde todos vivemos.
Por outro lado, derivadas de funções reais em um dado ponto ad-

mitem interpretações fora do âmbito de aplicações no mundo real.
Por conta disso, segue a próxima Seção, na qual conceitos muito ele-
mentares de Geometria Analítica Plana são explorados do ponto de
vista de derivadas. Na Seção 49 continuamos a estudar derivadas
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através de alguns teoremas importantes. Ne Secão 63 usamos deri-
vadas para mapear fenômenos físicos de decaimento radioativo.

Seção 48
Plano cartesiano

Sumário

Índice
RedeNesta Seção estamos interessado apenas nas retas

r = {(x, y) ∈ R2 | ax+ by = c}

tais que b 6= 0. Estas são chamadas de retas não verticais. Uma
reta não vertical, portanto, é o conjunto de todos os pares ordenados
(x, y) ∈ R2 tais que

y = αx+ β,

onde
α = −a

b
e β = c

b
.

O real α é chamado de coeficiente angular da reta r e β é chamado
de coeficiente linear da reta.
Pontos e retas podem ser representados visualmente como se segue

na próxima imagem.
Se (x, y) é um ponto de R2, chamamos x de abscissa do ponto e

y de ordenada. Os valores x e y são chamados de coordenadas do
ponto (x, y).

-

6

��
��

�
��

�
��

��
��

�
��

x

y r

(6, 1)•

O conjunto de todas as possíveis abscissas de pontos de R2 está
visualmente representado acima pelo eixo horizontal x. O conjunto
de todas as possíveis ordenadas de pontos de R2 está representado
pelo eixo vertical y. Logo, os eixos horizontal x e vertical y permitem
identificar univocamente quaisquer coordenadas de quaisquer pontos
de R2.
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As flechas representadas nos eixos servem para indicar que os reais

do eixo x crescem para a direita, enquanto os reais do eixo y crescem
para cima. A interseção entre esses eixos é o ponto (0, 0). Na imagem
acima há uma representação visual do ponto (6, 1) e da reta r dada
por

y = 1
2x− 1.

Observar que, se x = 0, então y = −1. Isso significa que o ponto
(0,−1) incide sobre r. Além disso, se y = 0, então x = 2, o que
implica que o ponto (2, 0) também incide sobre r. Há uma infinidade
de outros pontos incidentes sobre r. Mas os pontos (0,−1) e (2, 0)
bastam para definir r.
Observar também que o ponto (6, 1) não incide sobre r. Com

efeito, se x = 6, então y = 2. Logo, qualquer ponto com abscissa 6
incidente sobre r deve ter ordenada 2, o que não ocorre com o ponto
(6, 1).
Um ponto (x, y) de R2 incide sobre uma reta r sss (x, y) ∈ r.
Pois bem. Acontece que existe uma estreita relação entre derivadas

de funções reais em um ponto e retas de R2.
Uma vez que toda função f : R → R é um subconjunto de R2,

f também pode contar com uma representação visual de maneira
análoga àquela da última imagem.

-

6

x

y

H
HH

H
HH

H
HH

H
HH

H
HH

•

• •p

aa a+ h
•
•q•

f(a)

f(a+ h)

Na imagem acima a Curva Bézier ilustrada é uma representação
visual de uma função f : R→ R.
Curvas de Bézier foram concebidas nos anos 1960 por Pierre Bézier,

para o desenho de carros Renault. Hoje são amplamente utilizadas
em computação gráfica. Aqui empregamos para ilustrar uma visão
intuitiva sobre derivadas.
O ponto p ilustrado acima é o par ordenado (a, f(a)), o qual é um

ponto pertencente a f . O ponto q (também pertencente a f) é o

Página 194



Matemática Pandêmica Parte 5 Seção 49
par ordenado (a + h, f(a + h)), para o caso particular em que h é
estritamente positivo. Por conta disso que a + h está à direita de a
nesta ilustração.
Os pontos p e q definem um segmento de reta que pode ser inter-

pretado como a hipotenusa de um triângulo retângulo no qual um
dos catetos mede a distância de a até a+ h, ou seja, |h| (neste caso,
|h| = h). Em contrapartida, o outro cateto mede a distância de f(a)
até f(a+ h), ou seja, |f(a+ h)− f(a)|.
A razão

f(a+ h)− f(a)
h

é o coeficiente angular de uma reta definida pelos pontos p e q. Essa
reta definida por p e q (não representada visualmente para não so-
brecarregar a imagem) intersecta a função f exatamente nos pontos
p e q. Ao aplicar o limite

lim
h→0

f(a+ h)− f(a)
h

,

o ponto a + h se ‘aproxima arbitrariamente’ do ponto a. Uma vez
que o limite, quando existe, é único, neste caso o limite acima é o
coeficiente angular de uma reta que tangencia a função f no ponto
a. Situação análoga ocorre para o caso em que h é negativo e, con-
sequentemente, a+ h está à esquerda de a.
Neste contexto, retas tangentes a uma curva são casos ‘limites’ de

retas secantes, sendo que uma reta secante a uma curva é aquela que
intersecta a curva em pelo menos dois pontos.
Logo,

d

dx
f(x)

∣∣∣∣
x=a

,

se existir, pode ser interpretada como o coeficiente angular de uma
reta que tangencia f no ponto (a, f(a)).
Observar que os valores f(a + h) − f(a) e h não correspondem

necessariamente a medidas de catetos de um triângulo retângulo com
hipotenusa definida pelos pontos p e q, uma vez que tais valores
podem eventualmente ser negativos. No entanto, os valores absolutos
de f(a + h) − f(a) e h são medidas de tais catetos. Essa questão
é relevante para discussões sobre crescimento de decrescimento de
funções, conforme vemos mais adiante.
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Seção 49

Teoremas elementares sobre derivadas
Sumário

Índice
RedeAprendemos aqui a calcular algumas derivadas.

Teorema 5.16. Seja f : R → R tal que f(x) = c (função
constante). Logo, a derivada de f em relação a x em qualquer
ponto a do domínio de f é 0.

Demonstração:
d

dx
c
∣∣∣
x=a

= lim
h→0

c− c
h

= lim
h→0

0
h

= lim
h→0

0 = 0.

Observar como se justifica a igualdade

lim
h→0

0
h

= lim
h→0

0

na última demonstração: levando em conta que h tende a 0, isso é
equivalente a afirmar que h pertence a uma vizinhança (0− δ, 0 + δ)
exceto o ponto 0. Logo, de fato 0

h
é igual a 0, uma vez que h é

diferente de 0.
Com relação à última igualdade na demonstração acima,

lim
h→0

0 = 0,

foi aplicado o Teorema 5.9 sobre limite de função constante (aqui a
constante é zero).
O último teorema pode ser estendido para funções localmente cons-

tantes, i.e., para funções f tais que existe intervalo aberto (α, β) de
modo que f(x) = c para todo x pertencente a (α, β). Neste caso,

d

dx
f(x)

∣∣∣
x=a

= 0

para todo a pertencente a (α, β).

Teorema 5.17. Seja f : R→ R tal que
f(x) = x

(função identidade em R). Logo, a derivada de f em relação a
x em qualquer ponto a do domínio de f é 1.
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Demonstração:
d

dx
x

∣∣∣∣
x=a

= lim
h→0

(a+ h)− a
h

= lim
h→0

h

h
= lim

h→0
1 = 1.

Observar que novamente estamos levando em conta que h é dife-
rente de 0, uma vez que h pertence a uma vizinhança de 0, excluindo
o próprio ponto 0. Por conta disso que temos

lim
h→0

h

h
= lim

h→0
1

na última demonstração.
Novamente aplicamos o Teorema 5.9 sobre limite de função cons-

tante, para o último passo. Neste caso a constante é 1.
O último teorema pode ser estendido para funções que se compor-

tam localmente como a função identidade. Comentário análogo vale
para teoremas que seguem nos próximos parágrafos.

Teorema 5.18. Seja f : R→ R tal que
f(x) = x2.

Logo, a derivada de f em relação a x em qualquer ponto a do
domínio de f é 2a.

Demonstração:
d

dx
x2
∣∣∣∣
x=a

= lim
h→0

(a+ h)2 − a2

h
= lim

h→0

a2 + 2ah+ h2 − a2

h
=

lim
h→0

h(2a+ h)
h

= lim
h→0

(2a+ h) = lim
h→0

2a+ lim
h→0

h =
2a+ 0 = 2a.

Cabe ao leitor justificar cada passo da demonstração.

Teorema 5.19. Seja f : R→ R tal que
f(x) = xn,

onde n é um real que copia um inteiro estritamente positivo.
Logo, a derivada de f em relação a x em qualquer ponto a do

domínio de f é
nan−1.
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Demonstração:
d

dx
xn
∣∣∣∣
x=a

= lim
h→0

(a+ h)n − an
h

=

lim
h→0

1
h

((a+ h)n − an) =

lim
h→0

1
h

((an + nan−1h+ · · ·+ hn)− an) =

lim
h→0

1
h

(nan−1h+ · · ·+ hn) =

lim
h→0

1
h
h(nan−1 + · · ·+ hn−1) =

lim
h→0

(nan−1 + · · ·+ hn−1) =

nan−1.

Notar que
nan−1 + · · ·+ hn−1

é um polinômio relativamente à variável h, de grau n− 1.
Logo, na última igualdade empregamos o Teorema 5.12

sobre limite de funções polinomiais.

Na última demonstração foi utilizado o binômio de Newton, o qual
é uma generalização do Teorema Binomial para Naturais (ver Teo-
rema 4.6), no seguinte sentido: se a e b são reais e n é um real que
copia naturais diferentes de 0, então

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k.

b Fortemente recomendamos que o leitor justifique passo a passo
essa última prova.

Teorema 5.20. Se
d

dx
f(x)

∣∣∣∣
x=a

existe, então
d

dx
cf(x)

∣∣∣∣
x=a

= c

(
d

dx
f(x)

∣∣∣∣
x=a

)
,

onde c é um real.
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Demonstração:
d

dx
cf(x)

∣∣∣∣
x=a

= lim
h→0

cf(a+ h)− cf(a)
h

=

lim
h→0

c(f(a+ h)− f(a))
h

=

lim
h→0

c · lim
h→0

f(a+ h)− f(a)
h

= c
d

dx
f(x)

∣∣∣∣
x=a

.

b Recomendamos que o leitor justifique cada igualdade da úl-
tima demonstração.

Definição 5.21. Seja f : d → R uma função tal que d é
uma união arbitrária de intervalos abertos de reais. A função
derivada f ′ de f , se existir, é dada por f ′ : d→ R tal que,

∀a
(
a ∈ d⇒ f ′(a) = d

dx
f(x)

∣∣∣∣
x=a

)
.

Uma função real, nas condições acima, é diferenciável sss admitir
função derivada.

Em outras palavras, se uma função f admite derivada em cada
ponto de seu domínio, é possível definir a função derivada de f sim-
plesmente como uma função f ′ tal que cada termo x do domínio de
f tem como imagem f ′(x) a derivada de f no ponto x. O domínio
de f ′ é o mesmo de f .

Exemplo 5.23. i: se f : R→ R é uma função dada por
f(x) = c,

então f ′ : R→ R dada por
f ′(x) = 0

é a função derivada de f , por conta do Teorema 5.16;
ii: se g : R→ R é uma função dada por

g(x) = x4,

então g′ : R→ R dada por
g′(x) = 4x3

é a função derivada de g, por conta do Teorema 5.19.
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As duas funções dadas no Exemplo acima são diferenciáveis.
A seguir mostramos como definir funções derivadas em intervalos

fechados não degenerados.

Definição 5.22. Seja f : [α, β] → R, uma função, onde α <
β. A função derivada f ′ de f , se existir, é dada por

f ′ : [α, β]→ R
tal que,

f ′(a) =



d
dx
f(x)

∣∣∣∣
x=a

se a ∈ (α, β)

limh→0+
f(a+h)−f(a)

h
se a = α

limh→0−
f(a+h)−f(a)

h
se a = β

Neste caso dizemos que f é diferenciável no intervalo fechado
[α, β].

Os termos
lim
h→0+

f(a+ h)− f(a)
h

e
lim
h→0−

f(a+ h)− f(a)
h

,

na última definição, são chamados de derivada à direita e derivada
à esquerda, respectivamente.

Exemplo 5.24. b
i: se f : [−

√
2,
√

3] → R é uma função dada por f(x) = c,
então f ′ : [−

√
2,
√

3] → R dada por f ′(x) = 0 é a função
derivada de f , por conta do Teorema 5.16 e de sua extensão
para derivadas laterais;

ii: se g : [2, 3] → R é uma função dada por g(x) = x4, então
g′ : [2, 3] → R dada por g′(x) = 4x3 é a função derivada
de g, por conta do Teorema 5.19 e de sua extensão para
derivadas laterais.

b Todos os teoremas para derivadas, examinados neste livro,
podem ser generalizados para derivadas laterais. Por conta disso,
não nos preocupamos com elas nas próximas demonstrações.
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Teorema 5.21. Se u e v compartilham o mesmo domínio e
são diferenciáveis, então (u+ v)′ = u′ + v′.

Demonstração:

(u+ v)′ = lim
h→0

(u+ v)(x+ h)− (u+ v)(x)
h

=

lim
h→0

u(x+ h) + v(x+ h)− (u(x) + v(x))
h

=

lim
h→0

(
u(x+ h)− u(x)

h
+ v(x+ h)− v(x)

h

)
=

lim
h→0

u(x+ h)− u(x)
h

+ lim
h→0

v(x+ h)− v(x)
h

= u′ + v′

Ou seja, a derivada de uma adição é a adição de derivadas.

Teorema 5.22. Se u e v compartilham o mesmo domínio e
são diferenciáveis, então (u− v)′ = u′ − v′.

Demonstração: Basta usar o Teorema 5.21 em parceria com
o Teorema 5.20 para a constante c = −1. b Com efeito,
é teorema entre os reais a seguinte fórmula:

(−1)r = −r
para qualquer real r (consegue provar isso?).

Ou seja, a derivada de uma diferença é a diferença entre derivadas.
Uma consequência imediata dos dois últimos teoremas é que, se u

e v são diferenciáveis, então u+ v e u− v são diferenciáveis.
Para que possamos enunciar e provar teoremas sobre derivada de

produto e derivada de uma razão, precisamos de mais informações.

Definição 5.23. Seja f uma função real cujo domínio é uma
união arbitrária de intervalos abertos de reais. Dizemos que f é
contínua sss

lim
x→a

f(x) = f(a)
para todo a pertencente ao domínio de f .

Ou seja, grosso modo, uma função real é contínua se, e somente
se, for contínua em todos os pontos de seu domínio.
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Exemplo 5.25. i: Teorema 5.12 garante que toda função
polinomial

p : R→ R
é contínua.

ii: Seja f : R→ R uma função dada por

f(x) =


7 se x < 2
8 se x > 2
9 se x = 2

Se a < 2, então existem α e β tais que α < 2, β < 2 e α <
a < β; logo, f é localmente constante no intervalo aberto
(α, β), no sentido de que a ∈ (α, β) e todo x pertencente a
(α, β) é menor do que 2; portanto,

lim
x→a

f(x) = f(a) = 7.

Se a > 2, novamente f é localmente constante e, portanto,
lim
x→a

f(x) = f(a) = 8.

No entanto, não existe real L tal que
lim
x→2

f(x) = L

(recomendamos provar isso). Logo, não é teorema a fórmula
lim
x→2

f(x) = f(2),

apesar de f(2) = 9. Uma vez que 2 pertence ao domínio de
f mas f não é contínua em 2, então f não é contínua.

iii: A função de Dirichlet g : R→ R dada por

g(x) =
{

1 se x é real racional
0 se x é real irracional

é não contínua em todos os pontos de seu domínio. Logo,
este é um exemplo bastante radical de função não contínua.
b Recomendamos que o leitor prove isso. Dica: demons-
trar que todo intervalo aberto (α, β) de números reais conta
com reais racionais e reais irracionais pertencentes a ele.

Teoremas 5.25 e 5.26 evidenciam profunda relação entre diferencia-
bilidade e continuidade. Mas, antes de explorarmos essa importante
questão, precisamos dos próximos resultados.
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Teorema 5.23. A composição entre funções contínuas, quando
existe, é uma função contínua.

Demonstração: Sejam f e g funções reais tais que f ◦ g
existe e g é contínua em a, enquanto f é contínua em g(a).
Logo,
∀ε > 0 ∃δ > 0 (0 < |x− a| < δ ⇒ |g(x)− g(a)| < ε)

e
∀ε > 0 ∃δ′ > 0 (0 < |g(x)−g(a)| < δ′ ⇒ |f(g(x))−f(g(a))| < ε)

Portanto,
∀ε > 0 ∃δ > 0 (0 < |x− a)| < δ ⇒ |f(g(x))− f(g(a))| < ε).

Seguindo estratégia semelhante àquela empregada para diferencia-
bilidade em intervalos fechados, podemos estender o conceito de con-
tinuidade para intervalos fechados não degenerados.

Definição 5.24. Uma função real f é contínua em um inter-
valo fechado [a, b] de números reais sss

i: f é contínua no intervalo aberto (a, b);
ii: limx→a+ f(x) = f(a);
iii: limx→b− f(x) = f(b);

Teorema 5.23, sobre composição de funções contínuas, pode ser
estendido para funções contínuas em intervalos fechados.
O próximo resultado mostra que derivada de uma função em um

dado ponto real qualquer pode ser definida de maneira diferente,
porém equivalente.

Teorema 5.24. Se existe d
dx
f(x)

∣∣∣∣
x=a

, então

d

dx
f(x)

∣∣∣∣
x=a

= lim
x→a

f(x)− f(a)
x− a

.

Demonstração: Basta fazer h = x− a. Logo, x = a+ h e

lim
x→a

f(x)− f(a)
x− a

= lim
x→a

f(a+ h)− f(a)
h

.
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Mas, se x tende a a, isso equivale a afirmar que

x ∈ (a− δ, a+ δ)− {a}.

Logo, x − a ∈ (0 − δ, 0 + δ) − {0}, o que é equivalente a
h ∈ (0− δ, 0 + δ)− {0}. Logo,

lim
x→a

f(a+ h)− f(a)
h

= lim
h→0

f(a+ h)− f(a)
h

= d

dx
f(x)

∣∣∣∣
x=a

.

A transitividade da igualdade encerra a prova.

O próximo teorema é de extraordinária importância.

Teorema 5.25. Toda função diferenciável é contínua.

Demonstração: Se f é diferenciável, então existe a função
derivada f ′ de f . Mas, de acordo com o Teorema 5.24,

f ′(a) = lim
x→a

f(x)− f(a)
x− a

para todo a pertencente ao domínio de f . No entanto,

lim
x→a

(
f(x)− f(a)

x− a
(x− a)

)
=

lim
x→a

(f(x)− f(a)) = lim
x→a

f(x)− lim
x→a

f(a),
uma vez que x 6= a. Além disso,

lim
x→a

(
f(x)− f(a)

x− a
(x− a)

)
=

lim
x→a

f(x)− f(a)
x− a

· lim
x→a

(x− a) = f ′(a) · 0 = 0.
A transitividade da igualdade garante que

lim
x→a

f(x)− lim
x→a

f(a) = 0.

Logo,
lim
x→a

f(x) = lim
x→a

f(a) = f(a).
para todo a pertencente ao domínio de f , o que equiva-
le a afirmar que f é contínua. Observar que a igualdade
limx→a f(a) = f(a) é consequência do Teorema 5.9 sobre
limite de função constante.

A recíproca do último teorema não é teorema. Isso significa que
existem funções contínuas não diferenciáveis.
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Exemplo 5.26. Seja f : R→ R uma função dada por
f(x) = |x|.

Para qualquer a ∈ R temos que
lim
x→a

f(x) = f(a)

(b recomendamos que o leitor prove isso, dividindo a demons-
tração em três partes: para a < 0, para a > 0 e, finalmente, para
a = 0). No entanto, apesar de existir

d

dx
f(x)

∣∣∣
x=a

para qualquer a 6= 0, não existe L real tal que

L = d

dx
f(x)

∣∣∣
x=0

.

Logo, f é não diferenciável.

Este último exemplo revela que é impossível uma reta tangenciar
a função f no ponto (0, 0).
Teoremas 5.25 e 5.24 revelam algo de extraordinária importância:

Continuidade é uma condição essencial para diferenciabilidade.

Em virtude disso, temos o seguinte resultado.

Teorema 5.26. Seja
f : d→ R

uma função tal que f(a) existe e o ponto a pertence a algum
intervalo aberto contido em d. Logo, f é diferenciável no ponto
a sss existe uma função ϕa contínua no ponto a tal que

f(x)− f(a) = ϕa(x)(x− a).

Demonstração: De acordo com o Teorema 5.24, ϕa é uma
função que aproxima continuamente os coeficientes angu-
lares de retas que secam f nos pontos (x, f(x)) e (a, f(a))
(para x 6= a) do coeficiente angular da reta que tangencia f
no ponto (a, f(a)).
Logo, ϕa é única para cada a, tal que ϕa(a) = f ′(a).
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A primeira pessoa a perceber esse último resultado foi Constantin

Carathéodory [33], em 1954. Carathéodory chegou a propor o teo-
rema acima como definição para função diferenciável, apesar de aqui
preferirmos a definição usual. No entanto, esse resultado simplifica
consideravelmente certas demonstrações de cálculo diferencial e in-
tegral (como ocorre no Teorema 6.3, o qual é discutido mais adiante
e permite calcular rapidamente a derivada de funções compostas).
Observar também que a função ϕa acima mencionada depende do
ponto a. Em outras palavras, para cada a existe uma ϕa.

Teorema 5.27. Se u e v compartilham o mesmo domínio e
são diferenciáveis, então

(uv)′ = u′v + uv′.

Demonstração:

(uv)′ = lim
h→0

(uv)(x+ h)− (uv)(x)
h

=

lim
h→0

u(x+ h)v(x+ h)− u(x)v(x)
h

=

lim
h→0

u(x+ h)v(x+ h)− u(x)v(x+ h) + u(x)v(x+ h)− u(x)v(x)
h

.

Mas este último é igual a

lim
h→0

(u(x+ h)− u(x))v(x+ h) + u(x)(v(x+ h)− v(x))
h

=

lim
h→0

(u(x+ h)− u(x))v(x+ h)
h

+ lim
h→0

u(x)(v(x+ h)− v(x))
h

=

lim
h→0

u(x+ h)− u(x)
h

·lim
h→0

v(x+h)+lim
h→0

u(x)·lim
h→0

v(x+ h)− v(x)
h

=

u′(x)v(x) + u(x)v′(x),
uma vez que limh→0 v(x + h) = v(x), por conta do fato de
que toda função diferenciável é contínua (Teorema 5.25) e

lim
h→0

u(x) = u(x)

por conta do Teorema 5.9 sobre limite de função constante.

b Uma sugestão divertida de exercício é provar que
(uvw)′ = u′vw + uv′w + uvw′,

se u, v e w são funções reais diferenciáveis.
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Obviamente fica muito fácil demonstrar o resultado acima se o

leitor usar o Teorema 5.27. Consegue estender esse resultado para
uma multiplicação entre n funções diferenciáveis, usando indução
infinita para provar o teorema proposto? Esta é uma ótima oportu-
nidade para perceber a versatilidade do Teorema 5.27.

Teorema 5.28. Se u e v compartilham o mesmo domínio e
são diferenciáveis, então(

u

v

)′
= u′v − uv′

v2 ,

desde que v(x) 6= 0 para todo x pertencente ao domínio de v.

Demonstração:(
u

v

)′
= lim

h→0

u
v
(x+ h)− u

v
(x)

h
= lim

h→0

u(x+h)
v(x+h) −

u(x)
v(x)

h
=

lim
h→0

u(x+ h)v(x)− u(x)v(x+ h)
h · v(x) · v(x+ h) =

lim
h→0

u(x+ h)v(x)− u(x)v(x+ h)
h

· lim
h→0

1
v(x) · v(x+ h) .

Temos assim um produto entre duas ocorrências de limi-
tes, onde o primeiro pode ser reescrito como

lim
h→0

u(x+ h)v(x)− u(x)v(x) + u(x)v(x)− u(x)v(x+ h)
h

.

Daqui em diante a prova é muito semelhante com o que
foi feito na demonstração do Teorema 5.27.b Sugerimos
que o leitor termine.

Exemplo 5.27. Seja f : R → R tal que f(x) = 5x3 − 18x2 +
16. Então, f ′(x) = 15x2 − 36x, sendo f ′ uma função real com
domínio R.

Teorema 5.28 estende o alcance do Teorema 5.19.
Teorema 5.29. Seja f : R − {0} → R uma função dada por

f(x) = xn, onde n é um real que copia um inteiro negativo.
Então a função derivada f ′ de f existe e é tal que

f ′(x) = nxn−1.
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Demonstração: Se f(x) = xn (onde n é uma cópia de um
inteiro negativo), então

f(x) = 1
x−n

,

onde −n é um real que copia um inteiro estritamente posi-
tivo. Logo, de acordo com Teoremas 5.28 e 5.19,

f ′(x) = 0 · x−n − 1 · (−n) · x−n−1

(x−n)2 =

−1 · (−n) · x−n−1

x−2n = n · x−n−1+2n.

Consequentemente, f ′(x) = nxn−1.

Agora sabemos que, em notação abreviada,

(xn)′ = nxn−1

para qualquer n real que copia um inteiro diferente de 0, independen-
temente de n ser estritamente positivo ou negativo. Esse resultado
pode ser estendido ainda mais, como vemos no Teorema 5.31. Mas
antes precisamos de um resultado preliminar.

Teorema 5.30. Seja f : R − {0} → R uma função dada por
f(x) = q

√
x. Logo,

lim
x→a

f(x) = q
√
a.

Demonstração: Se estamos assumindo que f é uma função,
naturalmente estamos excluindo a possibilidade de q ser um
inteiro par. Para obter resultado análogo no caso de q par,
basta assumir

f : {x ∈ R | x > 0} → R.

Supor que
lim
x→a

q
√
x 6= q

√
lim
x→a

x,

ou seja, a negação da tese. Logo,

a = lim
x→a

x = lim
x→a

( q
√
x)q =

(
lim
x→a

q
√
x
)q
6=(

q

√
lim
x→a

x
)q

= lim
x→a

x = a, ou seja, a 6= a.⊥
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Teorema 5.31. Seja f : R − {0} → R uma função dada por
f(x) = xn, onde n é um real que copia um racional diferente de 0.
Então a função derivada f ′ de f existe e é tal que f ′(x) = nxn−1.

Demonstração: Se estamos assumindo que f é uma função,
naturalmente estamos excluindo a possibilidade de n = p

q

onde q é um real que copia um inteiro par. Para obter
resultado análogo no caso de q par, basta assumir

f : {x ∈ R | x > 0} → R.

De acordo com o Teorema 5.24,
d

dx
xn
∣∣∣∣
x=a

= lim
x→a

xn − an

x− a
.

Se n = p
q
, onde p e q são reais que copiam inteiros tais que

q 6= 0, então

lim
x→a

xn − an

x− a
= lim

x→a

x
p
q − a

p
q

x− a
=

lim
x→a

x p
q − a

p
q

x− a
· x

1
q − a

1
q

x
1
q − a

1
q

 =

lim
x→a

x p
q − a

p
q

x
1
q − a

1
q

· x
1
q − a

1
q

x− a

 .
Se fizermos y = x

1
q e b = a

1
q (ver Teorema 5.30, uma vez

que este prova que x
1
q é contínua), então o último limite é

igual a

lim
y→b

(
yp − bp

y − b
· y − b
yq − bq

)
= lim

y→b

yp − bp

y − b
· lim
y→b

y − b
yq − bq

=

lim
y→b

yp − bp

y − b

/
lim
y→b

yq − bq

y − b
.

Mas no último termo acima temos exatamente a derivada
de yp em relação a y no ponto b (onde p é um inteiro e, por-
tanto, podemos aplicar Teoremas 5.19 e 5.29), bem como
a derivada de yq em relação a y no ponto b (onde q é no-
vamente um inteiro estritamente positivo ou negativo), de
acordo com Teorema 5.24.
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Logo, este último termo é

pbp−1/(qbq−1) = p

q
bp−q = na

1
q

(p−q) = na
p
q
−1 = nan−1.

Uma vez que isso vale para todo a do domínio de f , então
(xn)′ = nxn−1.

Mais adiante, na Seção 66, é possível provar que tal resultado pode
ser estendido para qualquer n real, desde que x seja estritamente
positivo.
Função derivada f ′(x) de uma f(x) é também conhecida como

derivada primeira de f(x). Derivada em relação a x de ordem n+ 1
de uma função real f(x), se existir, é definida como

dn+1

dxn+1f(x) = d

dx

(
dn

dxn
f(x)

)
,

uma vez que já definimos derivada primeira.

Exemplo 5.28. i:
d2

dx2 (x3 − 2x2 + 6x) = d

dx
(3x2 − 4x+ 6) = 6x− 4;

ii:
d3

dx3 (x3 − 2x2 + 6x) = d2

dx2 (3x2 − 4x+ 6) =
d

dx
(6x− 4) = 6.

Naturalmente, estamos assumindo que x3−2x2 +6x abrevia
uma função polinomial com domínio R.

Comumente derivadas de segunda e terceira ordem são denotadas
por f ′′ e f ′′′, respectivamente. Derivadas de ordem n, quando exis-
tem, são também denotadas como f (n).

Exemplo 5.29. Se s : R→ R é uma função tal que
s(t) = −5t2 + 20,

então s′(t) = −10t e s′′(t) = −10.
Com os devidos cuidados, s pode ser interpretada como uma fun-
ção que, localmente, descreve queda livre de um objeto próximo à
superfície da Terra. Com efeito, basta interpretar t como tempo
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em segundos e s(t) como a altura em metros em que o objeto se
encontra relativamente ao solo.
Se assumirmos que, a partir de um estado de repouso relativa-
mente ao solo, o objeto é abandonado em queda livre no instante
0 segundo,

s(0) = 20
informa que esse objeto foi abandonado a vinte metros do solo.
No mesmo instante t = 0, a velocidade s′(0) em metros por
segundo é zero.
Mas, na medida em que o tempo passa, a velocidade aumenta em
valor absoluto. No instante t = 1, por exemplo, o objeto está a
15 metros do solo e com velocidade de −10 metros por segundo
(cujo valor absoluto é 10 metros por segundo). O sinal negativo
da velocidade indica a rota de colisão em direção ao ponto zero,
o solo. Isso porque está em queda livre (sem resistência do ar ou
outros agentes físicos).
Durante todo o tempo de queda, a aceleração s′′(t) é constante,
no valor de menos dez metros por segundo por segundo. Mas
este mapeamento da queda livre pela função s só é possível no
intervalo aberto (0, 2), uma vez que no instante 2 segundos o
objeto atinge o solo. Afinal, s(2) = 0.

A partir da Seção 54 discutimos sobre funções circulares (seno, co-
seno, secante, co-secante, tangente e cotangente), as quais não são
polinomiais ou reais racionais. Antes, porém, é conveniente conhe-
cermos um pouco sobre sequências reais e séries.

Seção 50
Sequências e séries

Sumário

Índice
RedeDe agora em diante, sempre que falarmos de sequências, estamos

nos referindo a sequências reais (a não ser que seja avisado o con-
trário), ou seja, funções x cujas imagens xn são números reais e cujos
domínios são ω ou ω − {0}.
Por abuso de notação estamos adotando a notação ω para designar

os reais que copiam naturais. Neste primeiro momento trabalhamos
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com sequências cujos domínios são ω−{0}, onde 0 é o neutro aditivo
dos reais.

Definição 5.25. Seja x uma sequência cujas imagens são xn.
A soma parcial Sn de x é definida como

Sn = x1 + x2 + · · ·+ xn =
n∑
i=1

xi.

Ou seja, toda soma parcial de uma sequência x é a soma das
primeiras n imagens de x.
Deve ficar claro ao leitor que a definição de soma parcial é possível

por conta da relação de ordem total ≤ entre os naturais, além do
fato de que qualquer conjunto de números naturais admite menor
elemento relativamente a ≤. Graças a isso é possível qualificar o que
são as primeiras n imagens.

Exemplo 5.30. i: se xn = 7, então
S4 = 7 + 7 + 7 + 7 = 28.

ii: se xn = 1
n
, então

S5 = 1 + 1
2 + 1

3 + 1
4 + 1

5 ,

ou seja, S5 = 137
60 . Em notação decimal, S5 = 2, 2833333 · · · ;

iii: se xn = 1
n
, então
S106 = S1 000 000 = 14, 3927267 · · · ;

além disso,
S1043 < 100.

bi Consegue provar a última desigualdade?

Definição 5.26. Dada uma sequência xn, a série∑
xn

é a sequência de somas parciais Sn de xn.

Exemplo 5.31. i: se xn = 7, a série ∑xn é a sequência
cujas imagens são 7, 14, 21, 28, · · · ; em outras palavras,∑

xn = {(1, 7), (2, 14), (3, 21), (4, 28), · · · };
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ii: se xn = 1

n
, então a série ∑ 1

n
é uma sequência cujas pri-

meiras imagens são

1, 3
2 ,

11
6 ,

50
24 ,

137
60 , · · · .

! É imprescindível que o leitor não confunda somatório
n∑
i=0

xi

como uma série ∑
xn.

No primeiro caso, temos uma soma de n + 1 termos. No segundo
caso temos uma sequência de somas parciais de uma dada sequência.
Intuitivamente falando, uma série opera como uma ‘soma de in-

finitas parcelas’. No entanto, uma vez que adição de reais é uma
operação binária, não é possível definir qualquer soma que envolva
quantias não finitas de termos (apesar da associatividade da adição
de reais). Para contornar essa dificuldade, introduz-se os conceitos
de soma parcial (toda soma parcial é um somatório) e de sequência
de somas parciais (funções com domínio ω ou ω − {0}).

Definição 5.27. Dada uma sequência xn, sua série corres-
pondente ∑

xn
converge sss a sequência de somas parciais Sn de xn converge.
Caso contrário, dizemos que a série diverge.

A série ∑ 1
n

é chamada de série harmônica.
Como foi ilustrado no Exemplo 5.30, se somarmos as primeiras

1043 imagens (dez milhões de quintilhões de quintilhões imagens) da
sequência xn = 1

n
, sequer alcançamos a soma 100. Logo, é natural

questionar se a série harmônica converge, ou seja, se há um limite
para a sequência de somas parciais associadas a xn = 1

n
. Como se

percebe no próximo teorema, esse limite não existe.

Teorema 5.32. A série harmônica diverge.
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Demonstração: A soma parcial Sn de 1
n
é dada por

1 + 1
2 + 1

3 + · · ·+ 1
n
.

A soma parcial S2n é dada por

1 + 1
2 + 1

3 + · · ·+ 1
n

+ 1
n+ 1 + 1

n+ 2 + · · ·+ 1
2n.

Logo,

S2n − Sn = 1
n+ 1 + 1

n+ 2 + · · ·+ 1
2n.

Mas,
1

n+ 1 + 1
n+ 2 + · · ·+ 1

2n >
1

2n + 1
2n + · · ·+ 1

2n,

desde que no lado direito da última desigualdade existam n
ocorrências de 1

2n . No entanto,
1

2n + 1
2n + · · ·+ 1

2n = n
1

2n = 1
2 .

Logo, S2n − Sn > 1
2 .

Lembremos agora que uma sequência Sn é de Cauchy sss
∀ε > 0 ∃δ > 0((m > δ ∧ n > δ)⇒ |Sm − Sn| < ε).

Para o caso em quem = 2n e ε = 1
2 , temos que a condicional

da definição de sequência de Cauchy jamais é satisfeita para
qualquer δ real maior do que 0, uma vez que

|S2n − Sn| >
1
2 .

Logo, a sequência de somas parciais Sn não é de Cauchy.
Uma vez que toda sequência convergente é de Cauchy, então
Sn não é convergente.

Esse último teorema, em parceria com o resultado S1043 < 100,
mostra que a divergência da série harmônica é muito lenta. Mas, a
passos muito lentos,

n∑
i=1

1
i

sempre ultrapassa qualquer número real. Basta escolher n suficien-
temente grande.
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A contrapositiva do próximo teorema nos fornece uma condição

suficiente para uma série ser divergente.

Teorema 5.33. Se ∑xn converge, então xn → 0.

Demonstração: Se ∑xn converge, então existe real L tal
que

lim
n→∞

n∑
i=0

xi = L

Mas

lim
n→∞

n∑
i=0

xi = lim
n→∞

(
xn +

n−1∑
i=0

xi

)
= lim

n→∞
xn + lim

n→∞

n−1∑
i=0

xi.

Uma vez que

lim
n→∞

n−1∑
i=0

xi = L,

então
L = lim

n→∞
xn + L.

Logo, limn→∞ xn = 0.

Ou seja, se xn não converge para zero, então ∑xn diverge.
Como vimos acima, a recíproca deste último teorema não é teo-

rema. Com efeito, 1
n
→ 0, mas ∑ 1

n
diverge.
Mesmo assim, Teorema 5.33 oferece uma condição necessária para

uma série ser convergente, apesar de não ser suficiente.
Na literatura de cálculo diferencial e integral padrão e análise mate-

mática há discussões pormenorizadas sobre sequências e séries reais,
incluindo outros critérios de convergência de séries, além do Teorema
5.33. Para finalizar esta Seção, mencionamos um desses critérios, o
qual é usado mais adiante.

Teorema 5.34. Seja ∑xn a série real correspondente à se-
quência real xn. Logo, se

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ < 1
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então ∑xn é convergente.

Mais do que isso, é teorema que ∑ |xn| converge se

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ < 1.

i A prova desse resultado pode ser encontrada em textos de
análise matemática. Não é uma demonstração difícil, mas foge dos
propósitos deste livro.

Seção 51
Resumo da ópera

Sumário

Índice
RedeEsta quinta parte pode ser resumida como se segue.

• Números reais são classes de equivalência de sequências racionais
de Cauchy. Se um representante qualquer de um real r é uma
sequência de Cauchy convergente, r é um real racional (não
confundir com racional). Se um representante qualquer de um
real r é uma sequência de Cauchy não convergente, r é irracional.
• Entre os reais há operações de adição e multiplicação que preser-
vam as propriedades algébricas de adição e multiplicação entre
racionais. No entanto, os reais têm uma propriedade algébrica
que não conta com equivalente entre racionais: toda sequência
de Cauchy de reais é convergente.
• Complexos podem ser definidos como pares ordenados de reais.
Entre os complexos há operações de adição e multiplicação que
preservam as propriedades algébricas de adição e multiplicação
entre reais. No entanto, os complexos contam com uma pro-
priedade algébrica que não ocorre entre reais: a existência de
um termo cujo quadrado é o simétrico aditivo do neutro multi-
plicativo.
• Uma vez que a linguagem S de ZF finalmente permite qualificar
naturais, inteiros, racionais, reais e complexos, estamos pronto
para iniciar estudos de cálculo diferencial e integral padrão. Ini-
ciamos isso com os conceitos de limite e derivada.
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• Derivadas são casos especiais de limites, no contexto do cálculo
padrão.
• As definições de limite e derivada de uma função real não são
amigáveis para fins de cálculos. Por conta disso, os teoremas
sobre limites e derivadas são indispensáveis para compreender o
caráter epistemológico e metodológico do cálculo padrão.

Seção 52
Notas históricas

Sumário

Índice
Rede

m
O que define cálculo diferencial e integral é o Teorema Fundamen-
tal do Cálculo, assunto a ser discutido adiante. Neste sentido, as
primeiras ideias intuitivas sobre cálculo diferencial e integral padrão
nasceram com a obra de Isaac Newton, no século 17.

Capa da primeira edição do livro de Abraham Robinson
Fonte: Evening Star Books.
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O movimento de análise matemática surgido no século 19 viabili-

zou os conceitos hoje estudados sobre limites e derivadas. Parale-
lamente ao trabalho de Newton, Gottfried Leibniz desenvolveu, de
forma independente, ideias semelhantes, porém enfatizando o papel
de infinitesimais para conceituar derivadas. Um infinitesimal ς é um
termo estritamente positivo menor do que qualquer real estritamente
positivo. Além disso, podem existir infinitesimais ς tais que ς > 0 e
ς2 = 0. Logo, infinitesimais não podem ser números reais.
Somente no século 20, graças ao trabalho de Abraham Robinson,

infinitesimais foram formalizados de maneira clara, dando origem
à análise não standard. Hoje se sabe que infinitesimais são casos
particulares de hiperreais e surreais, os quais estendem os números
reais. Tanto hiperreais quanto surreais conseguem copiar os reais.

m
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Funções circulares, exponenciais e
logarítmicas
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Aqui exploramos certas funções transcendentes, as quais são fun-
ções reais não racionais. Mas, antes, precisamos saber mais sobre
sequências, séries e derivadas.

Seção 53
Equações diferenciais

Sumário

Índice
RedeUm conceito importante é o de operador diferencial. Não pre-

tendemos conceituar operadores diferenciais. Mas um caso particular
perfeitamente útil para os nossos propósitos é o que se segue.

Seja f um conjunto de funções f : R→ R tais que, cada f admite
derivada de ordem n. Logo, a função D : f→ f dada por

D(f) =
n∑
i=0

αif
(i)

é um operador diferencial definido sobre f, onde cada αi é um
número real e cada f (i) é uma derivada de f , em relação a x, de
ordem i, se 1 ≤ i ≤ n, e f (0) = f .
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Uma definição mais ampla deveria assumir que cada αi é uma fun-

ção
αi : R→ R.

Não obstante, isso ainda não cobre o espectro de todos os possíveis
operadores diferenciais. A definição dada acima já é o bastante para
os nossos propósitos.
Uma vez que f admite derivada de ordem n, naturalmente admite

qualquer derivada de ordem i, desde que i seja menor ou igual a
n. Isso é consequência imediata da definição de derivada de ordem
superior.

Exemplo 6.1. Seja f o conjunto de todas as funções reais poli-
nomiais

p : R→ R.
Logo, D : f→ f, dada por

D(f) = f ′,

é um operador diferencial
n∑
i=0

αif
(i),

onde n = 1, α0 = 0 e α1 = 1. Isso implica que a derivada
primeira de qualquer função polinomial é um operador diferen-
cial.

Exemplo 6.2. Seja f o conjunto de todas as funções reais
p : R→ R

que admitem derivada terceira. Logo,
E : f→ f,

dada por
E(f) = 5f ′′′ − 2f ′′ + f ′,

é um operador diferencial
n∑
i=0

αif
(i),

onde n = 3, α0 = 0, α1 = 1, α2 = −2 e α3 = 5. Isso implica que
a derivada primeira de qualquer função de f subtraída do dobro
de sua derivada segunda e somada do quíntuplo de sua derivada
terceira é um operador diferencial.
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Exemplo 6.3. Seja f o conjunto de todas as funções reais poli-
nomiais p : R→ R. Logo,

H : f→ f,

dada por
H(f) = 0,

é um operador diferencial
n∑
i=0

αif
(i),

onde n = 1, α0 = 0 e α1 = 0. Logo, a função constante iden-
ticamente nula no espaço de funções polinomais, é um operador
diferencial.

Deve ficar claro que cada parcela de um operador diferencial

D(f) =
n∑
i=1

αif
(i)

também define um operador diferencial. Além disso, cada f (i) é um
operador diferencial, para i ≥ 1. O somatório acima é chamado de
combinação linear dos operadores diferenciais f (i). Logo, qualquer
operador diferencial é uma combinação linear de operadores diferen-
ciais.
b É teorema fácil de provar que, se D é um operador diferencial,

então
D(f + g) = D(f) + D(g)

e, além disso,
D(cf) = cD(f),

onde c é uma constante real.
Agora podemos definir o que é uma equação diferencial, pelo menos

para os nossos modestos propósitos neste livro. Uma equação difer-
encial é uma equação u = v onde ocorre pelo menos um operador
diferencial em u ou v. A rigor, estamos tratando aqui apenas de
equações diferenciais definidas sobre espaços de funções reais.

Exemplo 6.4. Seja y : R → R uma função que admite deri-
vada de qualquer ordem. Logo,

y′′ + y = 0
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é uma equação diferencial. Com efeito, essa equação é equiva-
lente a

D(y) = 0,
onde D : f→ f é o operador diferencial dado por

D(y) = y′′ − y.
Essa equação diferencial em especial é de grande interesse, como
se percebe na Seção 54.

O estudo e a aplicação de equações diferenciais é a principal meta
do cálculo diferencial e integral.

Seção 54
Séries de potências

Sumário

Índice
RedeUma função f é chamada de classe C∞ sss f admite derivada de

ordem n, para qualquer n inteiro estritamente positivo.
Seja f : R→ R uma função tal que

f(x) =
∑

anx
n.

Podemos representar f da seguinte maneira:
f(x) = a0 + a1x+ a2x

2 + a3x
3 + · · ·+ anx

n + · · · ,
onde assumimos a convenção x0 = 1 para qualquer real x.
Funções como essas são chamadas de séries de potências. Ou seja,

funções f definidas por séries de potências são aquelas em que, cada
x do domínio de f , admite uma imagem f(x) dada pela série acima.
É usual escrever séries de potências como

∞∑
n=0

anx
n

ou
∞∑
n=k

anx
n,

sendo k um inteiro positivo.

Teorema 6.1. Toda função definida por uma série de potên-
cias é de classe C∞.
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Demonstração: Cada soma parcial Sn de ∑ anx
n é uma

função polinomial. Uma vez que toda função polinomial
admite derivada de qualquer ordem, então ∑ anx

n admite
derivada de qualquer ordem.

Adotamos aqui o emprego de séries de potências para representar
certas funções. Lembrar que, para todo x real, temos
a0 +a1x+a2x

2 +a3x
3 + · · ·+anxn = b0 +b1x+b2x

2 +b3x
3 + · · ·+bnxn

sss ai = bi para todo i de 0 a n (ver discussão na Seção 43). Uma vez
que séries de potências são sequências de somas parciais definidas
por polinômios, então∑

aix
i =

∑
bix

i sss ai = bi

para todo i natural.

Para fins de ilustração, consideremos a função y : R→ R tal que
y′′(x) + y(x) = 0

e
y(0) = 0

e
y′(0) = 1.

Esta função é conhecida como seno. Abreviamos y(x) como
sen(x), neste caso. Lemos sen(x) como ‘seno de x’.

Se y′′(x) + y(x) = 0, então y′′(x) = −y(x). Se existir série de
potências para representar y, temos o seguinte:
y(x) = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + · · ·

y′(x) = a1 + 2a2x+ 3a3x
2 + 4a4x

3 + 5a5x
4 + 6a6x

5 + 7a7x
6 + · · ·

y′′(x) = 2a2 + 3.2a3x+ 4.3a4x
2 + 5.4a5x

3 + 6.5a6x
4 + 7.6a7x

5 + · · ·
sendo
−y(x) = −a0 − a1x− a2x

2 − a3x
3 − a4x

4 − a5x
5 − a6x

6 − a7x
7 − · · ·

Logo,

a2 = −a0

2 , a3 = −a1

3.2 , a4 = −a2

4.3 = a0

4.3.2 , a5 = −a3

5.4 = a1

5.4.3.2 , · · · ,

uma vez que os coeficientes dos monômios de grau m das somas
parciais de y′′(x) devem ser iguais aos coeficientes dos monômios de
grau m das somas parciais de −y(x).
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Ou seja,

a2 = −a0

2 , a3 = −a1

3.2 , a4 = a0

4.3.2 ,

a5 = a1

5.4.3.2 , a6 = −a0

6.5.4.3.2 , a7 = −a1

7.6.5.4.3.2
e assim por diante.
Em outras palavras, a igualdade y′′(x) = −y(x) permite reduzir a

infinidade de coeficientes am da série de potências de y(x) a apenas
dois coeficientes, a saber, a0 e a1. Conhecer os valores de a0 e a1
permite determinar todos os demais am.
Mas seno não é definida apenas por y′′(x) = −y(x). As condições

de contorno também fazem parte da definição. Observar, por exem-
plo, que y(0) = a0 e y′(0) = a1. Logo, a0 = 0 e a1 = 1. Logo,
apar = 0. Além disso, cada aímpar é diferente de 0, como se percebe a
seguir:

a1 = 1, a3 = −1
3! , a5 = 1

5! , a7 = −1
7! , a9 = 1

9!
e assim por diante.
Basta agora substituir os valores dos coeficientes am na série de

potências correspondente a y(x). Portanto,

y(x) = x− x3

3! + x5

5! −
x7

7! + · · · .

Ou seja,

sen(x) =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)! ,

sendo que ∑∞n=0 denota apenas uma série ∑.

b A última fórmula pode ser facilmente demonstrada por in-
dução infinita. Basta usar a definição de seno dada acima. Recomen-
damos como exercício, uma vez que a notação acima empregando
reticências (· · · ) não é uma prática matematicamente elegante.
Nessa discussão é imprescindível que o leitor perceba o seguinte:

seno, por definição, é uma função y : R → R que satisfaz uma
equação diferencial sujeita a duas condições de contorno. A equação
diferencial é y′′ + y = 0; as condições de contorno são as fórmulas
y(0) = 0 e y′(0) = 1. Ou seja, seno é uma função y cuja derivada
segunda é o simétrico aditivo de y, tal que seno de zero é zero e a
derivada primeira de seno no ponto zero é um.
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Para garantir a consistência do que fizemos até agora (admitindo

que ZF é consistente), precisamos do próximo teorema.

Teorema 6.2.

sen(x) =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
converge para todo real x.

Demonstração: Aplicando Teorema 5.34, temos que

lim
n→∞

∣∣∣∣∣∣
(−1)n+1 x2(n+1)+1

(2(n+1)+1)!

(−1)n x2n+1

(2n+1)!

∣∣∣∣∣∣ = lim
n→∞

(2n+ 1)!
(2n+ 3)! |x|

2 =

lim
n→∞

1
(2n+ 3)(2n+ 2) |x|

2.

Mas, para qualquer x real, o último limite é 0, o qual é
menor do que 1. Logo, Teorema 5.34 garante a convergência
da série em questão.

Logo, a série de potências

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

permite de fato definir uma função y : R → R que atende às
condições impostas na definição de seno.
Para efeitos computacionais, é possível programar uma máquina

para gerar aproximações de seno de um real x qualquer com a pre-
cisão desejada. Para isso basta truncar a série de potências acima.
Na representação gráfica abaixo a função

f(x) =
0∑

n=0
(−1)n x2n+1

(2n+ 1)! = x,

em azul, é uma primeira aproximação de seno de x. A função

g(x) =
6∑

n=0
(−1)n x2n+1

(2n+ 1)! = x− x3

3! + x5

5! −
x7

7! + x9

9! −
x11

11! + x13

13! ,

em vermelho, é uma aproximação que trunca a série na sétima parcela.
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−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

A função co-seno é uma função y : R→ R tal que
y′′(x) + y(x) = 0,

y(0) = 1
e

y′(0) = 0.

Ou seja, co-seno de x, abreviada como cos(x), é definida a partir da
mesma equação diferencial usada para conceituar seno. A diferença
entre seno e co-seno reside única e exclusivamente nas condições de
contorno y(0) e y′(0).
Usando as mesmas técnicas empregadas para representar seno por

uma série de potências, é possível provar que

cos(x) = 1− x2

2! + x4

4! −
x6

6! + x8

8! − · · · =
∞∑
n=0

(−1)n x2n

(2n)! ,

onde cos(x) = y(x).

b É teorema a convergência da série acima. Recomendamos a
prova deste resultado.
Uma vez que seno e co-seno podem ser representadas por sequên-

cias de somas parciais, onde cada soma parcial é um polinômio, então
fica fácil demonstrar que

d

dx
sen(x) = cos(x).
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Analogamente, é fácil provar que

d

dx
cos(x) = −sen(x).

Por exemplo,
d

dx
sen(x) = d

dx

(
x− x3

3! + x5

5! −
x7

7! + · · ·
)

=

1− x2

2! + x4

4! −
x6

6! + · · · = cos(x).

Uma vez que seno e co-seno foram definidas a partir da mesma
equação diferencial, mudando apenas as condições de contorno, é
natural questionar quais são as possíveis soluções para a mesma
equação diferencial sob condições de contorno arbitrárias, não ape-
nas aquelas usadas para definir seno e co-seno. Ou seja, considere
uma função y : R→ R tal que

y′′(x) + y(x) = 0,
y(0) = α

e
y′(0) = β,

onde α e β são reais quaisquer.
Se existir série de potências para representar y, temos o seguinte:

y(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · ·
y′(x) = a1 + 2a2x+ 3a3x

2 + 4a4x
3 + 5a5x

4 + 6a6x
5 + · · ·

y′′(x) = 2a2 + 3.2a3x+ 4.3a4x
2 + 5.4a5x

3 + 6.5a6x
4 + 7.6a7x

5 + · · ·
sendo
−y(x) = −a0 − a1x− a2x

2 − a3x
3 − a4x

4 − a5x
5 − a6x

6 − a7x
7 − · · ·

Logo,

a2 = −a0

2 , a3 = −a1

3.2 , a4 = −a2

4.3 = a0

4.3.2 , a5 = −a3

5.4 = a1

5.4.3.2 , · · · .

Ou seja,
a2 = −a0

2 , a3 = −a1

3.2 , a4 = a0

4.3.2 ,

a5 = a1

5.4.3.2 , a6 = −a0

6.5.4.3.2 , a7 = −a1

7.6.5.4.3.2
e assim por diante.
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Mas y(0) = α e y′(0) = β. Logo, a0 = α e a1 = β. Logo,

y(x) = α + βx− αx2

2! −
βx3

3! + αx4

4! + βx5

5! −
αx6

6! −
βx7

7! + · · ·

ou seja,
y(x) =

α

(
1− x2

2! + x4

4! −
x6

6! + x8

8! − · · ·
)

+ β

(
x− x3

3! + x5

5! −
x7

7! + · · ·
)

Logo, y(x) = α cos(x) + βsen(x).
Observar que

y′(x) = −αsen(x) + β cos(x).

Logo, y(0) = α e y′(0) = β.
A prova de que y(x) = α cos(x) + βsen(x) é solução da equação

diferencial y′′+y =, sob condições de contorno y(0) = α e y′(0) = β,
é de interesse no estudo de álgebra linear . Detalhes nas Seções 84 e
85.

Moral da história: A equação diferencial y′′(x) + y(x) = 0
admite uma infinidade de soluções. Uma vez definidas as condições
de contorno y(0) = α e y′(0) = β, temos uma única solução expressa
por uma combinação linear de seno e co-seno (ou seja, a adição entre
α cos(x) e βsen(x)). Em particular, se α = β = 0, y(x) = 0. Logo, a
função constante y : R→ R dada por y(x) = 0 também é solução da
equação diferencial dada, desde que as condições de contorno sejam
y(0) = 0 e y′(0) = 0.
As funções seno e co-seno admitem interpretações geométricas no

contexto de triângulos retângulos em geometria plana. Mas, para
que sejamos capazes de contemplar esse fato, precisamos de algumas
considerações dadas a seguir.

Seção 55
Derivada de composição de funções

Sumário

Índice
RedeApresentamos aqui uma poderosa técnica para cálculo de deriva-

das de composições não triviais de funções reais.
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Teorema 6.3. Sejam u = u(v) e v = v(x) funções reais di-
ferenciáveis em relação a v e x, respectivamente, que admitem
composição u ◦ v. Logo, u é diferenciável em relação a x e

d

dx
u = d

dv
u
d

dx
v.

Demonstração: Devemos provar o seguinte: se v é diferen-
ciável no ponto a e u é diferenciável no ponto v(a), então
u ◦ v é diferenciável em a e

(u ◦ v)′(a) = u′(v(a)) · v′(a),
onde

u′(v(a)) = d

dv
u(v)

∣∣∣
v=v(a)

e as demais derivadas são em relação a x no ponto a. Isso
porque

u(x) = u(v(x)).
De acordo com o Teorema 5.26, existe função contínua ϕa
(nas condições impostas pelo teorema) tal que

v(x)− v(a) = ϕa(x− a).
Analogamente, existe função contínua ϕv(a) tal que

u(x)− u(v(a)) = ϕv(a)(x− v(a)).
Logo,

(u ◦ v)(x)− (u ◦ v)(a) = u(v(x))− u(v(a)) =
ϕv(a)(v(x)) · (v(x)− v(a)) = (ϕv(a) ◦ v) · ϕa(x) · (x− a).
Mas (ϕv(a) ◦ v) · ϕa é contínua no ponto a, com valor

u′(v(a)) · v′(a)
no ponto a.
Uma vez que isso vale para todo a do domínio de v (e,

consequentemente, do domínio de u ◦ v), então a prova está
concluída.

Comumente o teorema acima é escrito como
du

dx
= du

dv

dv

dx
.

Apesar do caráter mnemônico da fórmula acima, a qual parece
sugerir uma ‘simplificação’ de dv com dv no lado direito da igualdade
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(restando apenas du

dx
), obviamente este não é o caso. Com efeito, uma

derivada como dv
dx

não é uma razão entre um real dv e um real dx.
Uma vez que derivada é o limite de uma razão, Teorema 5.28 garante
que o limite de uma razão é a razão entre limites, desde que o limite
do denominador seja diferente de zero. No entanto, este não é o caso
do conceito de derivada, de acordo com a Definição 5.20.

Exemplo 6.5. Seja u : R → R uma função tal que u(x) =
(3x2 + 2x)2. Como calcular du

dx
?

Técnica 1: sem empregar Teorema 6.3, temos que
u(x) = 9x4 + 12x3 + 4x2;

logo,
du

dx
= 36x3 + 36x2 + 8x;

Técnica 2: usando Teorema 6.3, podemos reescrever a função
u como uma composição, onde u(v) = v2 e v(x) = 3x2 +2x; logo,

du

dx
= du

dv

dv

dx
=

2v(6x+ 2) = 2(3x2 + 2x)(6x+ 2) = (6x2 + 4x)(6x+ 2) =
36x3 + 12x2 + 24x2 + 8x = 36x3 + 36x2 + 8x.

Técnica 2 (ou seja, empregar Teorema 6.3) acima pode ser incon-
veniente para o exemplo dado. No entanto, ela se mostra muito
eficiente para uma função u : R → R tal que u(x) = (3x2 + 2x)38.
Afinal, não é uma boa ideia desenvolver (3x2 + 2x)38 em sua forma
polinomial antes de derivar em relação a x. Portanto, mais uma vez
percebemos o enorme poder de teoremas. A meta, num momento
como esse, é sempre a mesma: economia de pensamento.
Logo, se u(x) = (3x2 + 2x)38, então

u′(x) = 38(6x+ 2)(3x2 + 2x)37.

Exemplo 6.6. Quanto é
d

dx
sen(x2)?

Neste caso, u(v) = sen(v) e v(x) = x2. Logo,
d

dx
sen(x2) = du

dv

dv

dx
= cos(v)2x = cos(x2)2x = 2x cos(x2).
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Exemplo 6.7. Quanto é
d

dx
sen2(x)?

Neste caso, u(v) = v2 e v(x) = sen(x). Logo,
d

dx
sen2(x) = du

dv

dv

dx
= 2v cos(x) = 2 sen(x) cos(x).

ib Em 1800 Louis François Antoine publicou em um livro
de cálculo uma generalização do Teorema 6.3, hoje conhecida como
fórmula de Faà di Bruno. Esta permite determinar a derivada de
qualquer ordem n de uma composição de duas funções, sem a neces-
sidade de calcular as derivadas de ordem anterior a n. Demonstrar
a fórmula de Faà di Bruno por indução infinita pode ser uma tarefa
um tanto exaustiva. Mas o leitor está convidado a pensar sobre o
assunto.

Seção 56
Função exponencial

Sumário

Índice
RedeExiste uma importante relação entre funções circulares (seno e

co-seno) e função exponencial, a qual é uma das mais comumente
empregadas em inúmeras aplicações, incluindo estatística. Antes de
estudarmos isso, precisamos definir exponencial.

Definição 6.1. Exponencial é uma função y : R→ R tal que
y′(x) = y(x)

e
y(0) = 1.

Abreviamos y(x) como exp(x). Lemos exp(x) como ‘exponencial
de x’.

Ou seja, exponencial é uma função y que é solução de uma equação
diferencial (y′ = y) com uma condição de contorno (y(0) = 1).
Se existir série de potências para representar y(x) = exp(x), temos:
y(x) = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + · · ·

y′(x) = a1+2a2x+3a3x
2+4a4x

3+5a5x
4+6a6x

5+7a7x
6+8a8x

7+· · · .
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Logo,

a1 = a0, a2 = a1

2 = a0

2 , a3 = a2

3 = a0

3.2 , a4 = a3

4 = a0

4.3.2 , · · · .

Uma vez que y(0) = 1, temos a0 = 1. Logo

exp(x) = 1 + x+ x2

2! + x3

3! + x4

4! + · · · =
∞∑
n=0

xn

n! .

b Sugerimos ao leitor provar a fórmula acima por indução.
Observar que

d

dx

(
1 + x+ x2

2! + x3

3! + x4

4! + · · ·
)

= 1 + x+ x2

2! + x3

3! + x4

4! + · · · ,

ou seja,
d

dx

( ∞∑
n=0

xn

n!

)
=
∞∑
n=0

xn

n! ,

o que confirma a condição y′ = y.
Para efeitos computacionais, é possível programar uma máquina

para gerar aproximações de exponencial de um real x qualquer com
a precisão desejada. Para isso basta truncar a série de potências
acima.

−2 −1.5 −1 −0.5 0.5 1 1.5 2

1

2

3

4

5

6

7

x

y

Página 232



Matemática Pandêmica Parte 6 Seção 57
Na representação gráfica acima a função

f(x) =
0∑

n=0

xn

n! = 1,

em azul, é uma primeira aproximação de exponencial de x. A função

g(x) =
7∑

n=0

xn

n! = 1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! + x7

7! ,

em vermelho, é uma aproximação que trunca a série na oitava parcela.

Teorema 6.4. A série
∞∑
n=0

xn

n!
converge para todo x real.

Demonstração: Aplicando Teorema 5.34, temos que

lim
n→∞

∣∣∣∣∣∣
xn+1

(n+1)!
xn

n!

∣∣∣∣∣∣ = lim
n→∞

|x| n!
(n+ 1)! = lim

n→∞
|x| 1
n+ 1 = 0.

Como 0 < 1, então a série em questão converge.

Portanto, a série de potências acima de fato pode ser usada para
representar exp(x).

Seção 57
Propriedades de funções circulares

Sumário

Índice
RedeAs funções seno, co-seno e exponencial podem ser estendidas para

o corpo C dos complexos. Detalhes em livros sobre funções com-
plexas. Logo

sen(ix) = ix− (ix)3

3! + (ix)5

5! −
(ix)7

7! −· · · = ix+ i
x3

3! + i
x5

5! + i
x7

7! + · · ·

Analogamente,

cos(ix) = 1− (ix)2

2! + (ix)4

4! −
(ix)6

6! + (ix)8

8! − · · · =
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1 + x2

2! + x4

4! + x6

6! + x8

8! + · · · ,
onde i é uma abreviação para a unidade imaginária introduzida na
Seção 40.
Ver Seção 40 para lidar com as potências n acima.
No entanto,

exp(ix) = 1 + ix+ (ix)2

2! + (ix)3

3! + (ix)4

4! + · · · =

1 + ix− x2

2! − i
x3

3! + x4

4! + · · ·

Logo, podemos rearranjar os termos da série de potências como se
segue:

exp(ix) = 1− x2

2! + x4

4! −
x6

6! + · · ·+ i

(
x− x3

3! + x5

5! −
x7

7! + · · ·
)
.

Ou seja,

exp(ix) = cos(x) + isen(x)

A última fórmula é o célebre Teorema de Euler .
Teorema 6.5. Sejam α e β números reais quaisquer. Logo,

exp(α) exp(β) = exp(α + β).

Demonstração: Considere a equação diferencial u′ = u com
a condição de contorno u(0) = exp(α). Se

y : R→ R
for uma função tal que

y(x) = exp(α) exp(x),
então Teorema 5.20 garante que

y′(x) = exp(α) exp(x),
ou seja,

y′ = y.

Além disso,
y(0) = exp(α),

uma vez que Definição 6.1 diz que exponencial de 0 é 1.
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Agora, seja z : R→ R uma função dada por

z(x) = exp(α + x).
Teorema 6.3 garante que

z′(x) = exp(α + x),
uma vez que a derivada, em relação a x, de α+x é 1. Logo,

z′ = z.

Além disso,
z(0) = exp(α).

Logo, ambas as funções
y(x) = exp(α) exp(x)

e
z(x) = exp(α + x)

satisfazem a mesma equação diferencial com a mesma con-
dição de contorno.
Uma vez que u′ = u, com u(0) = exp(α), admite uma

única solução para qualquer real α (b recomendamos ao
leitor que prove isso), logo,

exp(α) exp(x) = exp(α + x).
Para concluir a prova, basta fazer x = β.

No Teorema 6.21 (a ser examinado adiante) é provado, entre outras
coisas, que exponencial exp(r) de qualquer real r é um real estrita-
mente positivo. Logo, no contexto da demonstração acima, fica claro
que a equação diferencial y′ = y com condição de contorno y(0) = γ,
admite solução se γ ≥ 0. Se γ < 0, não há solução alguma para o
mesmo problema de contorno.
Lembrar que uma solução y de uma equação diferencial D(y) = g

(onde D é um operador diferencial e g é uma função real) é uma
função tal que a fórmula D(y) = g é teorema de ZF. Naturalmente,
y′ = y é um caso particular de D(y) = g.

Teorema 6.6. Sejam β e γ reais quaisquer. Logo,
cos(β + γ) = cos(β) cos(γ)− sen(β)sen(γ)

e
sen(β + γ) = sen(β) cos(γ) + cos(β)sen(γ).
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Demonstração: De acordo com o Teorema de Euler,
exp(iβ + iγ) = exp(i(β + γ)) =

cos(β + γ) + isen(β + γ).

No entanto,
exp(iβ) exp(iγ) = (cos(β) + isen(β))(cos(γ) + isen(γ))
que é igual a

cos(β) cos(γ)− sen(β)sen(γ)+
i(sen(β) cos(γ) + cos(β)sen(γ)).

Uma vez que
exp(iβ) exp(iγ) = exp(iβ + iγ)

(uma generalização do Teorema 6.5 que pode ser demons-
trada de forma análoga), comparando as partes reais e ima-
ginárias, temos as duas igualdades a seguir:

cos(β + γ) = cos(β) cos(γ)− sen(β)sen(γ)
e

sen(β + γ) = sen(β) cos(γ) + cos(β)sen(γ).

b Observar que seno é uma função ímpar, i.e.,
sen(−x) = −sen(x).

Logo,

sen(β − γ) = sen(β) cos(γ)− cos(β)sen(γ).

Teorema análogo pode ser obtido, notando que cos(−γ) = cos(γ).

cos(β − γ) = cos(β) cos(γ) + sen(β)sen(γ)

Ou seja, para compreender propriedades das funções seno e co-seno
sobre reais, ajuda muito conhecer as mesmas sobre os complexos.

Definição 6.2. Seja f : d → R uma função, sendo d ⊆ R.
Dizemos que F : d→ R é uma primitiva de f sss

dF (x)
dx

= f(x).
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Exemplo 6.8. i: Seja f : R→ R tal que
f(x) = 6x3 − 2x+ 5;

logo, para cada c ∈ R, F : R→ R, tal que

F (x) = 6
4x

4 − x2 + 5x+ c,

é uma primitiva de f ;
ii: seja y : R→ R uma função tal que

y(x) = sen(x);
logo, para cada c ∈ R, Y : R→ R, tal que

Y (x) = − cos(x) + c,

é uma primitiva de y.

Se F e G são primitivas de f , então, para todo x pertencente ao
domínio de f temos

F (x) = G(x) + c,

para alguma constante real c. Basta derivar em relação a x ambos
os lados da igualdade acima. Logo,

d

dx
F (x) = d

dx
(G(x) + c) = d

dx
G(x) + d

dx
c = d

dx
G(x).

Mas, por hipótese,
d

dx
F (x) = f(x) e d

dx
G(x) = f(x).

Logo, primitivas F e G de uma mesma função real f diferem entre
si apenas por uma constante real c. Esse fato repercute significati-
vamente no estudo das funções seno e co-seno, entre outras. Para
ilustrar essa última afirmação, ver a discussão a seguir.
Como vimos anteriormente,

d

dx
sen2(x) = 2sen(x) cos(x).

Entretanto,
d

dx
cos2(x) = −2sen(x) cos(x),

ou seja,
d

dx
(−cos2(x)) = 2sen(x) cos(x).
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Isso implica que uma primitiva qualquer de 2sen(x) cos(x) pode ser

tanto
sen2(x) + d

quanto
− cos2(x) + e.

Logo, essas primitivas diferem entre si por uma constante, ou seja,
sen2(x) = − cos2(x) + c.

Logo,
sen2(x) + cos2(x) = c,

para todo real x.
Não obstante, essa constante c deve assumir o mesmo valor para

todo x pertencente ao domínio de ambas as funções sen(x) e cos(x).
Se x = 0, temos sen(x) = 0 e cos(x) = 1 (isso é consequência das
definições das funções circulares). Logo, c = 1. Portanto, para
qualquer x pertencente aos reais temos

sen2(x) + cos2(x) = 1.

Se |sen(x)| e | cos(x)| são medidas de catetos de um triângulo retân-
gulo com hipotenusa medindo 1, a última igualdade se identifica com
o Teorema de Pitágoras, o qual diz o seguinte: o quadrado da medida
da hipotenusa de um triângulo retângulo é a soma dos quadrados das
medidas dos catetos.
Lembrar que |sen(x)|2 = sen2(x) e | cos(x)|2 = cos2(x), para todo

real x. Lembrar também que um triângulo é uma curva poligonal
fechada com três lados, um triângulo retângulo é um triângulo em
que um de seus ângulos internos é um ângulo reto e a hipotenusa de
um triângulo retângulo é o lado com maior medida. Alguns detalhes
podem ser vistos na Parte 7.
Uma vez que ambas as funções sen e cos têm periodicidade 2π

(sen(x + 2π) = sen(x) e cos(x + 2π) = cos(x), por conta da inter-
pretação geométrica acima), no contexto do círculo trigonométrico
usual sen(x) pode ser identificado como a razão entre a medida do
cateto oposto a um ângulo agudo de medida x (em radianos) e a me-
dida da hipotenusa de um triângulo retângulo. Resultado análogo
vale para cos, dessa vez envolvendo um cateto adjacente ao ângulo
de medida x.
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Com relação à periodicidade 2π das funções seno e co-seno, lem-

brar que π é a razão entre o perímetro de uma circunferência e seu
diâmetro. Tal definição se sustenta por um teorema da geometria
plana que estabelece a invariância da razão entre o perímetro de
uma circunferência e seu diâmetro. O valor aproximado, em notação
decimal usual, é

π ≈ 3, 1415926535897932384626,
com vinte e duas casas decimais após a vírgula. O símbolo ≈ denota
‘valor aproximado’, com uma quantia finita de casas após a vírgula.
Na Seção 108 há uma breve discussão sobre como calcular rapida-

mente o valor de π com uma ótima precisão.
Para finalizar esta Seção, alguns conceitos usuais.

Definição 6.3. i:

tan :
{
x ∈ R | ∀n

(
n ∈ Z⇒ x 6= π

2 + nπ
)}
→ R

é a função dada por

tan(x) = sen(x)
cos(x) ;

ii:
cot :

{
x ∈ R | ∀n (n ∈ Z⇒ x 6= nπ)

}
→ R

é a função dada por

cot(x) = cos(x)
sen(x) ;

iii:

sec :
{
x ∈ R | ∀n

(
n ∈ Z⇒ x 6= π

2 + nπ
)}
→ R

é a função dada por

sec(x) = 1
cos(x) ;

iv:

csc :
{
x ∈ R | ∀n (n ∈ Z⇒ x 6= nπ)

}
→ R

é a função dada por

csc(x) = 1
sen(x) ;
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Lemos essas funções, respectivamente, como tangente, cotangente,

secante e co-secante.
As condições impostas aos domínios são necessárias por conta dos

zeros de seno e co-seno.

Seção 58
Integral de Riemann

Sumário

Índice
RedeGeorg Friedrich Bernhard Riemann é o criador daquilo hoje co-

nhecido como integral de Riemann. Os trabalhos deste matemático
alemão sobre séries de Fourier inspiraram Georg Cantor a desenvolver
as primeiras ideias sobre teoria de conjuntos, as quais foram também
influenciadas pela obra de Bolzano.
Relembrando conceitos já vistos na Seção 39, um intervalo fechado

[a, b] é o conjunto

[a, b] = {x ∈ R | a ≤ x ≤ b}.

Se a 6= b, dizemos que [a, b] é não degenerado. Se a = b, [a, b] é
degenerado.
Já um intervalo aberto (a, b) é o conjunto

(a, b) = {x ∈ R | a < x < b}.

Uma partição P de [a, b] em n intervalos fechados é o conjunto
P = {[ai, ai+1] ∈ ℘([a, b]) | i ∈ ω ∧ 0 ≤ i ≤ n− 1∧

[a0, a1] ∪ [a1, a2] ∪ · · · ∪ [an−1, an] = [a, b]},
sendo que cada elemento de P é um intervalo fechado não de-
generado.

Usualmente P é referida simplesmente como partição de [a, b].
Ou seja, uma partição P de um intervalo fechado [a, b] é um con-

junto de subconjuntos de [a, b] (observar que o conjunto universo
usado no emprego do Esquema da Separação é ℘([a, b])) tal que
seus elementos são intervalos fechados [ai, ai+1] que satisfazem a duas
condições:
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i: a união arbitrária de todos os elementos de P é o intervalo

fechado [a, b] e
ii: a interseção entre dois elementos quaisquer de P , distintos entre

si, é vazia ou um singleton {ai+1}.

No caso particular em que o intervalo fechado [a, b] é degenerado,
obviamente ele admite uma única partição. Nas demais situações
há uma infinidade de possíveis partições para um mesmo intervalo
fechado não degenerado.
Aqui cabe observar algo importante. O contexto desta Seção é o

conceito de integral de Riemann, a ser dado adiante. Neste sentido, o
intervalo fechado [a, b] é chamado de domínio de integração, enquanto
P é a partição do domínio de integração. Ou seja, partição de um
domínio de integração nada tem a ver com partição de um conjunto
no sentido apresentado na Definição 3.16, Seção 26. Com efeito, dois
elementos distintos de uma partição P de um domínio de integração
[a, b] podem ter interseção não vazia, como se percebe no exemplo
abaixo. No contexto da Definição 3.16 dois elementos distintos de
uma partição sempre têm interseção vazia.

Exemplo 6.9. Uma possível partição de [−2, 7] é
P = {[−2,−1], [−1, 2], [2, 6], [6, 7]}.

Com efeito, n = 4, onde
a0 = −2, a1 = −1, a2 = 2, a3 = 6 e a4 = 7;

além disso,
[−2,−1] ∪ [−1, 2] ∪ [2, 6] ∪ [6, 7] = [−2, 7],

lembrando que união finitária é associativa. Observar também
que, por exemplo, [−2,−1] ∩ [6, 7] = ∅, enquanto [−2,−1] ∩
[−1, 2] é o singleton {−1}. Comentário análogo vale para quais-
quer elementos tomados dois a dois a partir de P .

Denotamos por ∆xi o real ai+1 − ai, onde 0 ≤ i ≤ n − 1. Neste
sentido, cada intervalo fechado [ai, ai+1] pertencente à partição P de
[a, b] é um conjunto de números reais, enquanto

∆xi = ai+1 − ai
é chamada de medida do intervalo [ai, ai+1]. Intuitivamente falando,
essa medida corresponde ao ‘comprimento’ do intervalo fechado. Em
particular, todo intervalo fechado degenerado tem medida zero.
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Sobre o conceito de medida, ver Seção 103. Mas, para os atuais

propósitos, essa noção intuitiva de medida é suficiente.

A norma de uma partição P é definida como
‖ P ‖= max{∆xi},

onde max{∆xi} denota o real ∆xj tal que
∆xj ≥ ∆xi

para todo i de modo que 0 ≤ i ≤ n− 1. Ou seja, max{∆xi} é o
máximo valor entre todos os ∆xi.

Exemplo 6.10. Na partição P do Exemplo anterior temos
‖ P ‖ = 4.

Seja f uma função real definida sobre um intervalo não degene-
rado [a, b]. A integral de Riemann (ou, simplesmente, a integral)
de f em relação a x em [a, b] é dada por∫ b

a
f(x)dx = lim

‖P‖→0

∑
i

f(zi)∆xi,

sendo ∆xi = ai+1 − ai e zi ∈ (ai, ai+1).

-

6

•
a z1

• •
b

x

y Aqui a partição do intervalo [a, b] é
definida por três intervalos fechados.

f(z1) é a altura do
retângulo do meio.

Chamamos o intervalo fechado [a, b] de domínio de integração da
integral

∫ b
a f(x)dx, enquanto o ponto a é chamado de limite inferior

de integração, e b é chamado de limite superior de integração.
O somatório ∑

i

f(zi)∆xi

é chamado de soma de Riemann.
Na imagem acima é sugerida uma soma de Riemann

f(z0)(a1 − a0) + f(z1)(a2 − a1) + f(z3)(a3 − a2),
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onde a0 = a e a3 = b.
Logo, a soma de Riemann é uma função da partição P e da escolha

de cada zi. Cada partição e cada escolha de zi, para cada i, corres-
ponde a uma soma de Riemann. Por exemplo, para a mesma função
sugerida na imagem acima e para o mesmo domínio de integração
[a, b] podemos ter a seguinte soma de Riemann sugerida na próxima
imagem:

f(z0)(a1 − a0) + f(z1)(a2 − a1) + f(z3)(a3 − a2)+

f(z4)(a4 − a3) + f(z5)(a5 − a4),
onde a0 = a e a5 = b.

-

6

•
a

•
b

x

y Aqui a partição do intervalo [a, b] é
definida por cinco intervalos.

No caso particular em que f(x) ≥ 0 para todo x pertencente
ao intervalo [a, b] (como sugerido nas imagens acima), cada termo
f(zi)∆xi corresponde à área de um retângulo com base de medida
∆xi e altura de medida f(zi). Ainda neste caso,∫ b

a
f(x)dx

corresponde à área da região de R2 compreendida abaixo de f(x),
acima do eixo x e ladeada pelas retas verticais x = a e x = b, como
sugerido na imagem abaixo.

-

6

a b
x

y

Com efeito, a integral ∫ b

a
f(x)dx
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é o limite da soma de Riemann∑

i

f(zi)∆xi,

com a norma da partição P tendendo a zero.
Mas, se o máximo entre os ∆xi (ou seja, a norma de P ) se torna

arbitrariamente pequeno (ou seja, ‖ P ‖ ∈ (0 − δ, 0 + δ)), então
o número n de elementos da partição P se torna arbitrariamente
grande (ou seja, n > ε para qualquer ε estritamente positivo.).
Observar que, enquanto cada ∆xi é uma medida de um segmento

de reta [ai, ai+1],
∫ b
a f(x)dx também é uma medida, pelo menos para

o caso particular em que f(x) ≥ 0 para todo x ∈ [a, b]. Mas, desta
vez, trata-se da medida de uma região de R2.
Medidas de segmentos de reta são também conhecidas como com-

primentos, enquanto medidas de regiões de R2 são chamadas de
áreas.
Com relação às retas verticais acima mencionadas, elas correspon-

dem aos conjuntos
{(a, y) ∈ R2 | y ∈ R}

e
{(b, y) ∈ R2 | y ∈ R},

onde b > a.

-

6

a b x

y

Se
f(x) < 0,

para todo x pertencente ao domínio de integração [a, b], então∫ b

a
f(x)dx

é um real negativo tal que ∣∣∣∣∣
∫ b

a
f(x)dx

∣∣∣∣∣
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é a área da região de R2 delimitada por f(x), pelo eixo x e pelas
retas x = a e x = b.
Assim como derivada é um caso particular de limite, integral de

Riemann também é. Uma vez que limites podem existir ou não, o
mesmo ocorre com integrais. Se f admite integral em [a, b], dizemos
que f é integrável em [a, b].

Seção 59
Teoremas básicos

Sumário

Índice
RedeSeguem alguns resultados estratégicos.

Teorema 6.7. Seja f : [a, b] → R uma função integrável tal
que f(x) ≥ 0, para todo x pertencente a [a, b]. Então,∫ b

a
f(x)dx ≥ 0.

Demonstração: Se [a, b] for um intervalo não degenerado,
então ∫ b

a
f(x)dx = lim

‖P‖→0

∑
i

f(zi)∆xi.

Porém, cada ∆xi é positivo. Além disso, por hipótese, cada
f(zi) é positivo. Uma vez que o somatório de parcelas positi-
vas é uma soma positiva, então o limite da soma de Riemann
é positivo.

Teorema 6.8. Seja f : [a, b]→ R uma função tal que
f(x) = c,

sendo a < b. Então, ∫ b

a
f(x)dx = c(b− a).

Demonstração:∫ b

a
c dx = lim

‖P‖→0

∑
i

c∆xi = lim
‖P‖→0

c
∑
i

∆xi =
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lim
‖P‖→0

c · lim
‖P‖→0

∑
i

∆xi = lim
‖P‖→0

c · lim
‖P‖→0

(b− a) =

c(b− a).
Observar que, na última igualdade acima, foi usado o Teo-
rema 5.9 sobre limite de função constante.

Exemplo 6.11. i:∫ 5

−2
7dx = 7(5− (−2)) = 7(5 + 2) = 49;

ii: ∫ 5

−2
−7dx = −7(5− (−2)) = −7(5 + 2) = −49.

Integral de Riemann não é um conceito elegante, como ocorre com
integral de Lebesgue. Para detalhes sobre integração de Lebesgue,
ver [29]. A obra citada exige como requisitos apenas conhecimentos
básicos sobre limites, séries e derivadas de funções reais.
Por conta da falta de elegância de integrais de Riemann, dois casos

especiais devem ser considerados para concluir a definição:

i: aqueles em que o limite inferior de integração é maior do que o
limite superior de integração e

ii: aqueles nos quais o limite inferior de integração é idêntico ao
limite superior de integração.

Para lidar com essas situações, a solução usual é incluir as fórmulas
a seguir para finalizar a definição de integral de Riemann:∫ a

b
f(x)dx = −

∫ b

a
f(x)dx,∫ a

a
f(x)dx = 0.

Exemplo 6.12. Uma vez que
∫ 5
−2 7dx = 49, então∫ −2

5
7dx = −49.

Ou seja, a permutação de limites de integração implica na troca de
sinal de uma integral de Riemann. Além disso, a integral de Riemann
de uma função real em um intervalo fechado degenerado é zero.
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Observar que toda função é integrável em um intervalo degenerado.

Exemplo 6.13. A função de Dirichlet g : R→ R dada por

g(x) =
{

1 se x é real racional
0 se x é real irracional

não é integrável se o domínio de integração [a, b] for um intervalo
não degenerado.b Consegue provar isso?

Apesar da função de Dirichlet não ser integrável no sentido de
Riemann, ela é integrável à la Lebesgue. Logo, além de integrais de
Lebesgue serem mais elegantes, elas conseguem dar conta de situa-
ções não tratáveis via integração de Riemann.

Teorema 6.9. Seja f uma função contínua em [a, b]. Logo,
existe z pertencente a (a, b) tal que∫ b

a
f(x)dx = f(z)(b− a).

O resultado acima é conhecido como o Teorema do Valor Médio
para Integrais. Sua demonstração exige a aplicação de outros teore-
mas aqui ignorados, como o Teorema do Valor Extremo e o Teorema
do Valor Intermediário, os quais consistem em um aprofundamento
no estudo de funções contínuas. Por esse motivo omitimos aqui a
sua prova. No entanto, Teorema 6.9 é bastante intuitivo, como se
mostra a seguir.

Exemplo 6.14. i: Seja f : R → R tal que f(x) = c; logo,
qualquer z pertencente a (a, b) satisfaz o teorema acima;

ii: Seja g : R→ R tal que g(x) = 2x; logo,∫ 3

0
g(x)dx = 9;

com efeito, essa integral é a área de um triângulo com base
de medida 3 e altura 6; logo,

f(1, 5) · (3− 0) = 3 · 3 = 9
garante que z = 1, 5 satisfaz o Teorema do Valor Médio para
Integrais.

No caso particular em que f(x) > 0 para todo x pertencente ao
domínio de integração [a, b], o Teorema do Valor Médio para Integrais

Página 247



Matemática Pandêmica Parte 6 Seção 59
afirma que existe retângulo cuja área é igual à integral

∫ b

a
f(x)dx,

de modo que a base do retângulo mede b − a e a altura mede f(z),
para algum z pertencente a (a, b), desde que f seja contínua em [a, b].

Teorema 6.10. Sejam f e g funções integráveis em [a, b]. Logo,
i: ∫ b

a
(f + g)(x)dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx;

ii: ∫ b

a
(f − g)(x)dx =

∫ b

a
f(x)dx−

∫ b

a
g(x)dx;

iii: ∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx,

onde c é uma constante real.

Demonstração: Provamos aqui apenas o item i, uma vez
que os demais são demonstrados de maneira análoga. Co-
meçando com a definição de integral de Riemann, temos
que ∫ b

a
(f + g)(x)dx = lim

‖P‖→0

∑
i

(f + g)(zi)∆xi =

lim
‖P‖→0

∑
i

(f(zi) + g(zi))∆xi = lim
‖P‖→0

∑
i

(f(zi)∆xi + g(zi)∆xi) =

lim
‖P‖→0

(∑
i

f(zi)∆xi +
∑
i

g(zi)∆xi
)

=

lim
‖P‖→0

∑
i

f(zi)∆xi + lim
‖P‖→0

∑
i

g(zi)∆xi =
∫ b

a
f(x)dx+

∫ b

a
g(x)dx.

Teorema 6.11. Seja f uma função integrável em quaisquer
intervalos fechados de R. Logo,∫ c

a
f(x)dx =

∫ b

a
f(x)dx+

∫ c

b
f(x)dx.

Página 248



Matemática Pandêmica Parte 6 Seção 60
A prova deste último teorema é muito simples, bastando usar a

definição de integral de Riemann e teoremas sobre limites e so-
matórios. No entanto, é uma prova que consome bastante tempo.
Com efeito, devemos considerar todas as possibilidades envolvendo
os limites de integração a, b e c:

a ≤ b ≤ c, a ≤ c ≤ b, b ≤ c ≤ a,

b ≤ a ≤ c, c ≤ b ≤ a e c ≤ a ≤ b.

Além disso, deve ser levado em conta que as imagens de f podem
mudar de sinal entre limites de integração ou nos próprios.

b Sugerimos que o leitor prove pelo menos para dois ou três
casos.

Seção 60
Teorema Fundamental do Cálculo

Sumário

Índice
RedeO teorema a seguir é um dos resultados de maior impacto social

na história da humanidade, com implicações em matemática, física,
engenharias, psicologia, medicina, ciências biológicas, artes áudio-
visuais, estatística, ciência da computação, paleontologia, arqueolo-
gia, música estocástica, entre outras áreas do conhecimento.
Pode não ser algo comparável com a invenção da roda ou o domínio

do fogo. Mas é um exemplo marcante das conquistas da ciência.

Teorema 6.12 (Teorema Fundamental do Cálculo).
Seja f uma função real contínua em [a, b]. Logo:

i:
G(x) =

∫ x

a
f(t)dt é uma primitiva de f(x);

ii:∫ b

a
f(x)dx = F (b)− F (a), sendo F (x) uma primitiva de f(x).

Demonstração: (i) Devemos provar que
d

dx
G(x) = f(x).
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Logo, calculemos d

dx
G(x).

d

dx
G(x) = lim

h→0

G(x+ h)−G(x)
h

=

lim
h→0

1
h

(G(x+ h)−G(x)) =

lim
h→0

1
h

(∫ x+h

a
f(t)dt−

∫ x

a
f(t)dt

)
=

lim
h→0

1
h

(∫ x+h

a
f(t)dt+

∫ a

x
f(t)dt

)
=

lim
h→0

1
h

∫ x+h

x
f(t)dt =

lim
h→0

1
h
f(z)h,

sendo z ∈ (x, x+ h) ou z ∈ (x+ h, x).
Observando as quatro linhas de contas acima, justificamos

cada uma a seguir.
Na primeira linha foi usada a definição de função derivada.
Na segunda foi empregada a definição de G (dada como

hipótese).
Na terceira linha usamos a definição de integral de Rie-

mann (para o caso de permutação de limites de integração),
bem como o Teorema 6.11, o qual permite escrever certas
somas de integrais como uma única integral.
Finalmente, a quarta linha faz uso do Teorema do Valor

Médio para Integrais 6.9.
Logo, a transitividade da igualdade nos diz que

d

dx
G(x) = lim

h→0
f(z).

No entanto,
lim
h→0

f(z) = lim
z→x

f(z),
uma vez que z está entre x e x + h (ou entre x + h e x, se
h < 0).
Como f é contínua em [a, b], então

lim
z→x

f(z) = f(x).
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Logo,

d

dx
G(x) = f(x),

encerrando a demonstração da parte i.
(ii) Se F é uma primitiva de f , então F (x) = G(x) + C.
Logo,

F (a) = G(a) + C.

Mas G(a) = 0. Logo, C = F (a). Logo,
F (b) = G(b) + F (a).

Mas G(b) =
∫ b
a f(t)dt. Logo,∫ b

a
f(t)dt = F (b)− F (a),

encerrando a prova da parte ii.

Denotamos F (b)− F (a) por F (x)
∣∣∣∣b
a
.

O Teorema Fundamental do Cálculo 6.12 estabelece:
i: uma inesperada relação entre integral de Riemann e derivada.

Afinal, derivada é o limite de uma razão, enquanto integral é o
limite de um somatório;

ii: um critério simples para o cálculo de integrais. Com efeito,
há vários teoremas que tornam o cálculo de derivadas bastante
simples. Logo, determinar primitivas, como ocorre no item ii do
Teorema Fundamental do Cálculo, é algo muito mais simples do
que calcular limite de uma soma de Riemann.

O fato de haver teoremas para derivadas de produtos torna o Teo-
rema 6.12 um resultado muito bem-vindo, uma vez que não há teore-
mas não triviais sobre integral de produto entre funções. No entanto,
os impactos mais significativos deste resultado são apreciados mais
adiante.
O Teorema Fundamental do Cálculo não foi uma façanha con-

quistada ‘do dia pra noite’. James Gregory enunciou e provou uma
versão rudimentar deste resultado, utilizando argumentos de caráter
essencialmente geométricos. Isaac Barrow demonstrou, a seguir, uma
versão mais ampla. Por fim, Isaac Newton, aluno de Barrow, refinou
o enunciado e a prova para uma versão mais próxima do que hoje
se entende sobre o tema. Mas a forma como hoje se apresenta tal

Página 251



Matemática Pandêmica Parte 6 Seção 60
teorema, somente resultados conquistados no século 20 são capazes
de justificá-lo.

Exemplo 6.15. i:∫ 5

2
x3dx =

(
x4

4 + C

) ∣∣∣∣5
2

=

54

4 + C −
(

24

4 + C

)
= 54

4 −
24

4 ;

ii: ∫ b

a
c dx = (cx+ C)

∣∣∣∣b
a

= cb+ C − (ca+ C) = c(b− a)

(no Teorema 6.8 o mesmo resultado foi provado indepen-
dentemente do Teorema Fundamental do Cálculo);

iii: ∫ 2

1
sen(x)dx = − cos(x)

∣∣∣∣2
1

=

− cos(2)− (− cos(1)) = cos(1)− cos(2);

iv: ∫ 3

1
(3x2 − 2x)dx =

(
3x3

3 − x
2
) ∣∣∣∣3

1
=(

3(3)3

3 − 32
)
−
(

3(1)3

3 − 12
)

= 33 − 32 = 18.

Nos dois primeiros itens do Exemplo acima destacamos a cons-
tante C da primitiva da função integrada em relação x, no domínio de
integração dado. No entanto, uma vez que uma integral de Riemann
é uma diferença entre F (b) e F (a), claramente essa constante C não
desempenha papel algum. Por conta disso que, nos dois últimos itens
do Exemplo, omitimos qualquer consideração sobre tal constante.
A seguir relembramos funções reais ímpar e par.

Definição 6.4. Seja f : R→ R uma função. Dizemos que f
é ímpar sss para todo x ∈ R temos

f(−x) = −f(x).

Dizemos que f é par sss para todo x ∈ R temos
f(−x) = f(x).
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Exemplo 6.16. i: f : R→ R, tal que
f(x) = x3,

é ímpar; com efeito, (−x)3 = −x3, o que implica em f(−x) =
−f(x).

ii: g : R→ R, tal que
g(x) = x4,

é par; com efeito, (−x)4 = x4, o que implica em g(−x) =
g(x).

iii: h : R→ R, tal que
h(x) = x3 + x2,

não é par e nem ímpar.

Teorema 6.13. Seja f uma função real integrável ímpar, com
domínio R. Logo, ∫ a

−a
f(x)dx = 0,

para qualquer real a.

Exemplo 6.17. i:∫ 3

−3
(x3 − x)dx = 0;

ii: ∫ 4

−4
sen(x)dx = 0.

Teorema 6.14. Seja f uma função real integrável par, com
domínio R. Logo, ∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx,

para qualquer real a.

As provas dos dois últimos teoremas podem ser feitas sem dificul-
dade a partir da definição de integral de Riemann. Por conta dos
limites de integração serem simétricos relativamente a zero, basta as-
sumir partições de [−a, a] que sejam simétricas em relação a zero. Ou
seja, nem sempre o Teorema Fundamental do Cálculo é um agente
facilitador para a demonstração de teoremas.

Página 253



Matemática Pandêmica Parte 6 Seção 60

Exemplo 6.18. Como calcular a área A da região R de R2

delimitada pelas funções f : R→ R e g : R→ R tais que
f(x) = x2

(em vermelho, na imagem abaixo) e
g(x) = 2x

(em azul)?

−0.5 0.5 1 1.5 2

−1

1

2

3

4

x

y

Temos que
f = {(x, y) ∈ R2 | y = x2}

e
g = {(x, y) ∈ R2 | y = 2x}.

Logo,
f ∩ g = {(0, 0), (2, 4)},

uma vez que x2 = 2x sss x = 0 ou x = 2.

b Se x ∈ [0, 2], então g(x) ≥ f(x). Logo,

A =
∫ 2

0
g(x)dx−

∫ 2

0
f(x)dx =

∫ 2

0
2xdx−

∫ 2

0
x2dx =

x2
∣∣∣∣2
0
− x3

3

∣∣∣∣2
0

= (22 − 02)−
(

23

3 −
03

3

)
=

4− 8
3 = 12

3 −
8
3 = 4

3 .

Página 254



Matemática Pandêmica Parte 6 Seção 60
Ou seja, no problema acima calculamos uma área a partir da dife-

rença entre duas áreas. Observar, no Exemplo acima, que

A =
∫ 2

0
(g(x)− f(x))dx,

por conta do Teorema 6.10.
Questão: É interessante notar que a área A da região R exempli-

ficada acima é invariante sob a ação de translações. Translações de
uma região de R2 podem ser feitas para a direita ou para a esquerda,
para cima ou para baixo, ou por combinações de deslocamentos ho-
rizontais com verticais. Neste sentido, translações horizontais são
definidas por uma operação x − α, enquanto translações verticais
são dadas por uma operação y + β.
Logo, para representarmos uma translação qualquer da região da

Questão acima, basta fazer
f(x) = (x− α)2 + β

e
g(x) = 2(x− α) + β.

Se α = β = 0, então f(x) = x2 e g(x) = 2x delimitam uma região
R de R2 cuja área é 4

3 , conforme já discutido.
Se α > 0, temos uma nova região à direita de R. Se α < 0, temos

uma nova região à esquerda de R. Se β > 0, temos uma nova região
acima de R. Se β < 0, temos uma nova região abaixo de R.
Os valores de α e β podem ser interpretados como translações de

R ao longo de R2. Valores não nulos de α produzem translações
horizontais, enquanto valores não nulos de β produzem translações
verticais. Seja qual for a translação, a área da região delimitada por
f e g deve ser invariante, ou seja

(x− α)2 + β = 2(x− α) + β ⇒ (x = α ∨ x = 2 + α)
e ∫ 2+α

α
(2(x− α) + β − ((x− α)2 + β))dx = 4

3 .

b Recomendamos que o leitor faça as contas. Recomendamos
também que faça representações visuais do problema, para desen-
volver as intuições correspondentes à Questão. Uma maneira rápi-
da de fazer isso é atribuindo valores para α e β e criar representações
gráficas através do serviço gratuito em https://www.geogebra.org/.
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Princípios de invariância são um dos pilares da matemática, geral-

mente enunciados através da identidade =. Mas esta é uma questão
de grande impacto epistemológico que escapa dos nossos propósitos.

Seção 61
Logaritmo natural

Sumário

Índice
RedeNesta Seção mostramos como usar integral de Riemann para definir

logaritmo natural. Graças a isso seremos capazes de qualificar pos-
teriormente o que são logaritmos.

Definição 6.5. Uma função f : x ⊆ R → R é localmente
crescente no ponto c ∈ x sss existe intervalo aberto I tal que
c ∈ I, I ⊆ x e, para quaisquer a e b pertencentes a I,

a > b⇒ f(a) > f(b).

Uma função f : x ⊆ R → R é localmente decrescente no
ponto c sss existe intervalo aberto I tal que c ∈ I, I ⊆ x e, para
quaisquer a e b pertencentes a I,

a > b⇒ f(a) < f(b).

Exemplo 6.19. i: f : R→ R, tal que
f(x) = x3,

é localmente crescente em qualquer ponto c de R; com efeito,
se a > b, então a3 > b3, independentemente de qualquer
intervalo aberto de reais onde a, b e c pertençam; logo,

f(a) > f(b).

ii: g : R→ R, tal que
g(x) = −6x,

é localmente decrescente em qualquer ponto c de R; com
efeito, se a > b, então −6a < −6b; logo;

f(a) < f(b),
independentemente de qualquer intervalo aberto de reais onde
a, b e c pertençam.
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iii: b h : R→ R, tal que
h(x) = x2,

é localmente crescente em qualquer real maior do que 0 e
localmente decrescente em qualquer real menor do que 0; no
entanto, não é localmente crescente, nem localmente decres-
cente, em 0.

Funções reais f localmente crescentes (localmente decrescentes)
em qualquer ponto do domínio de f são chamadas de globalmente
crescentes (globalmente decrescentes).
Funções globalmente crescentes são também chamadas de cres-

centes. Comentário análogo para as globalmente descrescentes. Ob-
viamente, qualquer função crescente (decrescente) é injetora. Com
efeito, se a < b ⇒ f(a) < f(b), no caso de f crescente, então
a 6= b⇒ f(a) 6= f(b). Prova semelhante para as decrescentes.

Teorema 6.15. Uma função f : d ⊆ R → R é globalmente
crescente se f ′(x) > 0 para todo x pertencente a d.

Demonstração: Sabemos, pelo Teorema 5.24, que
d

dx
f
∣∣∣∣
x=a

= lim
x→a

f(x)− f(a)
x− a

para qualquer a do domínio de f , se f for diferenciável.
Considere uma vizinhança de a definida por (a − δ, a + δ).
Se x ∈ (a− δ, a+ δ) e x 6= a, então x > a ou x < a. Se

d

dx
f
∣∣∣∣
x=a

> 0

e x > a, então f(x) > f(a). Se
d

dx
f
∣∣∣∣
x=a

> 0

e x < a, então f(x) < f(a). Em qualquer uma das situações
f é localmente crescente no ponto a.

Teorema 6.16. Uma função f : d ⊆ R → R é globalmente
decrescente se f ′(x) < 0 para todo x pertencente a d.

Demonstração: Análoga à prova anterior.
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Muitos outros teoremas envolvendo funções crescentes e decres-

centes com derivadas podem ser enunciados e provados. Mas o que
temos acima é suficiente para os nossos propósitos.

Definição 6.6. Logaritmo natural é uma função
ln : {x ∈ R | x > 0} → R

tal que
ln(x) =

∫ x

1

1
t
dt.

Em outras palavras, logaritmo natural é uma função definida por
uma integral.

Exemplo 6.20. O logaritmo natural de 3 é a área da região
de R2 abaixo de 1

t
, acima do eixo t e ladeada pelas retas t = 1 e

t = 3.

1 2 3 4 5

1

2

3

4

5

t

y
Função 1

t
, a qual é integrada

O próximo teorema mostra que nem sempre logaritmo natural as-
sume valores reais positivos.

Teorema 6.17. Se ln é a função logaritmo natural da Definição
6.6, então

i: ln(1) = 0;
ii: ln(x) > 0 se x > 1;
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iii: ln(x) < 0 se 0 < x < 1.

Demonstração: i: Definição 6.6 garante que

ln(1) =
∫ 1

1

1
t
dt.

A definição de integral de Riemann, para o caso em
que o limite superior de integração é idêntico ao limite
inferior, garante que∫ 1

1

1
t
dt = 0.

ii: Se x > 1, então o domínio de integração de∫ x

1

1
t
dt

é o intervalo não degenerado [1, x]. Mas, neste intervalo,
a função integrada f(t) = 1

t
assume somente imagens

estritamente positivas. Logo,∫ x

1

1
t
dt > 0,

como consequência imediata do Teorema 6.7.
iii: Se 0 < x < 1, então o domínio de integração de∫ 1

x

1
t
dt

é o intervalo não degenerado [x, 1]. Mas, neste inter-
valo, a função 1

t
assume imagens estritamente positivas.

Logo, ∫ 1

x

1
t
dt > 0.

No entanto,

ln(x) =
∫ x

1

1
t
dt.

Logo, a definição de integral de Riemann garante que∫ x

1

1
t
dt < 0.

Isso conclui a prova dos três itens.

Teorema 6.18. A função ln é injetora.
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Demonstração: Temos que
d

dx
ln(x) = d

dx

∫ x

1

1
t
dt = 1

x
,

por conta do item i do Teorema Fundamental do Cálculo.
Logo,

d

dx
ln(x) > 0,

uma vez que o domínio de ln é o conjunto dos reais estrita-
mente positivos. Isso implica que ln é crescente, de acordo
com Teorema 6.15. Uma vez que qualquer função crescente
é injetora, então ln é injetora.

Teorema 6.19. A função ln é sobrejetora.

Demonstração: Apresentamos apenas um esboço da prova.
Por um lado, se x é uma cópia real de um inteiro maior

do que 1, então

ln(x) > 1
2 + 1

3 + · · ·+ 1
x
.

Para perceber isso, basta verificar que o somatório do lado
direito da desigualdade acima é uma soma de Riemann no
intervalo [1, x], onde cada elemento da partição do domínio
de integração [1, x] de ln(x) tem medida 1.
Por outro lado, a série harmônica ∑ 1

n
, estendida para os

reais, é divergente, de acordo com o Teorema 5.32. Logo,
lim
x→∞

ln(x) =∞,

uma vez que ln(x) é estritamente positivo para todo x à
direita de 1.
Além disso, a função 1

t
usada para definir logaritmo na-

tural é simétrica em relação à reta y = t. Logo,
lim
x→0+

ln(x) = −∞

(lembrar que ln(x) < 0 para reais x no intervalo aberto
(0, 1)).
Para finalizar, ln é diferenciável, o que implica que é con-

tínua (Teorema 5.25). Logo, para qualquer y real existe x
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tal que ln(x) = y, uma vez que as imagens ln(x) da fun-
ção ln percorrem todos os reais, de −∞ a ∞ (i.e., todos os
números reais, sejam negativos ou positivos).

Teorema 6.20. A função ln admite inversa.

Demonstração: Ver Teoremas 6.18 e 6.19, os quais impli-
cam que ln é bijetora, bem como Teorema 4.21: toda função
bijetora admite inversa.

Seção 62
A inversa de ln

Sumário

Índice
RedeNa Seção 61 provamos que logaritmo natural admite inversa. Por

outro lado, exponencial exp(x) é definida como solução de uma equa-
ção diferencial sob uma condição de contorno. No próximo teorema
mostramos que logaritmo natural e exponencial são inversas uma da
outra. Uma vez que o domínio de logaritmo natural é o conjunto de
todos os reais estritamente positivos, o próximo resultado permite
inferir que exponencial de qualquer real x jamais é negativo.

Teorema 6.21. A inversa de ln é a função exponencial exp.

Demonstração: Seja ln : {x ∈ R | x > 0} → R tal que

ln(x) =
∫ x

1

1
t
dt.

Para fins de abreviação, chamemos ln(x) de y(x). Seja
g : R→ {x ∈ R | x > 0}

a inversa de y, cuja existência é garantida pelo Teorema
6.20. Logo, para qualquer x real,

y(g(x)) = x,

de acordo com Definição 4.15.
Logo,

d

dx
(y(g(x))) = d

dx
x.

Página 261



Matemática Pandêmica Parte 6 Seção 63
De acordo com o Teorema 6.3 (lembrar também que

d

dx
ln(x) = x−1,

como mostrado na prova do Teorema 6.18), temos
1

g(x)g
′(x) = 1.

Logo, g′(x) = g(x). Uma vez que ln(1) = 0, logo, g(0) = 1.
Mas esta é exatamente a definição de função exponencial
dada na Seção 56. Logo, g(x) = exp(x).

Seção 63
Aplicação elementar

Sumário

Índice
RedejEntre os elementos que ocorrem na natureza, Polonium (Po-

lônio, em português) é o mais radioativo. Existem 42 isótopos conhe-
cidos deste elemento descoberto em 1898 pelo casal Marie e Pierre
Curie. Polonium-210 (abreviado como 210Po), por exemplo, tem
meia-vida de 138,376 dias (meia-vida de um isótopo é o tempo ne-
cessário para a sua massa reduzir à metade). Em contato com o ar,
a radiação deste isótopo é visível a olho nu, emitindo uma luminosi-
dade azulada. Quanto tempo demora para que um quilograma de
210Po seja reduzido a um grama?
Neste caso, podemos modelar matematicamente o fenômeno de

decaimento radioativo através do emprego de funções. Se mapearmos
massa m através de uma função real m(t) dependente de tempo t, o
modelo usual assume que

d

dt
m = km,

sendo k uma constante de proporcionalidade cujo valor depende do
material em processo de decaimento. Essa proposta se traduz da
seguinte maneira:

A taxa de variação de massa em relação ao tempo
é proporcional à massa.
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Em outras palavras, quanto maior a massa, maior a taxa de varia-

ção da massa em relação ao tempo.
Logo,

m(t) = c exp(kt),
onde c é uma constante real que define uma condição de contorno.
Com efeito, a função acima satisfaz a equação diferencial

d

dt
m = km.

Para o caso em que t = 0, temos m(0) = c. Logo, c pode ser
interpretado como massa inicial m0. Logo,

m(t) = m0 exp(kt).

Uma vez que a meia-vida do isótopo em questão é de apenas
138,376 dias, logo

m0

2 = m0 exp(138, 376k).

Portanto, exp(138, 376k) = 0, 5. Logo, ln(exp(138, 376k)) = ln(0, 5),
o que implica que 138, 376k = −0, 693147. Finalmente,

k = −0, 00500916d−1,

sendo que d denota ‘dias’ e d−1 denota ‘por dia’.
O valor da constante de proporcionalidade k é negativo justamente

porque, no problema em questão, a taxa de variação
dm

dt

é negativa, sendo m(t) sempre positivo. Ou seja, está ocorrendo
perda de massa ao longo do tempo.
Uma vez determinada a constante de proporcionalidade k do mode-

lo usual, para descrever decaimento radioativo, podemos responder
à questão proposta.
Temos que

1 = 1000 exp(−0, 00500916t),
uma vez que queremos determinar o tempo t consumido (em dias)
para transformar mil gramas de 210Po em um grama.
Isso implica em

exp(−0, 00500916t) = 0, 001.
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Logo,

ln(exp(−0, 00500916t)) = ln(0, 001) = −6, 90775.
Isso implica que

−0, 00500916t = −6, 90775.
Logo,

t = 1379, 02d,
o que corresponde a 3, 77556 anos (três anos, nove meses e dez dias).
Em menos de quatro anos um quilograma de Polonium-210 é re-

duzido a um grama.
Observar que um grama de Polonium-210 é suficiente para matar

cinquenta milhões de pessoas, e adoecer outras cinquenta milhões,
por envenenamento radioativo [36].

b Sabendo que a meia-vida de 14C (isótopo Carbono 14) é de 5730
anos, qual é a massa final de dois gramas deste isótopo após oitenta
milhões de anos? Para resolver este problema empregue o modelo
usual de decaimento radioativo, o qual assume que a taxa de variação
de massa em relação à passagem de tempo é proporcional à massa.

! O exercício acima é algo que pode ser divertido para re-
flexões. Por um lado, se o leitor encarar a questão de um ponto de
vista puramente matemático, perceberá que será necessário calcu-
lar a exponencial de um valor real com ordem de grandeza 103. No
entanto, calculadoras científicas usualmente não contam com capaci-
dade de processamento para esse tipo de conta. Se o leitor tentar
empregar uma calculadora científica típica, não será capaz de obter
uma resposta para, digamos, exponencial de 9000. Esta, portanto,
é uma ótima oportunidade para a natureza humana demonstrar sua
capacidade criativa. Com efeito, 9000 é a adição de 90 com 90, com
cem ocorrências da parcela 90. Calculadoras científicas conseguem
processar a exponencial de 90. Uma vez que a exponencial de uma
soma é o produto de exponenciais (Teorema 6.5), agora o problema
passa a ser fácil de resolver, numa parceria entre tecnologia e espírito
humano.

! Por outro lado, o exercício proposto é um problema físico.
Problemas de caráter físico não podem ser resolvidos levando em
conta apenas aspectos matemáticos. Com efeito, processos de da-
tação por Carbono-14 não são confiáveis para períodos tão longos
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quanto os oitenta milhões de anos sugeridos. Logo, rogamos ao leitor
que pense com bastante carinho sobre a questão levantada. Ciência
não se sustenta por manuais técnicos que ditam normas a serem
incondicionalmente cumpridas. Ciência é uma atividade de profunda
responsabilidade intelectual.

Seção 64
Um olhar sobre o paraíso

Sumário

Índice
RedeSeja p um número real maior do que zero. Logo,

d

dx
ln(px) = 1

px
p = 1

x
= d

dx
ln(x).

Usamos acima derivada de função composta (Teorema 6.3), além
do fato de que

d

dx
ln(x) = x−1,

conforme demonstração do Teorema 6.18.
Isso significa que ambas as funções ln(px) e ln(x) têm a mesma

derivada
1
x
.

Logo,
ln(px) = ln(x) + C,

onde C é uma constante real.
Se x = 1, temos ln(p) = ln(1) +C. Logo, C = ln(p). Consequente-

mente,

ln(px) = ln(x) + ln(p).

Ou seja, foi provado acima que o logaritmo natural de um produto
px entre fatores reais estritamente positivos p e x é igual à adição
do logaritmo natural de p com o logaritmo natural de x. Em jargão
popular (mais semelhante a um bordão popular nos dias de hoje),
logaritmo natural do produto é a soma de logaritmos naturais.
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Por outro lado,

d

dx
ln
(1
x

)
= 1

1/x(−x−2) = −x
x2 = −1

x
= d

dx
(− ln(x)).

Em outras palavras, ambas as funções ln
(

1
x

)
e − ln(x) têm a

mesma derivada
−1
x
.

Logo,

ln
(1
x

)
= − ln(x) + C.

Se x = 1, então C = 0. Portanto,

ln
(1
x

)
= − ln(x).

Uma vez que

ln
(
x

p

)
= ln

(
x

1
p

)
,

então

ln
(
x

p

)
= ln(x) + ln

(
1
p

)
= ln(x)− ln(p).

Ou seja, logaritmo natural de uma razão é a diferença de logaritmos
naturais.
Nos exemplos que seguem o Teorema 6.5 mostramos que exponen-

cial da soma é o produto de exponenciais das parcelas da soma. Aqui,
por conta do fato de logaritmo natural ser a inversa da exponencial,
mostramos que o logaritmo natural de um produto é a soma dos lo-
garitmos naturais dos fatores desse produto. Além disso, logaritmo
natural de uma razão é a diferença entre os logaritmos naturais dos
termos da razão.
Considere agora a equação diferencial

dy

dt
= ky,

a qual é exatamente a mesma que foi utilizada na solução do decai-
mento radioativo de 210Po, na Seção 63.
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Logo,

1
y

dy

dt
= k.

Para que possamos passar da forma diferencial acima para uma
forma integral (isso por conta do Teorema Fundamental do Cálculo),
basta percebermos que

∫ yF

y0

1
y
dy = lim

‖Py‖→0

∑
i

1
zi

∆yi = lim
‖Pt‖→0

∑
i

1
zi

∆yi
∆ti

∆ti =

∫ tF

t0

1
y

dy

dt
dt =

∫ tF

t0
kdt,

sendo que Py e Pt denotam partições nos eixos y e t, respectivamente.
Lembrar que estamos sempre assumindo que y = y(t), ou seja, y é

uma função de t (ou seja, os termos do domínio de y são chamados
de t).

! Alguns autores justificam a passagem da forma diferencial
para a integral de maneira muito mais breve, porém falaciosa:

dy

dt
= ky

implica em
1
y
dy = kdt

que, por sua vez, implica em∫ yF

y0

1
y
dy =

∫ tF

t0
kdt.

A passagem da primeira para a segunda fórmula (antes de ‘concluir’
a forma integral) sugere que dy

dt
é uma razão entre reais dy e dt. No

entanto,
dy

dt
não é uma razão entre números reais!
Logo, esta estratégia (comumente empregada em textos de física

teórica e engenharia, na qual dy
dt

é tratada como uma razão), apesar
de funcionar como regra mnemônica, não consiste em justificativa no
contexto de cálculo diferencial e integral padrão.
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! Alguns autores chegam a se referir a dy e dt como infinitesi-
mais, sendo que no cálculo padrão não há infinitesimais (ver Seção
52 sobre o tema). O conceito de infinitesimal é típico, e extrema-
mente importante, em duas outras teorias de cálculo diferencial e
integral que não necessitam de limites para qualificar derivadas e in-
tegrais. Essas formas diferentes de cálculo diferencial e integral são
análise não standard [40] e análise infinitesimal suave [4].
Agora que sabemos que

dy

dt
= ky

implica em ∫ yF

y0

1
y
dy =

∫ tF

t0
kdt,

temos que

ln(y)
∣∣∣∣yF

y0

= kt
∣∣∣∣tF
t0

,

por aplicação do Teorema Fundamental do Cálculo.
Logo, ln(yF )−ln(y0) = k∆t, sendo ∆t = tF−t0. Logo, ln(yF/y0) =

k∆t. Portanto, yF/y0 = exp(k∆t), ou seja,
yF = y0 exp(kt),

se assumirmos que tF = t e t0 = 0. Observar que esta é exatamente
a solução para o problema de decaimento radioativo de 210Po.
Ou seja, a forma integral∫ yF

y0

1
y
dy =

∫ tF

t0
kdt

(por separação de variáveis, i.e., todas as ocorrências de y estão do
mesmo lado da igualdade e todas as ocorrências de t estão do outro
lado) da equação diferencial

dy

dt
= ky

(a qual define a exponencial de kt com condições de contorno y(0) =
y0) se mostra solúvel através da definição de logaritmo natural via
integração de Riemann.
O problema de decaimento radioativo é revisitado sob um ponto

de vista completamente diferente na Seção 95.
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Essa discussão ilustra o papel de derivadas e integrais, anunci-

ado no primeiro parágrafo da Seção 47. Derivadas permitem mode-
lar (via equações diferenciais) fenômenos físicos (como, e.g., decai-
mento radioativo). Integrais, por outro lado, viabilizam previsões de
longo termo, as quais são mapeadas por funções que são soluções de
equações diferenciais. Este é um dos papeis principais do Teorema
Fundamental do Cálculo: viabilizar soluções de equações diferenciais
via processo de integração.
Tudo isso é formulado em uma teoria de conjuntos sustentada por

apenas duas ‘colunas’: igualdade = e pertinência ∈. Portanto, aqui
radica parte do valor estético de ZF: dois conceitos apenas, = e ∈,
abrem portas para um vasto universo de possibilidades para estudos
e aplicações.
Em 1926, oito anos após a morte de Cantor, David Hilbert afirmou:

Ninguém poderá nos expulsar do paraíso que Cantor criou
para nós.

De fato, o paraíso de Cantor ainda está sendo conhecido, lenta-
mente, por milhares de matemáticos do mundo todo. Foi este paraíso
que inspirou Ernst Zermelo, Abraham Fraenkel, John von Neumann,
Kurt Gödel e muitos outros, até os dias de hoje. Mesmo sem saber-
mos ao certo o que é possível fazer em terras tão exóticas, até o
presente momento já temos uma boa noção de sua extraordinária
beleza.
No romance Princess Napraxine, a escritora britânica Ouida afirma

que

familiaridade é um mágico cruel com a beleza, mas gentil com
a feiura.

Em outras palavras, o belo deve resistir à familiaridade.
Nesta acepção, ZF é bela. Ainda não há perspectivas de plena

familiaridade com o seu poder de alcance.
Nenhum teorema sobre teoria de conjuntos é atribuído a Hilbert,

o primeiro grande defensor da teoria de conjuntos. Mas este exerceu
uma poderosa influência sobre muitos outros que decidiram conhecer
o paraíso concebido por Cantor. Hilbert foi possivelmente o último
matemático de visão universal sobre este ramo do conhecimento. O
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tom profético de sua visão sobre o que é importante em matemática
repercute até os dias de hoje. Mas esta é outra longa história não
cabível neste livro.

Seção 65
Pseudomatemática

Sumário

Índice
RedeNa Seção anterior exibimos um exemplo de prática de má quali-

dade no contexto de cálculo diferencial e integral padrão, ao mostrar-
mos a não justificabilidade da simplificação

dy

dt
= ky ⇒ 1

y
dy = kdt.

Este é um exemplo de pseudomatemática, uma atividade muito
comum na qual há a tentativa de imitar procedimentos matemáticos
sem qualquer atenção a rigor ou razão.
Até mesmo Thomas Hobbes (um dos pais da filosofia política) foi

vítima de si mesmo, por conta de práticas matemáticas sem qual-
quer fundamentação racional. Hobbes acreditava ter resolvido o in-
solúvel problema da quadratura do círculo. Essa questão deu origem
à famosa controvérsia entre Hobbes e John Wallis, a qual durou dé-
cadas, durante o século 17.
Frequentemente matemáticos do mundo todo são importunados

por pessoas que negam o Argumento da Diagnonal de Cantor ou os
Teoremas de Incompletude de Gödel, entre outras sandices.
O termo ‘pseudomatemática’ foi cunhado pelo lógico Augustus De

Morgan, em 1915. Nas palavras de De Morgan:

O pseudomatemático é uma pessoa que lida com a matemática
como um macaco que brinca com uma navalha. A criatura
tenta se barbear, imitando seu mestre; mas, sem qualquer

noção sobre o ângulo em que a lâmina deve ser posicionada,
acaba cortando a própria garganta.

Porém, não há qualquer procedimento efetivo que permita discernir
matemática de pseudomatemática. Se houvesse, possivelmente o des-
tino da matemática poderia ser entregue às máquinas. Não podemos
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esquecer as duras críticas que Cantor recebeu por sua teoria de con-
juntos. Na visão de Kronecker, por exemplo, o que Cantor propôs
não era algo digno de atenção.
Como dizia Cantor,

A essência da matemática radica em sua liberdade.

Ou seja, pode haver raras vantagens ao ouvirmos os ingênuos.
Ainda assim, é recomendável que o leitor sempre tome muito cuidado.
Aos curiosos, há um excelente livro sobre pseudomatemática, de

Underwood Dudley [14].

Seção 66
Quanto é ax?

Sumário

Índice
RedeAqui respondemos a uma das questões da Introdução.

Definição 6.7. Número de Euler é o número real e tal que
ln(e) = 1.

Logo, a definição acima garante que e > 1 (Teorema 6.17). Existem
várias técnicas para calcular o número de Euler e em sua represen-
tação decimal usual. Uma delas faz uso do fato de que exponencial
é a inversa de logaritmo natural. Logo, exp(1) = e. Portanto,

e = 1 + 1 + 1
2! + 1

3! + 1
4! + · · · .

O truncamento desta série, obtido pela soma das primeiras cem
mil parcelas, i.e.,

99999∑
n=0

1
n! ,

nos fornece um valor aproximado de
e ≈ 2, 71827.

Leonhard Euler provou a irracionalidade de e. O Teorema de
Lindemann-Weierstraß prova que e é transcendente, ou seja, não exis-
te equação polinomial com coeficientes reais racionais tal que e seja
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solução desta equação. Todo número real transcendente é irracional,
apesar da recíproca desta última afirmação não ser teorema.

Exemplo 6.21. Já provamos anteriormente que
√

2 é irracio-
nal. No entanto,

√
2 é solução da equação polinomial

x2 − 2 = 0,
cujos coeficientes são todos racionais. Logo,

√
2 não é um número

real transcendente.

Números reais não transcendentes são chamados de algébricos.

Exemplo 6.22. i:
√

2 é um real algébrico, uma vez que é
solução da equação

x2 − 2 = 0;

ii: 2 é um real algébrico, uma vez que é solução da equação
x− 2 = 0.

Logo, reais algébricos podem ser racionais ou irracionais.
Não é uma tarefa fácil provar que um número real qualquer é ir-

racional ou transcendente. Por exemplo, até hoje não se sabe se os
reais eπ, e + π ou π − e (entre muitos outros) são irracionais ou
transcendentes.
Relembrando conceitos já vistos aqui, sejam a um número real e

n um inteiro estritamente positivo. Logo, an é o produto de a por
a com n ocorrências de a. Se n é um inteiro negativo, então an é o
simétrico multiplicativo de a−n, desde que a seja diferente de 0. Se a
é um número real diferente de zero, então a0 = an−n = an

an = 1. Se a
é um número real qualquer e n é um inteiro não nulo, então a 1

n = b
sss bn = a. Neste caso denotamos a 1

n como n
√
a. Se p e q são inteiros

tais que q 6= 0, então a
p
q = q
√
a
p.

A extensão de potências an, de inteiros n para racionais n = p
q
, foi

introduzida por John Wallis, em seu livro Arithmetica Infinitorum,
de 1656.
A questão que devemos responder agora é o conceito de ax, para

x um real qualquer, de modo que ax seja consistente com os casos
já discutidos até aqui, nos quais x é um racional. Observar que nem
sempre existe número real y tal que y = a

p
q se a < 0.
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Sejam x um número real estritamente positivo e a um número real

racional. Logo,
d

dx
ln(xa) = 1

xa
axa−1 = a

x
= a

d

dx
ln(x) = d

dx
a ln(x).

Isso demonstra que as funções reais ln(xa) e a ln(x) têm a mesma
derivada

a

x
,

se x > 0 e a é um real racional.
Logo,

ln(xa) = a ln(x) + C,

onde C é uma constante real.
Se x = 1, então C = 0. Portanto,

ln(xa) = a ln(x).

Uma vez que xa = exp(ln(xa)) (por conta do Teorema 6.21), então

xa = exp(a ln(x)),
se x > 0 e a é um real racional.

Isso significa que uma definição para ax, assumindo x um real
qualquer, deve ser consistente com o teorema dado acima. Esta é a
estratégia adotada na próxima definição.

Definição 6.8. Sejam a um número real estritamente posi-
tivo e x um número real qualquer. Então

ax = exp(x ln(a)).

Uma vez que ln e exp são funções reais já definidas e a última
definição é consistente com o teorema

(a > 0 ∧ x ∈ Q)⇒ ax = exp(x ln(a)),
então fomos bem sucedidos na conceituação de ax para a > 0 e x
real. Observar que o símbolo Q foi usado aqui como notação abusiva,
uma vez que estamos tratando com reais racionais.

Exemplo 6.23. i: 5
√

2 = exp(
√

2 ln(5));
ii: ex = exp(x ln(e)); logo, ex = exp(x); com efeito, ln(e) = 1.
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O segundo item do Exemplo acima justifica a prática comum de

escrever a exponencial de x simplesmente como ex, sendo e o número
de Euler. Além disso, é prática comum ler ex como ‘exponencial de
x’. Logo,

Teorema 6.22. ax = ex ln(a), se a > 0 e x é um real qualquer.

O próximo resultado, conhecido como a identidade de Euler , esta-
belece uma inesperada relação entre π (uma constante da geometria
euclidiana plana), o número de Euler e a unidade imaginária i dos
complexos.

Teorema 6.23 (Identidade de Euler).
eiπ = −1.

Demonstração: Basta usar o teorema exp(x) = ex, esten-
dido para os complexos, em parceria com o Teorema de
Euler, demonstrado na Seção 57.

Frequentemente a Identidade de Euler é mencionada como exemplo
de profunda beleza matemática. Isso por conta de uma inesperada
e elegante conexão entre um conceito geométrico (a razão π entre
o perímetro de uma circunferência e seu diâmetro), um conceito
analítico (o número de Euler) e um conceito algébrico (a unidade
imaginária). Apesar deste teorema não estar enunciado em qual-
quer trabalho publicado de Leonhard Euler, parece evidente que ele
conhecia o resultado [59].

Teorema 6.24. Se a > 0 e x é um real qualquer, então
d

dx
ax = ln(a)ax.

Demonstração:
d

dx
ax = d

dx
ex ln(a) = ln(a)ex ln(a) = ln(a)ax,

de acordo com Teoremas 6.22 e 6.3.

Exemplo 6.24. i:
d

dx
5x = ln(5)5x;
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ii: ∫ b

a
5xdx = 5x

ln(5)

∣∣∣∣b
a
;

por conta do Teorema Fundamental do Cálculo e Teorema
6.24.

Lembrar que a equação diferencial
dy

dx
= ky,

com a condição de contorno
y(0) = y0,

admite como solução única a função
y(x) = y0e

kx.

No entanto, se k = ln(a) (i.e., a = ek), a última afirmação é
equivalente a dizer que

y(x) = y0a
x

é solução única da mesma equação diferencial. Em particular, o
problema do decaimento do isótopo Polonium-210 (Seção 63) pode
ser alternativamente modelado como

m(t) = m00, 995003t,
uma vez que

k = −0, 00500916d−1

e
ek = 0, 995003.

Teorema 6.25. A combinação linear de soluções quaisquer da
equação diferencial y′ = ky também é solução da mesma equação.

Demonstração: Devemos provar que, se y1 e y2 são soluções
de y′ = ky, então qualquer função definida por

c1y1 + c2y2

também é solução da mesma equação, onde c1 e c2 são reais
quaisquer.
Sejam y1 e y2 soluções da equação diferencial y′ = ky.

Logo
y′1 = ky1 e y′2 = ky2.
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Logo,

c1y
′
1 = c1ky1,

onde c1 é um real qualquer.
Por conta do Teorema 5.20 sobre derivada de constante

multiplicada por função, temos que
(c1y1)′ = k(c1y1).

Isso prova que c1y1 é solução da equação diferencial y′ = ky.
Analogamente, temos que

y′2 = ky2

implica em
(c2y2)′ = k(c2y2),

onde c2 é um real qualquer. Isso prova que c2y2 também é
solução da equação diferencial y′ = ky.
Se somarmos ambos os lados de (c1y1)′ = k(c1y1) por um

mesmo termo, a nova igualdade se mantém como teorema.
Logo,

(c1y1)′ + (c2y2)′ = k(c1y1) + k(c2y2).
Portanto, de acordo com Teorema 5.21 sobre derivada da
soma de funções,

(c1y1 + c2y2)′ = k(c1y1 + c2y2).
Isso prova que a combinação linear

c1y1 + c2y2

de y1 com y2 é solução de y′ = ky.

O último teorema pode ser generalizado para uma vasta gama de
equações diferenciais conhecidas na literatura como equações diferen-
ciais lineares homogêneas. Esse resultado tem significativo impacto
no estudo de equações diferenciais tanto lineares quanto não lineares,
no sentido de que resultados de álgebra linear podem ser aproveita-
dos no estudo de equações diferenciais. Essa questão é discutida na
Parte 8. O que podemos adiantar é que o resultado acima significa
que o conjunto de soluções da equação diferencial

y′ = ky

define um espaço vetorial real de uma dimensão, onde os vetores são
funções reais.
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Seção 67

Logaritmo

Sumário

Índice
Rede

Sabemos que
1x = ex ln(1) = e0 = 1.

Isso implica que f : R→ R dada por

f(x) = 1x

é uma função constante e, portanto, não injetiva. Não obstante,
funções definidas por ax, com a 6= 1, contam com comportamento
bem diferente.

Teorema 6.26. Se a > 0 e a 6= 1, então f : R→ R, dada por
f(x) = ax,

é crescente para a > 1 e decrescente para a < 1.

Demonstração: Temos que f(x) = ax = ex ln(a). Uma vez
que a exponencial de qualquer número real é estritamente
positiva, então ax é estritamente positiva. Além disso,

d

dx
ax = d

dx
ex ln(a) = ln(a)ex ln(a) = ln(a)ax.

Logo, se a > 1, então
d

dx
ax
∣∣∣∣
x=b

> 0,

para todo b real (função f é crescente, de acordo com Teo-
rema 6.15).
Se 0 < a < 1, então

d

dx
ax
∣∣∣∣
x=b

< 0,

para todo b real (função f é decrescente, de acordo com
Teorema 6.16).

O último teorema deixa claro que f(x) = ax é injetiva se a 6= 1.
Logo, se definirmos

f : R→ {x ∈ R | x > 0},
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tal que

f(x) = ax

e a 6= 1, então f é bijetora e, portanto, inversível. Este fato viabiliza
a definição de logaritmos.

Definição 6.9.

loga(n) = x
... ax = n,

se a e n são números reais estritamente positivos e a 6= 1.

Lemos loga(n) como ‘logaritmo de n na base a’. Se não houver
risco de confusão, podemos escrever loga(n) como loga n. Logo,

loge n = lnn,

se e é o número de Euler. Neste sentido, logaritmo natural passa a
ser um caso particular de logaritmo.

Teorema 6.27. Para todo real a > 0 tal que a 6= 1,
loga a = 1.

Demonstração: loga a = x sss ax = a. Mas ax = ex ln(a).
Uma vez que ax é injetiva para a 6= 1 e x = 1 é solução
da equação ex ln(a) = a, logo essa solução é única. Logo,
loga a = 1.

Teorema 6.28. Se a > 0, a 6= 1, m > 0 e n > 0, então
loga(mn) = loga(m) + loga(n).

Demonstração: loga(m) = x sss ax = m. Logo,
ex ln(a) = m.

Logo, x ln(a) = ln(m), o que implica em

x = ln(m)
ln(a) .

Ou seja,

loga(m) = ln(m)
ln(a) e loga(n) = ln(n)

ln(a) .
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Logo,

loga(mn) = ln(mn)
ln(a) = ln(m) + ln(n)

ln(a) =

ln(m)
ln(a) + ln(n)

ln(a) = loga(m) + loga(n).

Isso encerra a prova. Notar que usamos o teorema sobre
logaritmo natural de um produto.

b Analogamente, é possível provar que

loga
(
m

n

)
= loga(m)− loga(n).

Teorema 6.29 (Mudança de Base). Se a > 0, b > 0, a 6=
1, b 6= 1 e m > 0, então

logb(m) = loga(m) logb(a).

Demonstração:
logb(m)
loga(m) = ln(m)

ln(b)
ln(a)
ln(m) = ln(a)

ln(b) = logb(a).

Logo,
logb(m) = loga(m) logb(a).

Equivalentemente,
loga(m) = logb(m)/ logb(a).

O último resultado acima é conhecido como Teorema de Mudança
de Base de Logaritmos.
Observar que

loga(ax) = ln(ax)
ln(a) = ln(ex ln(a))

ln(a) = x ln(a)
ln(a) = x,

se a 6= 1.
Logo, loga(x) é a inversa de ax. Por conta do Teorema 6.26, isso

implica que a função
loga : {x ∈ R | x > 0} → R

dada por
loga(x)
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é injetiva, se a 6= 1.

Seção 68
Logaritmo como isomorfismo entre grupos

Sumário

Índice
RedeQO leitor pode ignorar esta Seção, sem prejuízo para o restante

da leitura. A discussão aqui apenas coloca uma perspectiva pura-
mente algébrica para logaritmos.
Na visão do policéfalo Nicolas Bourbaki, matemática é o estudo de

três estruturas-mãe:
• algébricas,
• topológicas e
• de ordem.

Grosso modo, estruturas algébricas se referem a conjuntos munidos
de operações, como adição e multiplicação entre reais. Estruturas
topológicas são aquelas que tratam de noções sobre ‘vizinhança’,
‘proximidade’. Tais conceitos podem ser formulados através de con-
juntos munidos de topologias. Finalmente, estruturas de ordem são
conjuntos munidos de relações de ordem (parcial, total, entre outras).
Apesar de, hoje em dia, esta ser uma visão démodé (até porque

a teoria de conjuntos de Bourbaki conta com formulação diferente
da teoria ZF), ela pode ser uma primeira aproximação interessante
para uma ampla visão sobre matemática. Cálculo diferencial e inte-
gral padrão, por exemplo, pode ser percebido como uma combinação
dessas três grandes estruturas. No entanto, resultados de cálculo
diferencial e integral podem ser observados pelo prisma de uma única
dessas estruturas. Daí o exemplo abaixo, o qual promove uma ava-
liação puramente algébrica sobre logaritmos.
Magmas, monoides, grupos, anéis, corpos e espaços vetoriais, entre

outros exemplos, são estruturas algébricas bem conhecidas. Explo-
ramos brevemente grupos e sua relação com logaritmos.

Um grupo G é uma tripla ordenada G = (g, ?, e) que satisfaz os
seguintes axiomas:

G1: g 6= ∅;
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G2: ? : g× g → g é uma função; abreviamos ?(a, b) = c como
a ? b = c;

G3: e ∈ g;
G4: ∀a(a ∈ g ⇒ (a ? e = e ? a = a));
G5: ∀a∀b∀c((a ∈ g∧ b ∈ g∧ c ∈ g)⇒ ((a?b)?c = a? (b? c)));
G6: ∀a(a ∈ g ⇒ ∃b(b ∈ g ∧ a ? b = b ? a = e)); abreviamos b

como a−1.
Por abuso de linguagem, é usual se referir ao conjunto g como

grupo. Neste contexto, é comum autores afirmarem que um grupo é
um conjunto g munido de uma operação binária ? e de um elemento
privilegiado e, que satisfaz os axiomas acima listados. Adotamos
aqui o mesmo abuso de linguagem, de agora em diante.
Do ponto de vista intuitivo, os axiomas dizem o seguinte.
G1: todo grupo g é um conjunto não vazio;
G2: o grupo g é munido de uma operação binária ? fechada em g,

ou seja, para quaisquer elementos a e b de g, a?b é um elemento
de g; do ponto de vista da linguagem de ZF, ? é tão somente
uma função com domínio g × g e co-domínio g;

G3: o elemento privilegiado e pertence ao grupo g;
G4: o elemento privilegiado e é neutro à direita e neutro à es-

querda, relativamente à operação ?;
G5: a operação ? é associativa;
G6: todo elemento a do grupo g admite um simétrico à direita e

um simétrico à esquerda, relativamente à operação ?.

De maneira mais resumida, um grupo g é um conjunto não vazio,
munido de uma operação binária fechada e associativa, com elemento
neutro e elementos simétricos. A função ? de um grupo é comumente
chamada de ação do grupo.

Exemplo 6.25. i: Seja
R+ = {r ∈ R | r > 0}.

Logo, (R+, ·, 1) é um grupo, se · é a multiplicação usual
entre números reais; neste caso, estamos interpretando g
como R+, ? como ·, e e como 1.
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ii: (R,+, 0) é um grupo.
iii: (ω,+, 0) não é um grupo, se + for a adição usual entre
naturais. Com efeito, axioma G6 não é satisfeito. Por e-
xemplo, não há simétrico de 2 relativamente a +.

Definição 6.10. Sejam
G = (g, ?, e) e G′ = (g′, ?′, e′)

grupos. Dizemos que h é um isomorfismo entre os grupos G e
G′ sss h : g → g′ é uma bijeção tal que

h(a ? b) = h(a) ?′ h(b)
para todos a e b pertencentes a g.

Ou seja, isomorfismos entre grupos g e g′ são bijeções f : g → g′ que
mantém invariantes as ações dos grupos envolvidos. Intuitivamente
falando, tanto faz se operarmos a?b e então aplicarmos h para obter
h(a ? b), ou aplicarmos h sobre a e b para, somente então, operarmos
h(a) ?′ h(b), obtemos sempre o mesmo resultado.
Como discutido na Seção 41, nenhum inteiro é racional, apesar de

racionais copiarem os inteiros. No entanto, essa cópia dos inteiros en-
tre racionais pode ser mapeada pelos inteiros (ou vice-versa), através
de um isomorfismo entre dois grupos, conforme o próximo Exemplo.
Isso porque a linguagem usada para definir inteiros e racionais é a
mesma, a saber, a linguagem de ZF.

Exemplo 6.26. Seja
QZ = {r ∈ Q | r copia um inteiro}.

Logo, (QZ,+′, 0′) é um grupo, onde +′ é a adição entre racionais
e 0′ é o neutro aditivo entre racionais. Ademais, (Z,+, 0) tam-
bém é um grupo, sendo que + é a adição entre inteiros e 0 é o
neutro aditivo entre inteiros. Empregamos os símbolos + e +′,
bem como 0 e 0′, para destacar que são conceitos distintos.

b Consideremos agora a função h : QZ → Z dada por
h(r) = s⇔ r copia o inteiro s.

Logo, h é um isomorfismo entre os grupos (QZ,+′, 0′) e (Z,+, 0).
Cabe ao leitor mostrar os detalhes, a partir do que foi discutido
em Seções anteriores.
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Para efeitos práticos, isso corresponde a dizer que os inteiros,

munidos de adição, são algebricamente indiscerníveis dos racio-
nais que copiam os inteiros, munidos de adição entre eles. Em
particular, do ponto de vista algébrico (onde a álgebra é exami-
nada por propriedades de grupos), o neutro aditivo racional é
indiscernível do neutro aditivo inteiro.
O próximo teorema oferece um exemplo de isomorfismo muito mais

interessante, uma vez que revela logaritmo como um isomorfismo
entre grupos.

Teorema 6.30. Se a > 0 e a 6= 1, então a função loga define
um isomorfismo entre os grupos

(R+, ·, 1) e (R,+, 0)
do Exemplo 6.25.

Demonstração: De acordo com o Teorema 6.28,
loga(m · n) = loga(m) + loga(n).

Além disso, loga é uma bijeção loga : R+ → R.

Moral da história: Do ponto de vista de teoria de grupos,
(R+, ·, 1) e (R,+, 0) são indiscerníveis, justamente por serem grupos
isomorfos entre si. Em particular, 0 e 1 são algebricamente indis-
cerníveis do ponto de vista do isomorfismo do último teorema.
Uma vez que sabemos que, entre os reais, 0 6= 1, o último teorema

mostra que os números reais são muito mais do que simples estruturas
algébricas de grupo. ‘Filtrar’ logaritmos sob a ótica de operações
algébricas como adição e multiplicação entre reais, pode nos tornar
‘daltônicos’ a respeito dos reais.

Seção 69
Resumo da ópera

Sumário

Índice
RedeEsta sexta parte pode ser resumida como se segue.

• O objetivo do cálculo diferencial e integral é o estudo e a apli-
cação de equações diferenciais, as quais são fórmulas u = v onde
há pelo menos uma ocorrência de um operador diferencial.
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• O estudo e a aplicação de equações diferenciais depende do Teo-
rema Fundamental do Cálculo.
• As funções seno e co-seno são definidas como soluções de uma
equação diferencial. O que diferencia seno de co-seno são as
condições de contorno impostas à equação diferencial usada para
defini-las.
• As interpretações geométricas usuais para seno e co-seno são
teoremas de cálculo diferencial e integral padrão.
• Fórmulas usuais de Trigonometria (o estudo de funções circu-
lares) dependem de cálculo diferencial e integral estendido para
os complexos.
• Logaritmo natural, por definição, é uma integral de Riemann.
• Logaritmos são definidos a partir de conceitos de cálculo dife-
rencial e integral.

Seção 70
Notas históricas

Sumário

Índice
Rede

m

Historicamente, trigonometria é estudada pelo menos desde o pe-
ríodo helenístico há mais de dois milênios, com o objetivo de apli-
cações em astronomia e engenharia. No entanto, do ponto de vista da
matemática hodierna, os antigos conceitos trigonométricos não eram
formulados de maneira racional. Assumir, por exemplo, que seno de
um ângulo interno de um triângulo retângulo é, por definição, a razão
entre a medida do cateto oposto ao ângulo e a medida da hipotenusa,
não permite calcular o seno, digamos, de um radiano. O que torna
operacional o cálculo de seno da medida de um ângulo é, hoje em
dia, sua definição como solução de um problema de contorno. Isso
mostra que qualquer noção de racionalidade depende de contextos
históricos.
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Plimpton 322: Tabela trigonométrica babilônica que
antecede o período helenístico em pelo menos mil anos

Fonte: Norman Wildberger.

Com relação a logaritmos, eles foram concebidos em 1614 por John
Napier, ou seja, antes do advento do cálculo diferencial e integral.
Isso ajuda a ilustrar o fato de que o desenvolvimento histórico da
matemática é um processo de difícil compreensão.

m
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PARTE 7

Geometria euclidiana
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Antes de iniciarmos a geometria euclidiana, é conveniente falarmos
um pouco sobre o Programa de Suppes. Os estudos de geometria sin-
tética e até mesmo álgebra linear na Parte 8 podem ser percebidos
como exemplos pontuais do programa mencionado.

Seção 71
Predicados conjuntistas

Sumário

Índice
RedeLecionando filosofia na universidade Stanford, durante os anos

1950, Patrick Suppes produziu algumas notas de aula sobre o pa-
pel de teoria de conjuntos para os fundamentos da ciência. Em
1962 ele distribuiu entre interessados uma extensa monografia com
maior detalhamento sobre aquelas notas, sob o título provisório Set-
Theoretical Structures in Science. Em 2002, décadas de investigações
sobre o tema foram reunidas no livro Representation and Invariance
of Scientific Structures [54]. Em 2014 Suppes faleceu.
Nesta Seção discutimos brevemente sobre o famoso Programa de

Suppes, o qual é resumido pelo autor em um slogan:

Axiomatizar uma teoria é definir um predicado conjuntista.
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A ideia é simples. Considerando que
i: uma teoria de conjuntos qualquer permite fundamentar vastas

porções da matemática e
ii: essas vastas porções da matemática são empregadas para ma-

pear fenômenos do mundo real,

então é possível usar a linguagem e a lógica de uma teoria de con-
juntos para formular teorias referentes às ciências reais, como física
e linguística, entre outras.
Naturalmente, tal estratégia garante economia de pensamento, no

sentido de tirar proveito de tudo aquilo que teorias de conjuntos têm
a oferecer.
Inspirados no Programa de Suppes, Newton da Costa e Rolando

Chuaqui desenvolveram o conceito de Predicado de Suppes, o qual
é um assunto sofisticado demais para os propósitos desta obra [11].
No entanto, podemos qualificar a proposta de Suppes no contexto
de ZF da seguinte maneira:

Definição 7.1. Um predicado conjuntista P para uma ‘teo-
ria’ T é a seguinte abreviação metalinguística:

P(T ) ... ∃x1∃x2 · · · ∃xn∃r1∃r2 · · · ∃rm(T =
〈x1, x2 · · · , xn, r1, r2 · · · , rm〉 ∧ axiomas de T ),

onde
• cada xi é um conjunto,
• cada rj é uma relação na qual há pelo menos uma ocorrên-
cia de algum conjunto xi em seu domínio ou co-domínio e,
finalmente,
• os axiomas de T são fórmulas nas quais ocorrem pelo menos
um dos termos x1, · · · , xn ou um dos termos r1, · · · , rm.

Obviamente, a definição acima não é suficientemente clara, até
porque Suppes jamais se preocupou em formular rigorosamente suas
ideias. A estratégia dele, para desenvolver e veicular o slogan acima,
era sustentada por exemplos pontuais. Alguns desses exemplos são
discutidos aqui, como teoria de grupos, aritmética, espaços vetoriais,
corpos, geometria euclidiana, espaços de probabilidades e mecânica
clássica não relativística de partículas.
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Os termos x1, · · · , xn e r1, · · · , rm são chamados de conceitos pri-

mitivos da ‘teoria’ T .
A justificativa para o uso de aspas em ‘teoria’ é a seguinte: de

acordo com a visão acima, toda ‘teoria’ T é um conjunto, em par-
ticular, uma (n+m)-upla ordenada. No entanto, Suppes propõe seu
programa de axiomatização para as ciências formais (matemática,
lógica e ciência da computação), bem como as ciências reais (física,
química, economia, psicologia, entre outras). Por um lado, é usual
se referir a ZF como uma teoria, apesar de ZF certamente não ser
um conjunto. Por outro, uma teoria física como a mecânica clássica,
dificilmente é aceitável como um conjunto. Afinal, fazem parte da
mecânica clássica certos conceitos que escapam do domínio de uma
teoria de conjuntos como ZF. Exemplos bem conhecidos são experi-
mentos e significados intuitivos de princípios físicos. Logo, a palavra
‘teoria’ assume múltiplas conotações na literatura especializada, a
ponto de não haver um consenso sobre o que é de fato uma teoria.
No contexto aqui discutido, assumimos como teoria um sistema

formal na acepção dada por Elliott Mendelson, em seu livro [38]. A
teoria de Zermelo-Fraenkel é um caso particular de teoria, no sentido
de que qualificamos linguagem formal e lógica subjacente. Logo, a
proposta de Suppes não é cabível para qualificar teorias. Por conta
disso, preferimos nos referir a T como uma ‘teoria’ (entre aspas).
Com relação aos símbolos metalinguísticos 〈 e 〉, estes são chama-

dos de ‘abre parênteses’ e ‘fecha parênteses’, respectivamente. Tais
símbolos cumprem o mesmo papel de ( e ). Mas é uma prática co-
mum o emprego de 〈 e 〉 no contexto de predicados conjuntistas.
Como primeira ilustração de predicado conjuntista, consideremos

a ‘teoria’ de grupos. Esta foi brevemente apresentada na Seção 68.
Usando a Definição 7.1, podemos conceituar o predicado conjuntista
G ‘ser um grupo’ da seguinte maneira:

Definição 7.2.

G(G) ... ∃g ∃ ? (G = 〈g, ?〉 ∧ g 6= ∅ ∧ ? ⊂ (g × g)× g∧
∀a∀b((a ∈ g ∧ b ∈ g)⇒ ∃!c((a, b), c) ∈ ?)∧

∃e(e ∈ g ∧ ∀a(a ∈ g ⇒ (((a, e), a) ∈ ? ∧ ((e, a), a) ∈ ?)))∧
∀a∀b∀c(?(?(a, b), c) = ?(a, ?(b, c)))∧
∀a∃b(?(a, b) = e ∧ ?(b, a) = e)).
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Comparando Definições 7.1 e 7.2, temos o que se segue.
I O predicado P da Definição 7.1 é interpretado como o predicado

G da Definição 7.2.
I A ‘teoria’ T da Definição 7.1 é interpretada como a ‘teoria’ G

da Definição 7.2.
I Conjunto x1 da Definição 7.1 é interpretado como o conjunto g

da Definição 7.2; logo, o valor de n da Definição 7.1 é 1.
I Relação r1 da Definição 7.1 é interpretada como a função ? da

Definição 7.2; logo, o valor de m da Definição 7.1 é 1.
I Os axiomas de T mencionados na Definição 7.1, para a inter-

pretação G, são as fórmulas
g 6= ∅,

? ⊂ (g × g)× g,
∀a∀b((a ∈ g ∧ b ∈ g)⇒ ∃!c((a, b), c) ∈ ?),

∃e(e ∈ g ∧ ∀a(a ∈ g ⇒ (((a, e), a) ∈ ? ∧ ((e, a), a) ∈ ?))),
∀a∀b∀c(?(?(a, b), c) = ?(a, ?(b, c)))

e
∀a∃b(?(a, b) = e ∧ ?(b, a) = e)

da Definição 7.2.

G(G) se lê ‘G é um grupo’. Logo, G é um grupo sss for um par or-
denado 〈g, ?〉 em conjunção com a conjunção de seis fórmulas. Essas
seis fórmulas são os axiomas de grupo, os quais são discutidos nos
próximos parágrafos. Por abuso de linguagem, chamamos o conjunto
g de grupo.
O axioma

g 6= ∅
afirma que todo grupo é um conjunto não vazio. Isso corresponde ao
postulado G1 da Seção 68.
O axioma

? ⊂ (g × g)× g
afirma que ? é uma relação com domínio g × g e co-domínio g, exa-
tamente como se exige na Definição 7.1.
O axioma

∀a∀b((a ∈ g ∧ b ∈ g)⇒ ∃!c((a, b), c) ∈ ?),
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em conjunção com a fórmula do parágrafo acima, estabelece que ? é
uma função com domínio g × g e co-domínio g. Isso corresponde ao
postulado G2 da Seção 68.
O axioma

∃e(e ∈ g ∧ ∀a(a ∈ g ⇒ (((a, e), a) ∈ ? ∧ ((e, a), a) ∈ ?)))

corresponde aos postulados G3 e G4 da Seção 68.
Observar que, na formulação anterior de grupo, sugerimos o termo

privilegiado e como um dos conceitos primitivos de grupo. No en-
tanto, Definição 7.2 deixa claro que essa manobra não é necessária.
Basta um axioma que garanta a existência de e, como foi feito agora.
Além disso, observar que, na definição de predicado conjuntista,
exigem-se como conceitos primitivos conjuntos e relações entre esses
conjuntos. No entanto, na definição de grupo não há qualquer re-
lação na qual o termo e seja domínio ou co-domínio. Neste sentido,
é uma questão de coerência com a Definição 7.1 que o termo e não
seja listado entre os conceitos primitivos de grupo.
É claro que a prática matemática nem sempre funciona assim.

Muitos autores listam o termo e como um dos conceitos primitivos
de grupo, mesmo sabendo que não há necessidade disso. Essa prática
ocorre simplesmente porque fica mais fácil escrever o que é um grupo
quando se assume e como um conceito primitivo.
A fórmula

∀a∀b∀c(?(?(a, b), c) = ?(a, ?(b, c)))

afirma que ? é associativa. Isso corresponde ao postulado G5 da
Seção 68.
Finalmente, a fórmula

∀a∃b(?(a, b) = e ∧ ?(b, a) = e))

corresponde ao postulado G6 da Seção 68.
Resumidamente,

um grupo é um conjunto munido de uma operação binária
fechada, associativa, com elemento neutro e elemento

simétrico.
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! O texto em destaque acima é o discurso usual, o qual emprega
rigor, mas não formalismo, como discutido na Seção 8. Declarar in-
formalmente o que é um grupo não é erro matemático. Mas é in-
competência matemática não saber traduzir formalmente a afirmação
‘grupo é um conjunto munido de uma operação binária fechada, as-
sociativa, com elemento neutro e elemento simétrico’. Sim, a última
afirmação foi um juízo de valor. Logo, o leitor pode contestar o que
foi dito sem prejuízo ao restante da leitura.
Para efeitos práticos, comumente predicados conjuntistas, para

uma teoria como a de grupos, são escritos da forma como se apre-
senta na Seção 68.
Quando alguém afirma que um grupo é um conjunto munido de

uma operação binária fechada, associativa, com elemento neutro e
elemento simétrico, está tacitamente usando um predicado conjun-
tista para definir o que é um grupo, mesmo que não saiba disso.
É uma situação análoga àquela de Monsieur Jourdain, personagem
principal da peça Le Bourgeois Gentilhomme, de Molière. Monsieur
Jourdain fica encantado ao descobrir que passou a vida toda falando
em prosa, sem saber disso.

Definição 7.3. Seja P um predicado conjuntista, onde

P(T ) ... ∃x1∃x2 · · · ∃xn∃r1∃r2 · · · ∃rm(T =
〈x1, x2 · · · , xn, r1, r2 · · · , rm〉 ∧ axiomas de T ),

nos moldes da Definição 7.1. Uma interpretação de P é qualquer
atribuição de valores para os termos x1, x2 · · · , xn, r1, r2 · · · , rm.
Um modelo de P é uma interpretação de P na qual os axiomas
de T são teoremas.

Exemplo 7.1. No Exemplo 6.25, os três itens i, ii e iii são
interpretações de grupo. Mas apenas itens i e ii são modelos de
grupo.

Mantendo este espírito de rigor no lugar de formalimo, finalmente
podemos iniciar nossos estudos sobre geometria na próxima Seção.
Neste livro utilizamos predicados conjuntistas para definir números

naturais, inteiros, racionais, reais e complexos nas Seções anteriores,
ainda que o leitor possa perceber isso somente agora (lembrar de
Monsieur Jourdain!). Mas usamos a mesma técnica para formular
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plano euclidiano na Seção 76, espaços vetoriais reais na Seção 80,
corpos e espaços vetoriais quaisquer na Seção 96, espaços métricos
na Seção 86, espaços de probabilidades na Seção 102 e até mesmo
mecânica clássica não relativística de partículas na Seção 110.

Seção 72
Plano de incidência

Sumário

Índice
RedeEm 1899 David Hilbert publicou um texto revolucionário sobre

geometria. Trata-se do histórico Grundlagen der Geometrie. Uma
tradução para o inglês pode ser encontrada em [23]. Na tradução
portuguesa [24] há um blurb de Maria do Pilar Ribeiro e José da
Silva Paulo onde se lê o seguinte:

Não é este um livro de texto de geometria elementar,
mas esta tradução é dedicada aos nossos professores
da matéria e aos estudantes de matemática das nos-
sas universidades. Os tradutores têm a esperança de
que um cuidadoso estudo dos vários problemas deste
livro contribuirá indirectamente para implantar neles
a ideia de que, em geral, os males do ensino da geo-
metria nas nossas escolas só superficialmente residem
em deficiências de ordem pedagógica, mas antes se en-
contram na falta de contacto com os problemas vivos,
actuais, da matéria que se ensina e do indispensável
treino para a investigação desses problemas.

O impacto da obra de Hilbert resultou, entre muitas outras coisas,
no livro Fundamentos da Geometria, de Benedito Castrucci [10], o
qual é uma leitura altamente recomendável, apesar do texto contar
com muitos erros de digitação.
O foco das obras citadas é geometria euclidiana, pelo menos numa

acepção mais moderna do que a obra Elementos, de Euclides de
Alexandria.
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Geometria euclidiana é um ramo da geometria sintética, a qual

trata também de geometria absoluta, geometria não-euclidiana, geo-
metria afim, geometria não-Desarguesiana, geometria projetiva, geo-
metria não-Paschiana, entre outras. Geometria euclidiana deve ser-
vir de fundamentação para a geometria analítica plana, a qual é
discutida na Seção 90.
Todas as Seções desta Parte, com exceção da primeira, são uma

adaptação do livro de Castrucci [10]. Mas há diferenças entre nossa
versão e aquela de Castrucci, no que se refere à formulação de certos
postulados. Em contrapartida, no livro citado a abordagem é muito
mais detalhada, apesar do autor não qualificar qual teoria de con-
juntos é empregada. Como já sugerido, aqui geometria euclidiana é
tratada como um predicado conjuntista (no contexto de ZF) cujos
axiomas são divididos em cinco grupos:

i: Incidência;
ii: Ordem;
iii: Congruência;
iv: Continuidade;
v: Paralelismo.

Introduzimos nesta Seção o primeiro grupo de postulados.

Definição 7.4. Um plano de incidência é um par ordenado
p = 〈π, ρ〉

tal que as seguintes fórmulas são teoremas.
ge1: ∀a∀b((a ∈ π∧b ∈ π∧a 6= b)⇒ ∃r(r ∈ ρ∧a ∈ r∧b ∈ r)).
ge2: ∀a∀b∀r∀s((a ∈ π ∧ b ∈ π ∧ r ∈ ρ ∧ s ∈ ρ ∧ a 6= b ∧ a ∈
r ∩ s ∧ b ∈ r ∩ s)⇒ r = s).

ge3: ∀r(r ∈ ρ⇒ ∃a∃b(a ∈ π ∧ b ∈ π ∧ a 6= b∧ a ∈ r∧ b ∈ r)).
ge4: ∃a∃b∃c(a ∈ π ∧ b ∈ π ∧ c ∈ π ∧ ∀r(r ∈ ρ ⇒ a 6∈ r ∨ b 6∈
r ∨ c 6∈ r)).

Em um plano de incidência p = 〈π, ρ〉 chamamos os elementos de
π de pontos e os elementos de ρ de retas. Logo, π é o conjunto de
pontos do plano de incidência e ρ é o conjunto de retas do mesmo
plano de incidência. Uma vez que elementos de um conjunto não
vazio são conjuntos, então pontos e retas são conjuntos.
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Por abuso de linguagem é usual se referir a π como plano.

Definição 7.5. Seja 〈π, ρ〉 um plano de incidência. Se a é
um ponto (i.e., a ∈ π), r é uma reta (i.e., r ∈ ρ) e a ∈ r, dizemos
que ‘o ponto a incide sobre a reta r’ ou, equivalentemente, ‘a reta
r passa pelo ponto a’.
Pontos incidentes sobre uma mesma reta em um plano de in-

cidência são chamados de colineares.

Axioma ge1 diz que, para quaisquer dois pontos distintos a e b,
existe uma reta que passa por ambos. Ou seja, dois pontos distintos
são sempre colineares.
Axioma ge2 afirma que, se dois pontos distintos a e b incidem sobre

reta r e reta s, então r = s. Em outras palavras, pontos distintos
não são apenas colineares, mas também definem uma única reta que
passa por ambos.
Postulado ge3 diz que toda reta r admite pelo menos dois pontos

distintos incidentes sobre ela.
Finalmente, ge4 garante que existem pontos a, b e c tais que ne-

nhuma reta r incide sobre os três. Ou seja, em qualquer plano de
incidência devem existir pelo menos três pontos não colineares.

Exemplo 7.2. Sejam
π = {1, 2, 3}

e
ρ = {{1, 2}, {1, 3}, {2, 3}}.

Neste caso, 〈π, ρ〉 é um plano de incidência. Com efeito, os
quatro postulados são teoremas para esta interpretação. Por e-
xemplo, existem apenas três possíveis escolhas de pares de pontos
distintos:

i: Para os pontos 1 e 2 existe a reta {1, 2} incidente sobre
ambos;

ii : Para os pontos 1 e 3 existe a reta {1, 3} incidente sobre
ambos;

iii: Para os pontos 2 e 3 existe a reta {2, 3} incidente sobre
ambos.

Logo, axioma ge1 é teorema.
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b Os demais postulados podem ser verificados pelo leitor.

b No Exemplo acima foi ilustrado um plano de incidência

〈{1, 2, 3}, {{1, 2}, {1, 3}, {2, 3}}〉

com apenas três pontos e três retas. Recomendamos que o leitor
prove que o número mínimo de pontos em um plano de incidência é
3. Além disso, é um exercício interessante a concepção de um plano
de incidência com quatro pontos.
O leitor deve ter observado que a formulação dos postulados de

incidência é desnecessariamente complicada. Afinal, os axiomas pro-
põem ideias simples mas através de fórmulas muito longas. Podemos
evitar essa inconveniência utilizando quantificadores relativizados, a
exemplo do que foi feito na Seção 35.

Definição 7.6. Sejam P uma fórmula e % um conjunto. Logo:

∀%a(P) ... ∀a(a ∈ %⇒ P),

∃%a(P) ... ∃a(a ∈ % ∧ P).

Importante perceber que os quantificadores relativizados usados
na Seção 35 são casos particulares da Definição acima. Com efeito,
naquela Seção o conjunto % é simplesmente o conjunto dos racionais
estritamente positivos.
Graças às abreviações metalinguísticas acima, podemos reescrever

os quatro postulados de incidência de maneira muito mais fácil de
ler, como se segue.

ge1: ∀πa∀πb(a 6= b⇒ ∃ρr(a ∈ r ∧ b ∈ r)).
ge2: ∀πa∀πb∀ρr∀ρs((a 6= b ∧ a ∈ r ∩ s ∧ b ∈ r ∩ s)⇒ r = s).
ge3: ∀ρr∃πa∃πb(a 6= b ∧ a ∈ r ∧ b ∈ r).
ge4: ∃πa∃πb∃πc(∀ρr(a 6∈ r ∨ b 6∈ r ∨ c 6∈ r)).

Em outras palavras, relativizamos os quantificadores universal e
existencial aos conjuntos π e ρ de pontos e retas.
Os demais postulados de geometria euclidiana a serem introduzidos

nas próximas Seções são todos escritos empregando quantificadores
relativizados, de acordo com a Definição 7.6
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Seção 73

Axiomas de ordem

Sumário

Índice
RedeQualificamos aqui o que é um ponto entre dois pontos.

Definição 7.7. Seja p = 〈π, ρ〉 um plano de incidência. Seja
ainda

: π × π → π

uma relação (ver Definição 3.11) tal que
((a, c), b) ∈

é denotado abreviadamente por
abc

e lido como ‘o ponto b está entre os pontos a e c’.
Dizemos que

o = 〈p, 〉
é um plano quase-ordenado sss as seguintes fórmulas são teore-
mas.

ge5: ∀πa∀πb∀πc(abc⇒ ∃ρr(a ∈ r ∧ b ∈ r ∧ c ∈ r));
ge6: ∀πa∀πb∀πc(abc⇒ (a 6= b ∧ a 6= c ∧ b 6= c));
ge7: ∀πa∀πb∀πc(abc⇒ cba);
ge8: ∀πa∀πb(a 6= b⇒ ∃c(abc));
ge9: ∀πa∀πb∀πc(abc⇒ (¬acb ∧ ¬bac)).

A sequência de símbolos abc é uma abreviação metalinguística para
a fórmula

((a, c), b) ∈ ,

onde é uma relação com domínio π × π e codomínio π, em um
plano de incidência p = 〈π, ρ〉.
Notar que planos quase-ordenados são definidos a partir de planos

de incidência.
Axioma ge5 diz que, se um dado ponto b está entre os pontos a e

c, então existe reta que passa por a, b e c.
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Postulado ge6 afirma que, se um dado ponto b está entre os pontos

a e c, então os três pontos envolvidos são distintos entre si, tomados
dois a dois.
Postulado ge7 estabelece que, se um dado ponto b está entre os

pontos a e c, então este mesmo ponto b está entre c e a.
Axioma ge8 afirma que, dados dois pontos a e b distintos entre si,

então existe ponto c tal que b está entre a e c.
Finalmente, axioma ge9 diz que, se um dado ponto b está entre

os pontos a e c, então c não está entre a e b e, além disso, a não está
entre b e c.
Precisamos agora conhecer um pouco melhor os inteiros, para que

possamos exibir um modelo de plano quase-ordenado.

Definição 7.8. Um inteiro x é múltiplo de um inteiro y sss
existe inteiro z tal que x = yz.

Exemplo 7.3. Os inteiros 5 e −10 são múltiplos de −5. Com
efeito, 5 = (−1)(−5) e −10 = 2(−5).

b Notar que 0 é múltiplo de qualquer inteiro. Além disso, ne-
nhum inteiro diferente de 0 é múltiplo de 0. Outro teorema útil é o
seguinte: se x = yz, onde x, y e z são inteiros, então x é múltiplo de
ambos y e z.

Definição 7.9. Um divisor de um inteiro x é qualquer inteiro
y tal que x é múltiplo de y.

Exemplo 7.4. i: Os divisores de qualquer primo x (ver De-
finição 4.2) são apenas x e 1;

ii: Os divisores de 12 são 1, 2, 3, 4, 6 e 12.

Definição 7.10. Inteiros estritamente positivos m e n são
primos entre si sss o único divisor em comum entre m e n é
1.

Exemplo 7.5. i: 5 e 4 são primos entre si. Com efeito, o
único divisor em comum entre eles é 1;

ii: 1 e 1 são primos entre si;
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iii: 2 e 2 não são primos entre si, uma vez que compartilham
o mesmo divisor 2 6= 1;

iv: 6 e 4 não são primos entre si.

Nos Exemplos 7.6, 7.7, 7.8 e 7.9 a seguir exibimos e examinamos
um modelo de plano quase-ordenado.

Exemplo 7.6. Seja π = Z2, ou seja, cada ponto pertencente
a π é um par ordenado (x, y) de inteiros. Sejam ainda

rm,np,q =
{

(x, y) ∈ Z2 | (x = p ∧ y = q) ∨
(

(x 6= p ∨ y 6= q)⇒(
x− p é múltiplo de m ∧ x− p

y − q
= m

n

))}
,

onde m, n, p e q são inteiros, n 6= 0 e |m| e |n| são primos entre
si; e

rm,0p,q = {(x, y) ∈ Z2 | y = q}.

b Se definirmos ρ como o conjunto de todos os rm,np,q , onde
p, q, m e n são inteiros, então 〈π, ρ〉 é um plano de incidência.
Cabe ao leitor provar.

No Exemplo acima cada reta pertencente a ρ é um conjunto não
vazio de pares ordenados de inteiros, onde cada um desses pares
ordenados é um ponto do plano de incidência 〈π, ρ〉.

b A condição ‘|m| e |n| são primos entre si’ é desnecessária,
bastando que n seja diferente de 0. Sugerimos que o leitor examine
postulado ge2 no que se refere a tal exigência, para fins de avaliação,
pelo menos de um ponto de vista intuitivo.

Exemplo 7.7. No plano de incidência 〈π, ρ〉 do Exemplo
7.6 a reta r1,1

0,0 é o conjunto
{(0, 0), (1, 1), (−1,−1), (2, 2), (−2,−2), · · · }.

Observar que r1,1
0,0 = r−1,−1

0,0 = r1,1
1,1 = r−1,−1

1,1 = rn,np,p para qualquer
n inteiro diferente de 0.
Outro exemplo de reta é o conjunto

r3,5
1,2 = {(1, 2), (4, 7), (−2,−3), (7, 12), (−5,−8) · · · },

o qual é igual a r−3,−5
1,2 , que é igual a r3,5

4,7 e assim por diante.
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Notar que

r1,1
0,0 ∩ r

3,5
1,2 = ∅.

Finalmente, para ilustrar uma reta para o caso em que n = 0,
temos

r3,0
1,2 = {(0, 2), (1, 2), (−1, 2), (2, 2), (−2, 2), · · · }.

Neste caso,
r3,0

1,2 = rm,0p,2

para quaisquer p e m inteiros.
Observar que

r3,0
1,2 ∩ r

1,1
0,0 = {(2, 2)}

e
r3,0

1,2 ∩ r
3,5
1,2 = {(1, 2)}.

Exemplo 7.8. No plano de incidência 〈π, ρ〉 do Exemplo
7.6, consideremos a seguinte relação : π × π → π dada por

(x, y)(x′, y′)(x′′, y′′)
sss

i: (x, y), (x′, y′) e (x′′, y′′) pertencem à mesma reta e
ii: (x < x′ < x′′ ∨ x′′ < x′ < x) ∨ ((x = x′ = x′′) ∧ (y < y′ <
y′′ ∨ y′′ < y′ < y)).

Naturalmente,
(x, y)(x′, y′)(x′′, y′′) sss (((x, y), (x′′, y′′)), (x′, y′)) ∈ .

Neste caso, 〈〈π, ρ〉, 〉 é um plano quase-ordenado, onde lemos
(x, y)(x′, y′)(x′′, y′′)

como (x′, y′) está entre (x, y) e (x′′, y′′).

Exemplo 7.9. Seguindo Exemplos 7.6, 7.7 e 7.8, o ponto
(1, 1) está entre (2, 2) e (−1,−1). Com efeito, os três pontos
envolvidos pertencem à reta r1,1

0,0 e, além disso, −1 < 1 < 2.
Analogamente, (1, 2) está entre os pontos (4, 7) e (−2,−3).

Neste caso, a reta que passa pelos três é r3,5
1,2. O mesmo ponto

(1, 2) está também entre os pontos (0, 2) e (2, 2), apesar da reta
que passa pelos três ser r3,0

1,2, a qual é diferente de r3,5
1,2.
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Em compensação, o ponto (1, 2) não está entre

(4, 7) e (0, 2).

Com efeito, os pontos (1, 2) e (4, 7) incidem sobre a reta r3,5
1,2,

enquanto os pontos (1, 2) e (0, 2) incidem sobre a reta r3,0
1,2. Uma

vez que r3,0
1,2∩r

3,5
1,2 = {(1, 2)}, de acordo com Exemplo 7.7, então

estamos falando de retas distintas. Logo, (1, 2), (4, 7) e (0, 2) são
pontos não colineares neste modelo.

b A prova de que
〈〈π, ρ〉, 〉,

do Exemplo 7.8, garante as fórmulas ge5∼ge9 como teoremas, é
quase imediata. A demonstração de que ge1∼ge4 são teoremas
nesta interpretação é um pouco mais ardilosa.

Definição 7.11. Sejam a e b pontos de um plano quase-orde-
nado 〈〈π, ρ〉, 〉. Um segmento fechado de reta (ou segmento)
[a, b] é o conjunto

[a, b] = {x ∈ π | x = a ∨ x = b ∨ axb}.

Além disso, um segmento aberto ]a, b[ é o conjunto
]a, b[ = {x ∈ π | axb},

onde a 6= b.

Exemplo 7.10. Seguindo os Exemplos 7.6, 7.7 e 7.8, o
conjunto

x = {(−2,−3), (1, 2), (4, 7), (7, 12)}
é o segmento de reta

[(−2,−3), (7, 12)].
Com efeito, os pontos (1, 2) e (4, 7) são os únicos entre (−2,−3)
e (7, 12).
Além disso, x admite nove subconjuntos próprios que são seg-

mentos. Dois deles são
{(−2,−3), (1, 2), (4, 7)} e {(4, 7)}.

Notar também que {(4, 7)} é um segmento fechado e um seg-
mento aberto. Com efeito, {(4, 7)} = [(4, 7)] =](1, 2), (7, 12)[.
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No Exemplo acima são exibidos três segmentos de reta:
• um com quatro pontos,
• um com três pontos e
• outro com um único ponto.

Naturalmente, no espaço quase-ordenado do Exemplo 7.8 todo seg-
mento de reta admite no mínimo um ponto. Além disso, todo seg-
mento de reta no mesmo espaço é um conjunto finito.

Definição 7.12. Se os pontos a, b e c são colineares (ver De-
finição 7.5) em um plano quase-ordenado, denotamos isso por
abc.

Observar que abc é uma fórmula. Obviamente,

abc⇒ abc

é teorema. No entanto, a recíproca não é. b Com efeito, basta
exibir pontos a, b e c colineares tais que o ponto a esteja entre b e c.
Notar também que, apesar da Definição 7.5 se referir a colinearida-

de de pontos em um plano de incidência, todo plano quase-ordenado
é um caso particular de plano de incidência. Logo, é consistente usar
a Definição 7.5 para tratar de colinearidade de pontos em um plano
quase-ordenado.

Definição 7.13. Um plano quase-ordenado 〈〈π, ρ〉, 〉 é um
plano ordenado sss a fórmula abaixo é teorema.

ge10: ∀πa∀πb∀πc∀ρr((¬abc ∧ a 6∈ r ∧ b 6∈ r ∧ c 6∈ r ∧ ∃d(r ∩
[a, b] = {d}))⇒ (∃e(r∩ [b, c] = {e})∨∃f(r∩ [a, c] = {f}))).

Postulado ge10 é o famoso Axioma de Pasch, em referência a
Moritz Pasch (matemático alemão que exerceu forte influência na
obra de David Hilbert). De um ponto de vista meramente intuitivo,
os pontos a, b e c não colineares, assumidos no axioma, devem definir
vértices de um triângulo cujos lados são os segmentos [a, b], [b, c] e
[c, a]. Neste contexto, ge10 diz o seguinte:

Se uma reta, em um plano ordenado, intersecta um dos lados
do triângulo dado por a, b e c, sem passar por qualquer vértice,

então a mesma reta intersecta um dos outros lados.
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Exemplo 7.11. O plano quase-ordenado
〈〈π, ρ〉, 〉,

do Exemplo 7.8, não é um plano ordenado. Para provar isso,
basta exibir um contraexemplo para a fórmula ge10.
Seja r a reta r1,1

0,0. Sejam a, b e c os pontos não colineares
(1, 2), (3, 2) e (4, 7),

respectivamente. Notar que nenhum deles incide sobre r1,1
0,0.

Os pontos (1, 2) e (3, 2) definem a reta
r3,0

1,2,

a qual intersecta r1,1
0,0 no ponto (2, 2), conforme Exemplo 7.7.

Logo, todas as condições que antecedem a condicional de ge10
são satisfeitas, onde o ponto d é justamente (2, 2).
No entanto, a reta definida por a e c é

r3,5
1,2,

cuja interseção com r1,1
0,0 é o conjunto vazio. Além disso, a reta

definida por b e c é r1,5
3,2, cuja interseção com r1,1

0,0 também é o
conjunto vazio.
Logo, a reta r1,1

0,0 intersecta o lado [a, b] do triângulo com vér-
tices a, b e c, mas não intersecta o lado [b, c] e nem o lado [a, c],
garantindo dessa maneira que ge10 não é teorema no plano
quase-ordenado em questão. Temos, assim, um plano quase-
ordenado que não é um plano ordenado.

Para exibirmos um plano ordenado, pedimos ao leitor um pouco
de paciência. Chegaremos lá.

Definição 7.14. Sejam r uma reta de um plano ordenado e
o, b e c pontos incidentes sobre r, de modo que boc, ou seja, o
está entre b e c. Então os conjuntos

rbo = {x ∈ r − {o} | box}
e

rco = {x ∈ r − {o} | cox}
são semirretas com origem o ou, simplesmente, semirretas, se
não houver risco de confusão.
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i Em [10] é demonstrado que, para toda reta r de um plano orde-
nado, é possível definir uma relação de equivalência sobre r−{o} que
particiona este conjunto em exatamente dois subconjuntos próprios.
Tal teorema, omitido aqui, justifica a última definição, no sentido
de que os dois subconjuntos próprios de r − {o} são exatamente as
semirretas acima.
Lembrar que, de acordo com ge7,

box⇔ xob

e
cox⇔ xoc.

b O que fica evidente a partir da Definição 7.14 são os seguintes
teoremas.

i: rbo ∩ rco = ∅;
ii: rbo ∪ rco = r − {o};
iii: c ∈ rbo ∧ b ∈ rco;
iv: b 6∈ rbo ∧ c 6∈ rco.
v: o 6∈ rbo ∧ o 6∈ rco.

Recomendamos ao leitor que os demonstre.

Definição 7.15. Seja a um ponto de um plano ordenado. Se
ra é uma semirreta, então

ra ∪ {a}
é uma semirreta fechada.

Ou seja, semirretas fechadas são conjuntos cujos elementos são
todos os pontos de uma semirreta, bem como a origem da semirreta.

Seção 74
Axiomas de congruência

Sumário

Índice
RedeEtimologicamente falando, geometria era o estudo da ‘medição

da terra’. Entre civilizações egípcias e babilônicas de milhares de
anos atrás, geometria era uma ciência física, cujos princípios eram
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determinados experimentalmente, a partir de modos de percepção
humana sobre o mundo onde vivemos. Neste sentido, havia a pre-
ocupação com medições de comprimentos, áreas, volumes e ângulos,
sem qualquer qualificação para tais conceitos (pelo menos nos moldes
do que hoje se entende por qualificação).
Hoje em dia, porém, a abordagem sintética para a geometria dis-

pensa quaisquer considerações sobre medidas, no sentido de atribuir
a objetos geométricos números reais que digam quanto mede, por
exemplo, um ângulo ou um segmento.
Essa mesma abordagem sintética foi posteriormente utilizada para

a formulação de teorias físicas, onde a Gravitação Universal de New-
ton foi formulada por Hartry Field sem qualquer necessidade do em-
prego de números. Detalhes em [15].
Nesta Seção mostramos como é possível tratar de relações de con-

gruência em geometria sem a invocação de medidas dadas por núme-
ros reais. A ideia intuitiva é simples: medidas podem corresponder
biunivocamente a elementos de uma partição. Por exemplo, um seg-
mento de reta s tem medida m se m for o conjunto de todos os
segmentos de reta com a mesma medida de s. Para evitar a óbvia
circularidade da última frase, basta introduzirmos uma relação de
equivalência que cumpra o papel de particionar o conjunto de todos
os segmentos de reta, nos moldes dos Teoremas 3.10 e 3.11. Essa
relação de equivalência se chama congruência.
Como destacado, a interpretação pretendida para congruência é a

seguinte: dois segmentos são congruentes se compartilham a mesma
medida.
No entanto, os axiomas ge11∼ge14 a seguir permitem provar que

congruência é tão somente uma relação de equivalência, em situação
análoga (mas não equivalente!) à equipotência entre conjuntos, con-
forme Definição 4.17 na Seção 33. Logo, não há a necessidade de
qualquer referência a medidas dadas por números reais. Geometria
sintética é essencialmente o estudo de geometria sem medidas (dadas
por números reais) e sem cooordenadas.

Geometria sintética é geometria sem números.

Mais adiante mostramos como se relaciona a geometria sintética
com a geometria analítica, a qual é uma geometria com números.
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Definição 7.16. Sejam o = 〈〈π, ρ〉, 〉 um plano ordenado,
s = {x ∈ ℘(π) | ∃πa∃πb(x = [a, b])}

e
↓ȧ = {r ∈ ℘(π) | r é uma semirreta fechada com origem a},

onde a ∈ π, de acordo com Definições 7.14 e 7.15.
Em outras palavras, s é o conjunto de todos os segmentos de o

e ↓ȧ é o conjunto de todas as semirretas fechadas com origem a.
Seja ainda u uma relação em s, i.e.,

u⊆ s× s.

Dizemos que u é uma relação de congruência sss as seguintes
fórmulas são teoremas.

ge11: ∀πa∀πb∀πc∀↓ċr∃πd(d ∈ r ∧ [a, b] u [c, d]).
ge12: ∀πa∀πb∀πc∀πa′∀πb′∀πc′((abc ∧ a′b′c′ ∧ [a, b] u [a′, b′] ∧

[b, c] u [b′, c′])⇒ [a, c] u [a′, c′]).
ge13: ∀πa∀πb∀πc∀πd∀πe∀πf(([a, b] u [c, d] ∧ [e, f ] u [c, d]) ⇒

[a, b] u [e, f ]).
ge14: ∀πa∀πb∀πc∀πa′∀πb′∀πc′((¬abc ∧ ¬a′b′c′)⇒
∀πd∀πd′((d ∈ ]a, b[ ∧ d′ ∈ ]a′, b′[ ∧ [a, b] u [a′, b′] ∧ [b, c] u
[b′, c′] ∧ [a, c] u [a′, c′] ∧ [a, d] u [a′, d′])⇒ [d, c] u [d′, c′])).

Postulado ge11 estabelece que, dados pontos a e b e uma semir-
reta fechada com origem c, então existe ponto d incidente sobre a
semirreta fechada tal que os segmentos [a, b] e [c, d] são congruentes.
Axioma ge12 afirma que, se b está entre a e c e, além disso, b′ está

entre a′ e c′, então a congruência entre os segmentos [a, b] e [a′, b′],
em conjunção com a congruência entre os segmentos [b, c] e [b′, c′],
implica na congruência entre [a, c] e [a′, c′].
Fórmula ge13 sugere a transitividade da congruência. Obviamente

é necessário provar que congruência é simétrica, para inferir essa
transitividade. Ou seja, devemos garantir que

[e, f ] u [c, d]⇔ [c, d] u [e, f ]

é teorema, para interpretarmos ge13 como transitividade. Mas isso
é feito no Teorema 7.1, logo adiante.
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Com relação ao postulado ge14, este trata de triângulos. Afinal,

são assumidos pontos a, b e c não colineares, o que garante que eles
são distintos dois a dois. Comentário análogo sobre os pontos a′,
b′ e c′. Portanto, temos um triângulo com lados [a, b], [b, c] e [a, c],
bem como um triângulo de lados [a′, b′], [b′, c′] e [a′, c′]. Os vértices
do primeiro são a, b e c, enquanto os vértices do segundo são a′, b′
e c′. É justamente ge14 que cria oportunidade para falarmos sobre
ângulos congruentes, algo a ser discutido mais adiante.
No contexto do parágrafo acima, são também assumidos pontos d

e d′ incidentes sobre os lados [a, b] e [a′, b′], respectivamente, de modo
que nenhum deles é qualquer vértice. Dadas todas essas condições
(deste e do parágrafo anterior), ge14 diz o seguinte: a congruência
entre [a, b] e [a′, b′], entre [b, c] e [b′, c′], entre [a, c] e [a′, c′] e entre [a, d]
e [a′, d′], implica na congruência entre [d, c] e [d′, c′]. Intuitivamente
falando, os segmentos [d, c] e [d′, c′] ‘atravessam o interior’ de seus
respectivos triângulos, definindo novos triângulos com vértices a, c
e d e vértices b, c e d, e com lados respectivamente congruentes aos
lados dos triângulos com vértices a′, c′ e d′ e vértices b′, c′ e d′.

Teorema 7.1. A relação de congruência u da Definição 7.16
é de equivalência.

Demonstração: De acordo com a Definição 3.14, devemos
provar que u é reflexiva, simétrica e transitiva. Por conta
disso, dividimos essa demonstração em três partes.

Reflexividade: De acordo com ge11, se a e b definem
um segmento [a, b] e c é um ponto qualquer (origem de
uma semirreta), então existe d tal que [a, b] u [c, d].
Mas ge13 garante que
([a, b] u [c, d] ∧ [a, b] u [c, d])⇒ [a, b] u [a, b],
onde substituímos [e, f ] por [a, b].
Logo,

∀πa∀πb([a, b] u [a, b]).

Simetria: Foi provado no primeiro passo que [a′, b′] u
[a′, b′]. Supor que [a, b] u [a′, b′]. Logo, ge13 garante
que

([a′, b′] u [a′, b′] ∧ [a, b] u [a′, b′])⇒ [a′, b′] u [a, b].
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Portanto, [a, b] u [a′, b′]⇒ [a′, b′] u [a, b]. Naturalmente
isso é equivalente à fórmula

[a, b] u [a′, b′]⇔ [a′, b′] u [a, b].

Transitividade: ge13 afirma que
([a, b] u [c, d] ∧ [e, f ] u [c, d])⇒ [a, b] u [e, f ].
Mas foi provado acima que

[e, f ] u [c, d]⇔ [c, d] u [e, f ].

Logo,
([a, b] u [c, d] ∧ [c, d] u [e, f ])⇒ [a, b] u [e, f ].

Isso encerra a prova.

Se s é o conjunto de todos os segmentos de reta em um plano
ordenado (como apresentado na Definição 7.16), então a ‘medida’ de
um segmento de reta [a, b] pode ser dada simplesmente por

{x ∈ s | x u [a, b]}.

Portanto, Teoremas 3.10 e 3.11 garantem que u particiona s em
classes de equivalência, as quais são tão somente ‘medidas’, no sen-
tido acima. Neste contexto, uma ‘medida’ não é qualquer número
real.
Colocamos a palavra ‘medida’ entre aspas porque o conceito de

medida, em teoria da medida, demanda o emprego de números reais,
algo a ser discutido na Seção 103. Ou seja, usamos o termo ‘medida’
aqui apenas em um sentido meramente intuitivo.

Definição 7.17. Sejam ro e so semirretas com a mesma origem
o. Se não existe reta r tal que ro ⊂ r ∧ so ⊂ r, dizemos que

ro ∪ so
é o ângulo r̂oso.
Também podemos denotar o ângulo ro ∪ so por âob, onde a e

b são pontos incidentes sobre ro e so, respectivamente, e ambos
diferentes de o.

b Ou seja, um ângulo é a união de semirretas não colineares
que compartilham a mesma origem. A justificativa para podermos

Página 308



Matemática Pandêmica Parte 7 Seção 74
denotar o ângulo r̂oso por âob reside no axioma ge2. Cabe ao leitor
escrever os detalhes.

Definição 7.18. Sejam ro, so, mu e nu semirretas. Sejam
ainda r̂oso e m̂unu ângulos. Dizemos que r̂oso e m̂unu são con-
gruentes, e escrevemos isso como

r̂oso u m̂unu,

sss
∀πb∀πc∀πb′∀πc′((b ∈ ro ∧ c ∈ so ∧ b′ ∈ mu ∧ c′ ∈ nu∧

[o, b] u [u, b′] ∧ [o, c] u [u, c′])⇒ [b, c] u [b′, c′]).

Intuitivamente falando, o segmento [b, c] nos dá a ‘abertura’ do
ângulo

r̂oso,

sendo que essa ‘abertura’ é dada a partir dos ‘parâmetros’ b e c, uma
vez que b incide sobre a semirreta ro e c incide sobre a semirreta so.
Analogamente, o segmento [b′, c′] nos dá a ‘abertura’ do ângulo

m̂unu,

sendo que essa ‘abertura’ é dada a partir dos ‘parâmetros’ b′ e c′, uma
vez que b′ incide sobre a semirreta mu e c′ incide sobre a semirreta
nu.
Neste contexto, a definição acima estabelece que ângulos congru-

entes contam com ‘aberturas’ congruentes, desde que os ‘parâmetros
de avaliação’ definam segmentos congruentes. Esse mesmo critério
de avaliação de ‘abertura’ é dado pelas condições [o, b] u [u, b′] e
[o, c] u [u, c′].
Desnecessário enfatizar que nenhum ângulo é congruente a qual-

quer segmento. Afinal, congruência entre segmentos é uma relação
sobre o conjunto de todos os segmentos, enquanto congruência entre
ângulos é uma relação sobre o conjunto de todos os ângulos.

Definição 7.19. Seja r uma reta de um plano ordenado
o = 〈〈π, ρ〉, 〉.

Definimos κr : π− r → π− r como uma relação em π− r dada
por

(a, b) ∈ κr sss @p(p ∈ r ∧ apb).
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Na última definição π − r é o conjunto dos pontos do plano π,

exceto aqueles que pertencem à reta r. Observar que

@p(p ∈ r ∧ apb)⇔ ∀p(p ∈ r ⇒ ¬apb)

é teorema. Logo, Definição 7.19 é equivalente a

(a, b) ∈ κr sss ∀p(p ∈ r ⇒ ¬apb).

Teorema 7.2. Para cada reta r de um plano ordenado
o = 〈〈π, ρ〉, 〉,

κr é uma relação de equivalência.

Demonstração: Devemos provar que κr é reflexiva, simétri-
ca e transitiva. Dividimos a demonstração em três partes.

Reflexividade: De acordo com ge6, ∀πa∀πp(¬apa). Em
particular, se p incide sobre r e a pertence a π−r, então
¬apa. Logo, (a, a) ∈ κr.

Simetria: Sabemos que
(a, b) ∈ κr ⇔ ¬apb,

se p incide sobre r. Mas, ge7 implica que
¬apb⇔ ¬bpa.

Uma vez que
(b, a) ∈ κr ⇔ ¬bpa,

então
(a, b) ∈ κr ⇔ (b, a) ∈ κr.

Transitividade: b Devemos considerar três ocorrên-
cias de pontos a, b e c, uma vez que precisamos provar
que

((a, b) ∈ κr ∧ (b, c) ∈ κr)⇒ (a, c) ∈ κr.
Para facilitar a demonstração, podemos dividi-la em e-
tapas: o caso em que a, b e c são colineares e o caso
em que não são. Na última etapa os pontos a, b e c são
vértices de um triângulo e, por conta disso, o Axioma
de Pasch (ge10) deve ser usado. Deixamos os detalhes
para o leitor.
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Ou seja, uma reta divide um plano ordenado em duas partes.

i Em [10] (página 74) há uma demonstração de que, para toda
reta r, o quociente

(π − r)/κr

tem exatamente duas classes de equivalência. Se o leitor não recorda
o que é o quociente de um conjunto por uma relação de equivalência,
ver parágrafo que segue Teorema 3.11. Se denotarmos essas classes
de equivalência por α1r e α2r, temos que

(π − r)/κr = {α1r, α2r},

onde α1r e α2r são chamados de semiplanos.
Ou seja, qualquer reta r divide um plano ordenado em dois semi-

planos, os quais não têm interseção entre si e tais que a união desses
semiplanos produz o conjunto π − r.
Graças a esse último resultado, podemos encerrar esta Seção com

a próxima definição.

Definição 7.20. Seja αr o conjunto de semiplanos definidos
por uma reta r em um plano ordenado o = 〈〈π, ρ〉, 〉. Seja
ainda

↓o= {r ∈ ℘(π) | r é uma semirreta com origem o},
onde o ∈ π, de acordo com Definições 7.14 e 7.15. Um plano
absoluto é um par ordenado

〈o,u〉
onde ge11, ge12, ge13, ge14 e a fórmula abaixo são teoremas.

ge15: ∀πo∀πo′∀↓oa∀↓ob∀↓o′
a′∀ρr∀αrβ(a′ ⊂ r ⇒ ∃!b′(b′ ∈ ↓o′

∧ âb u â′b′ ∧ b′ ⊂ β)).

Do ponto de vista intuitivo, axioma ge15 diz o que se segue. Dados
i: um ângulo âb definido por semirretas a e b com a mesma origem
o,

ii: uma reta r que divide o plano π em dois semiplanos e
iii: uma semirreta a′, com origem o′, que esteja contida na reta r,
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então, para cada semiplano β, existe uma única semirreta b′ com
origem o′, contida em β, de modo que o ângulo â′b′ é congruente ao
ângulo âb.

i Ao leitor interessado, este último axioma corresponde ao pos-
tulado C5 em [10], páginas 124 e 125. Naquele texto há um erro no
enunciado.

Seção 75
Axioma de continuidade

Sumário

Índice
RedePara que possamos enunciar o próximo postulado de geometria

euclidiana, precisamos ser capazes de ordenar pontos de uma reta,
em um plano ordenado. Em seguida seremos capazes de qualificar
o que é um eixo, o qual é uma reta munida de orientação, também
conhecida como reta orientada.

Definição 7.21. Seja r uma reta em um plano ordenado
o = 〈〈π, ρ〉, 〉.

Seja ainda
↓(r)= {s ∈ ℘(π) | s é uma semirreta ∧ s ⊂ r}.

O conjunto 
r é uma relação em ↓(r) dada como se segue:
a
r b sss a ⊆ b ∨ b ⊆ a.

Lemos a 
r b como ‘a semirreta a tem a mesma orientação da
semirreta b’.

Usamos a notação ↓(r) (para designar o conjunto de todas as semir-
retas contidas na reta r) para não confundir com o conjunto ↓r das
semirretas com origem r (onde r é um ponto).

Teorema 7.3. A relação 
r na Definição 7.21 é de equiva-
lência.

Demonstração: Devemos provar que 
r, no conjunto ↓(r)
das semirretas contidas em r, é reflexiva, simétrica e tran-
sitiva. Por conta disso, dividimos a prova em três partes.
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Reflexividade: Uma vez que todo conjunto é subcon-

junto de si mesmo, em particular, se a é uma semirreta
contida em r, então a ⊆ a. Logo, a
r a.

Simetria: Temos que a 
r b sss a ⊆ b ∨ b ⊆ a. No
entanto, (a ⊆ b ∨ b ⊆ a) ⇔ (b ⊆ a ∨ a ⊆ b) é teorema.
Logo, a
r b sss b
r a.

Transitividade: Temos que
a
r b sss a ⊆ b ∨ b ⊆ a

e
b
r c sss b ⊆ c ∨ c ⊆ c.

Dessa maneira, há quatro possibilidades que devem ser
avaliadas.
(i) Se a ⊆ b e b ⊆ c, então é imediato que a ⊆ c, o que
implica em a 
r c (i.e., transitividade para a primeira
possibilidade).
(ii) Se a ⊆ b e c ⊆ b (ou seja, duas semirretas a e c estão
contidas em uma mesma semirreta b), então

a ⊆ c ∨ c ⊆ a

(b recomendamos que o leitor prove isso).
Seja qual for o caso, a última fórmula é equivalente a
a 
r c (i.e., transitividade para a segunda possibili-
dade).
(iii) Se b ⊆ a e b ⊆ c (ou seja, uma mesma semirreta b
está contida em duas semirretas a e c), então

a ⊆ c ∨ c ⊆ a

(b recomendamos que o leitor prove isso).
Seja qual for o caso, a última fórmula é equivalente a
a 
r c (i.e., transitividade para a terceira possibili-
dade).
(iv) Finalmente, se b ⊆ a e c ⊆ b, temos situação
análoga ao item (i). Logo, c ⊆ a, o que implica em
a
r c (i.e., transitividade para a quarta e última pos-
sibilidade).
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O próximo teorema garante que toda reta de um plano ordenado

admite exatamente duas possíveis orientações.

Teorema 7.4. Seja r uma reta em um plano ordenado
o = 〈〈π, ρ〉, 〉.

Se
↓(r)= {s ∈ ℘(π) | s é uma semirreta ∧ s ⊂ r}

e 
r é a relação de equivalência em ↓(r) dada pela Definição
7.21, então o quociente

↓(r) /
r

admite apenas dois elementos.

Demonstração: Seja a uma semirreta de ↓(r) com origem o.
Seja ainda

a? = r − (a ∪ {o}).
Logo, a? é uma semirreta pertencente a ↓(r) (b cabe ao
leitor provar). Além disso, a ∩ a? = ∅, o que implica que
a 6⊆ a? e a? 6⊆ a. Portanto, a e a? são representantes de
classes de equivalência diferentes, ou seja, ¬(a
r a

?).
O próximo passo é considerar uma semirreta b pertencente

a ↓(r) tal que b 6= a e b 6= a?. Neste caso, b necessariamente
pertence à classe de equivalência com representante a ou à
classe de equivalência com representante a?. b Cabe ao
leitor concluir a demonstração.

As classes de equivalência do último teorema são as duas únicas
orientações de qualquer reta de um plano ordenado, conforme a pró-
xima definição.

Definição 7.22. Seja r uma reta em um plano ordenado. Se
↓(r)= {s ∈ ℘(π) | s é uma semirreta ∧ s ⊂ r}

e 
r é a relação de equivalência em ↓(r) dada pela Definição
7.21, então o quociente

↓(r) /
r

é definido como
{⇀r,↽r},
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onde as classes de equivalência ⇀r e ↽r são chamadas de ori-
entações da reta r. Além disso, cada par ordenado (r,⇀r) e
(r,↽r) é chamado de reta orientada ou eixo.

Em outras palavras, uma reta orientada é uma reta r munida de
uma orientação, a qual pode ser ⇀r ou ↽r. Logo, toda reta de um
plano ordenado admite duas retas orientadas definíveis a partir dela.
Retas orientadas, em um plano ordenado, permitem ordenar pon-

tos de uma mesma reta, como se percebe a seguir.

Definição 7.23. Seja x uma orientação de uma reta r em um
plano ordenado. Se a e b são pontos de r tais que

i: a define semirreta ra pertencente a x,
ii: b define semirreta rb pertencente a x e
iii: rb ⊆ ra,

então a precede b na orientação x e denotamos isso como
a �x b.

Se a 6= b, nas condições dadas acima, dizemos que a precede
estritamente b e denotamos isso como

a ≺x b.

Teorema 7.5. Sejam a e b pontos distintos de uma reta r em
um plano ordenado. Logo

a ≺⇀r b⇔ b ≺↽r a.

Teorema 7.6. Seja x uma orientação de uma reta r em um
plano ordenado. Logo, �x é uma relação de ordem total no eixo
(r, x).

b As provas dos dois últimos teoremas ficam a cargo do leitor.

Definição 7.24. Seja (r, z) uma reta orientada em um plano
ordenado. Dizemos que o par ordenado (x, y) é um corte de
Dedekind de r sss

i: x 6= ∅ ∧ y 6= ∅,
ii: x ⊂ r ∧ y ⊂ r,
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iii: x ∪ y = r ∧ x ∩ y = ∅ e
iv: ∀p∀q((p ∈ x ∧ q ∈ y)⇒ p �z q).

O fato de cortes de Dedekind dependerem da relação de ordem
total �z, para uma dada orientação z, justifica o emprego de par
ordenado para defini-los.
Naturalmente, todo corte de Dedekind particiona uma reta orien-

tada em dois conjuntos x e y, de modo que os pontos pertencentes a
x precedem os pontos pertencentes a y.

Definição 7.25. Seja c = 〈o,u〉 um plano absoluto, onde
o = 〈〈π, ρ〉, 〉

é um plano ordenado.
Dizemos que c é um plano absoluto contínuo sss a fórmula

abaixo for teorema.
ge16:

∀ρr∀z∀x∀x(((x, y) é corte de Dedekind de r∧
z é orientação de r)⇒

∃s(s ∈ r ∧ ∀rp∀rq((p ≺ s⇒ p ∈ x) ∧ (s ≺ q ⇒ q ∈ y)))).

b É um exercício interessante escrever formalmente o postulado
ge16.
A fórmula ge16 é conhecida como axioma de Dedekind, apesar

de Joseph Bertrand ter trabalhado com o mesmo assunto antes de
Richard Dedekind.
Seguindo a orientação z de uma reta r e lembrando que (x, y) é

um corte de Dedekind de r, o postulado acima garante o seguinte:
o ponto s da reta r (a existência de s é garantida pelo postulado
ge16) é o último de x ou o primeiro de y, relativamente à orientação
z.
O propósito deste axioma é claro. Se, por exemplo, uma reta t

define dois semiplanos α1t e α2t e, além disso, uma reta r passa
por um ponto p no semiplano α1t e por um ponto q no semiplano
α2t, então o postulado de continuidade dado acima garante que há
interseção entre as retas t e r. Tal interseção é o ponto s. Notar que
isso não ocorre no modelo de plano quase-ordenado do Exemplo
7.8.
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Seção 76

Axioma de paralelismo

Sumário

Índice
RedePodemos finalmente conceituar geometria euclidiana plana.

Definição 7.26. Um plano euclidiano é um plano absoluto
contínuo

〈〈〈π, ρ〉, 〉,u〉
onde a fórmula abaixo é teorema.

ge17:
∀ρr∀ρa∀ρb∀πp((p 6∈ r∧p ∈ a∩b∧a∩r = ∅∧b∩r = ∅)⇒ a = b).

A fórmula ge17 é conhecida como Postulado das Paralelas ou axi-
oma de Playfair , em referência a John Playfair. Sua leitura é muito
intuitiva. São assumidas retas r, a e b, e um ponto p que não incide
sobre r, mas incide sobre a e b. Se as retas a e b forem paralelas a r
(ou seja, a ∩ r = ∅ ∧ b ∩ r = ∅), então a e b são a mesma reta. Em
outras palavras, dada uma reta r e um ponto p não incidente sobre
r, existe uma única reta que passa por p e é paralela a r.

b Obviamente ge17 pode ficar com um enunciado mais curto
se for reescrito usando o quantificador ∃!.
Definição 7.26 é equivalente à seguinte fórmula:

Um plano euclidiano é uma quádrupla ordenada

〈π, ρ, ,u〉,

onde as fórmulas ge1∼ge17 são teoremas.

Neste contexto, as fórmulas
i: ge1, ge2, ge3, e ge4 são os axiomas de incidência,
ii: ge5, ge6, ge7, ge8, ge9 e ge10 são os axiomas de ordem,
iii: ge11, ge12, ge13, ge14 e ge15 são os axiomas de congruên-

cia,
iv: ge16 é o axioma de continuidade e
v: ge17 é o axioma de paralelismo.
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Seção 77

Modelo de plano euclidiano
Sumário

Índice
RedeOs únicos modelos que vimos até agora, relativos a geometria

sintética, foram para plano de incidência (Exemplo 7.2) e plano
quase-ordenado (Exemplo 7.8), o qual é também um plano de in-
cidência. Nesta Seção, porém, exibimos um modelo muito conhecido
para plano euclidiano, a saber, o plano cartesiano.
Plano cartesiano é a quádrupla ordenada

〈π, ρ, ,u〉,
na qual interpretamos π, ρ, e u como se segue nos próximos
parágrafos.

Interpretação de π: O conjunto π é R × R, onde R é o con-
junto dos números reais, conforme Seção 39. Em outras palavras,
π = R2.
Isso significa que interpretamos pontos do plano cartesiano como
pares ordenados (x, y) de números reais.

Interpretação de ρ: Uma reta r(a,b,c) é o conjunto
r(a,b,c) = {(x, y) ∈ R2 | ax+ by = c},

onde a e b não são ambos nulos.
A tripla ordenada (a, b, c) é chamada de parâmetros da reta
r(a,b,c). Ou seja, na tripla ordenada (a, b, c), o parâmetro real a
é o termo que multiplica x na equação ax+by = c, enquanto b é
aquele que multiplica y, e c é o parâmetro real que não multiplica
nem por x e nem por y (comumente chamado de termo inde-
pendente). Lembrar que x e y são usados para definir os pontos
(x, y) que incidem sobre a reta r(a,b,c). Em outras palavras, (x, y)
incide sobre r(a,b,c) sss (x, y) ∈ r(a,b,c).

b Notar que, se r(a,b,c) é uma reta, então
r(a,b,c) = r(αa,αb,αc),

para qualquer α real não nulo.
Definimos ρ como

ρ = {r(a,b,c) ∈ ℘(R2) | a ∈ R ∧ b ∈ R ∧ c ∈ R ∧ (a 6= 0 ∨ b 6= 0)}.
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Ou seja, ρ é o conjunto de todas as retas do plano cartesiano.
Observar que

(x, y) ∈ r(a,b,c) ⇔ ax+ by = c.

Portanto, dados pontos distintos (x1, y1) e (x2, y2), temos como
teorema a seguinte fórmula:

((x1, y1) ∈ r(a,b,c) ∧ (x2, y2) ∈ r(a,b,c))⇔ ax1 + by1 = ax2 + by2,

observando que tanto ax1 + by1 quanto ax2 + by2 são iguais ao
parâmetro c. Ou seja, pontos (x1, y1) e (x2, y2), distintos entre
si, são incidentes sobre a mesma reta r sss existem a e b tais que
ax1 + by1 = ax2 + by2. Isso garante que axioma ge2 é teorema
nesta interpretação.
Com relação a ge1, sejam (x1, y1) e (x2, y2) pontos de R2 tais
que (x1, y1) 6= (x2, y2). Logo, a equação ax1 + by1 = ax2 + by2
admite soluções reais onde a e b não são ambos nulos. Com
efeito,

ax1 + by1 = ax2 + by2 ⇔ a(x1 − x2) = b(y2 − y1).

A última equação admite solução para ambos a e b nulos. Mas,
lembrando que (x1, y1) 6= (x2, y2), então x1−x2 6= 0 ou y2−y1 6=
0. Logo, também existem soluções para a e b, onde a 6= 0 ou
b 6= 0. Isso garante que existe reta incidente sobre (x1, y1) e
(x2, y2). Logo, ge1 é teorema.

b As demonstrações de ge3 e ge4 ficam a cargo do leitor.
Interpretação de : Entre os reais há uma relação de ordem

total ≤, como discutido na Seção 39. Também há uma relação
de ordem parcial < dada por r < s sss r ≤ s ∧ r 6= s. Logo,
para quaisquer reais r e s distintos entre si temos que r < s
ou s < r. No primeiro caso, podemos definir o intervalo aberto
(r, s), enquanto que, no segundo caso, podemos definir o in-
tervalo aberto (s, r). Sobre o conceito de intervalo aberto no
conjunto dos reais, ver Seção 39. Ou seja, dados reais r e s
distintos entre si, sempre existe intervalo aberto definido por r
e s, no sentido deste intervalo ser (r, s) ou (s, r).

! Não confundir um intervalo aberto (r, s) com um ponto
(r, s) do plano cartesiano. É uma prática comum o emprego de
uma mesma notação para conceitos não equivalentes entre si.
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Neste contexto, se r e s são reais distintos, um real t está entre
r e s sss t pertence ao intervalo aberto definido por r e s. Notar
que tal definição implica que r 6= t e s 6= t.
Graças à definição acima de real t entre dois reais r e s (a qual é
possível por conta da relação de ordem parcial < entre os reais),
podemos agora interpretar a relação de ordem .
Dados os pontos (x1, y1) e (x2, y2) tais que (x1, y1) 6= (x2, y2),
dizemos que o ponto (xe, ye) está entre (x1, y1) e (x2, y2) sss os
pontos (x1, y1), (x2, y2) e (xe, ye) incidem sobre a mesma reta e,
além disso, uma e apenas uma das fórmulas abaixo é teorema:
• xe = x1 = x2 e ye está entre y1 e y2.
• ye = y1 = y2 e xe está entre x1 e x2.
• xe está entre x1 e x2 e ye está entre y1 e y2.

Escrevemos isso como (x1, y1)(xe, ye)(x2, y2).

b As provas de ge5∼ge9 são imediatas. A demonstração do
Axioma de Pasch (postulado ge10), porém, consome conside-
rável esforço. Mas é um típico exercício de geometria analítica
plana. Deixamos essas provas como exercícios para o leitor.

b Para facilitar a demonstração de ge10, é interessante que
o leitor prove o seguinte teorema.

Teorema 7.7. Se
r(a,b,c) = {(x, y) ∈ R2 | ax+ by = c}

e
r(d,e,f) = {(x, y) ∈ R2 | dx+ ey = f}

são retas do plano cartesiano, então
r(a,b,c) ∩ r(d,e,f) = ∅⇔ ∃α(a = αd ∧ b = αe ∧ c 6= αf).

Interpretação de u: A partir do momento em que definimos
o que é um ponto entre dois pontos do plano cartesiano, basta
empregar a Definição 7.11 (sobre segmentos fechados) para a
interpretação deste conceito aqui.
Uma vez que sabemos o que é um segmento de reta

[(x1, y1), (x2, y2)],
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definimos o comprimento de [(x1, y1), (x2, y2)] como√

(x1 − x2)2 + (y1 − y2)2.

Feito isso, dizemos que os segmentos

[(x1, y1), (x2, y2)] e [(x3, y3), (x4, y4)]

são congruentes sss√
(x1 − x2)2 + (y1 − y2)2 =

√
(x3 − x4)2 + (y3 − y4)2.

Denotamos isso como [(x1, y1), (x2, y2)] u [(x3, y3), (x4, y4)].
Essas informações facilitam a demonstração das fórmulas ge11,
ge12, ge13, ge14 e ge15, as quais, novamente, são típicos
exercícios de geometria analítica plana.
A título de curiosidade, no Exemplo 8.42 da Seção 88 prova-
mos que o comprimento de um segmento [(x1, y1), (x2, y2)] é tam-
bém uma distância entre os pontos (x1, y1) e (x2, y2). Este fato
garante que

[(x1, y1), (x2, y2)] u [(x2, y2), (x1, y1)].

Afinal√
(x1 − x2)2 + (y1 − y2)2 =

√
(x2 − x1)2 + (y2 − y1)2.

b A demonstração de ge17 (Axioma de Playfair) é outro exer-
cício de geometria analítica que pode ser resolvido usando o Teorema
7.7. Basta manter em mente que retas paralelas, no plano cartesiano,
são retas com interseção vazia.

b Com relação a cortes de Dedekind (postulado ge16), recordar
que, em R, toda sequência de Cauchy é convergente. Isso garante
que ge16 é teorema nesta interpretação de plano euclidiano. Se
tivéssemos interpretado π como Q2, ge16 não seria teorema. Cabe
ao leitor provar isso.

Geometria euclidiana plana é o estudo do conjunto
〈〈〈π, ρ〉, 〉,u〉,

desde que os postulados ge1∼ge17 sejam teoremas de ZF.
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Seção 78

Resumo da ópera

Sumário

Índice
RedeApesar de geometria ter nascido há milhares de anos, a partir

de modos de percepção humana sobre espaço, obviamente o assunto
evoluiu para um elevado nível de abstração. Quando Euclides de
Alexandria escreveu sua grande obra Elementos, ele apenas assumiu
implicitamente certos postulados, sem efetivamente enunciá-los. E-
xemplo bem conhecido é o Axioma de Pasch, o qual só foi explicitado
dois milênios após a obra de Euclides.

! O texto original de Euclides foi perdido, por conta da destru-
ição da Biblioteca de Alexandria. Nas traduções que sobreviveram
há algumas ‘definições’. Uma delas diz que ‘um ponto é aquilo que
não tem partes’. Em outro momento, Euclides escreve que ‘uma reta
tem comprimento, mas não largura’. Claramente essas afirmações
não são definições, uma vez que naquele texto não há qualificação
para os conceitos de ‘aquilo’, ‘partes’, ‘comprimento’ ou ‘largura’.
Por conta disso, a grande revolução promovida por Hilbert, em

seu Grundlagen der Geometrie, foi a proposta de que conceitos como
pontos e retas não são definíveis. A geometria euclidiana, nos moldes
da proposta de Hilbert, é uma teoria de caráter meramente sintático,
desprovido de significado.
O que fizemos aqui foi adaptar as ideias de Hilbert para a lin-

guagem de ZF, a qual é uma teoria formal cuja linguagem não conta
com qualquer contraparte semântica.
Como reza a lenda (sobre uma suposta conversa entre Hilbert e

Otto Blumenthal, em uma estação de trem em Berlim), se trocar-
mos as palavras ‘ponto’, ‘reta’ e ‘plano’ por ‘mesa’, ‘cadeira’ e ‘copo
de cerveja’, tudo o que interessa é que os axiomas da geometria eu-
clidiana sejam teoremas em uma dada interpretação. Dessa maneira
podemos garantir que tal interpretação é um modelo de geometria
euclidiana.
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Seção 79

Notas históricas

Sumário

Índice
Rede

m

O registro mais antigo de estudo sistemático da geometria é a obra
Elementos, de Euclides de Alexandria (Eυ, κλείδηζ). Fragmentos
de cópias do texto original podem ser encontrados na Biblioteca do
Vaticano.
Durante mais de dois mil anos matemáticos tentaram provar o

postulado das paralelas a partir dos demais postulados originais de
Euclides, sem sucesso. Isso por conta de uma visão intuitiva de que
o postulado das paralelas não era ‘autoevidente’.
Foi somente no século 19 que Nikolai Lobachevsky publicou uma

prova de que tal postulado era independente dos demais. Por conta
disso, o método axiomático utilizado por Euclides deixou de ser uma
ferramenta meramente didática para o ensino de geometria e passou
a ser alvo de interesse matemático. A obra de Lobachevsky também
abriu portas para a percepção de geometria como tema de estudos
independentes dos modos de percepção humana sobre espaço. Por
fim, a contribuição deste matemático russo serviu de inspiração para
muitos pensadores questionarem conhecimentos tradicionais não ape-
nas da matemática, mas também de outras áreas do saber.
Por conta do impacto acima mencionado, William Kingdon Clifford

chegou a escrever que Lobachevsky foi o ‘Copérnico da geometria’,
enquanto Eric Temple Bell foi além, afirmando que Lobachevsky foi
o ‘Copérnico de todo o pensamento humano’ [3].
O asteroide 1858 Lobachevsky, a cratera lunar Lobachevsky, a

universidade russa Lobatchevsky e a canção Lobachevsky, de Tom
Lehrer, são algumas das homenagens póstumas a este grande nome
da ciência.
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Retrato de Lobachevsky, feito por Lev Kryukov.
Fonte: Wikipedia.

m
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Nesta oitava parte discutimos a respeito de noções indispensáveis
para o estudo de álgebra linear, bem como suas relações com geome-
tria euclidiana e cálculo diferencial e integral.

Seção 80
Espaços vetoriais reais

Sumário

Índice
RedeO estudo de espaços vetoriais e transformações lineares entre es-

paços vetoriais é o que se chama de álgebra linear . Para que essa
afirmação seja compreensível, é necessário qualificar o que são es-
paços vetoriais e transformações lineares. Começamos com um caso
muito particular, conhecido como espaço vetorial real de dimensão
finita. O conceito de transformação linear é examinado mais adiante.
Espaços vetoriais diferentes de espaços vetoriais reais são brevemente
discutidos na Seção 96. Espaços vetoriais de dimensão infinita são
examinados na Seção 97.
Antes, porém, é interessante motivarmos o assunto. Fazemos isso

com um exemplo histórico.
Em 1873 James Clerk Maxwell publicou seu famoso livro A Trea-

tise on Electricity and Magnetism (Um Tratado sobre Eletricidade
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e Magnetismo). A partir de um sistema de vinte e quatro equações,
Maxwell formulou uma visão unificada para campos elétricos e cam-
pos magnéticos, dando início àquilo hoje conhecido como eletromag-
netismo. Posteriormente Oliver Heaviside reescreveu as equações
originais de Maxwell empregando funções definidas sobre espaços ve-
toriais. Essa estratégia reduziu as vinte e quatro equações originais
de Maxwell a apenas quatro.
O exemplo acima é apenas um caso muito simples e bem conhe-

cido para ilustrar o poder de síntese de espaços vetoriais. Outro
exemplo bem mais radical é o caso da mecânica quântica. Sem es-
paços vetoriais, não existiria hoje qualquer formulação teórica mini-
mamente sensata para descrever os fenômenos do mundo quântico.
Consequentemente, não existiria este arquivo PDF que o leitor está
contemplando, como podemos verificar ao final desta Parte.

Definição 8.1. Um espaço vetorial real V é uma quíntupla
ordenada

〈V,R,+, ·, 0 〉
tal que as seguintes fórmulas são teoremas.

V1: V 6= ∅;
V2: + : V × V → V é uma função, onde abreviamos +(u, v)

como u+ v, sendo u e v elementos de V ;
V3: · : R × V → V é uma função, onde abreviamos ·(α, u)

como α · u ou, simplesmente, αu, sendo α um elemento de
R e u um elemento de V ;

V4: 0 ∈ V ;
V5: Se u pertence a V , então

u+ 0 = u;

V6: Se u e v são elementos de V , então
u+ v = v + u;

V7: Se u, v e w pertencem a V , então
(u+ v) + w = u+ (v + w);

V8: Se u pertence a V , então existe v pertencente a V tal que
u+ v = 0;
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V9: Se α pertence a R e u e v pertencem a V , então

α(u+ v) = αu+ αv;

V10: Se α e β pertencem a R e u pertence a V , então
(α + β)u = αu+ βu;

V11: Se α e β pertencem a R e u pertence a V , então
(αβ)u = α(βu);

V12: Se 1 é o neutro multiplicativo de R e u pertence a V ,
então

1u = u.

Se

V = 〈V,R,+, ·, 0 〉

é um espaço vetorial real, chamamos V de conjunto de vetores ou
espaço de vetores.
Alguns autores, por abuso de linguagem, se referem a V como

espaço vetorial. Não adotamos essa convenção aqui.
Os elementos de V são chamados de vetores. Com relação a R,

este é o corpo dos reais, já definido na Seção 39. Seus elementos são
chamados de escalares.
A função + é chamada de adição de vetores. A função · é chamada

de multiplicação de escalar por vetor . Apesar da notação ser a
mesma, essas operações não podem ser confundidas com adição e
multiplicação entre reais.
O termo 0 é chamado de vetor nulo.
Para evitarmos sobrecarga de notação, adotamos a seguinte con-

venção: todos os vetores diferentes do vetor nulo são denotados por
letras latinas minúsculas, enquanto os escalares são sempre denota-
dos por letras gregas minúsculas. Logo, α + β é uma adição entre
reais, enquanto u + v é uma adição entre vetores. Analogamente,
α · β é uma multiplicação entre escalares, enquanto α · u é uma mul-
tiplicação entre um real α e um vetor u.
Postulado V1 diz que todo espaço de vetores tem pelo menos um

vetor. Uma vez que axioma V4 afirma que o vetor nulo é um vetor,
todo espaço de vetores conta com pelo menos o vetor nulo entre seus
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elementos. Obviamente V1 é desnecessário, uma vez que V4 implica
em V1.
V2 estabelece que a adição entre vetores é uma operação binária,

ou seja, é aplicável a duas ocorrências de vetores. Além disso, o
mesmo postulado afirma que adição entre vetores é uma operação
fechada, i.e., vetor mais vetor é vetor.
V3 diz que escalar vezes vetor é vetor.
V5 afirma que o vetor nulo é nulo relativamente à adição entre

vetores. Isso justifica seu nome.
V6 e V7 estabelecem, respectivamente, a comutatividade e a asso-

ciatividade da adição entre vetores.
V8 diz que todo vetor admite simétrico relativamente à adição de

vetores (chamado de simétrico aditivo). Se u + v = 0, denotamos v
por −u. Equivalentemente, u = −v.
V9 é a distributividade da adição de vetores relativamente à multi-

plicação de escalar por vetor, enquanto V10 exige a distributividade
da adição de escalares relativamente à multiplicação de escalar por
vetor.

! Observar atentamente a fórmula V11:
(αβ)u = α(βu).

Neste caso, αβ é a multiplicação do real α pelo real β. Essa mul-
tiplicação resulta em um real γ. Neste sentido

(αβ)u = γu.

Do lado direito da igualdade, não obstante, temos apenas duas
ocorrências da multiplicação de escalar por vetor e nenhuma ocor-
rência da multiplicação de real por real. Com efeito, βu é um vetor,
de acordo com postulado V3. Logo, α(βu) também é um vetor, nova-
mente usando postulado V3. Logo, V11 impõe uma estreita conexão
entre multiplicação de real por real, algo definido na Seção 39, e
multiplicação de real por vetor.
Finalmente, V12 afirma que a multiplicação do real 1 por qualquer

vetor u resulta no próprio vetor u. Mas de forma alguma esse pos-
tulado deve ser interpretado como a garantia de existência de um
neutro multiplicativo. Afinal, 1 denota um escalar, o qual é neutro
multiplicativo entre reais. O termo u, por sua vez, é um vetor.
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Seção 81

Modelos de espaços vetoriais reais
Sumário

Índice
RedeO que Definição 8.1 coloca é o seguinte: qualquer quíntupla orde-

nada
〈V,R,+, ·, 0 〉

na qual as fórmulas V1∼V12 são teoremas, é um espaço vetorial real.
Uma vez escolhidos os conjuntos V , +, · e 0, a quíntupla ordenada

〈V,R,+, ·, 0〉
é uma interpretação de espaço vetorial. Se, dada a interpretação
〈V,R,+, ·, 0 〉, os axiomas V1∼V12 são teoremas de ZF, então essa
interpretação é um modelo de espaço vetorial real. Logo, ‘modelo de
espaço vetorial real’ e ‘espaço vetorial real’ são sinônimos.
Colocamos a seguir algumas possíveis interpretações de espaço ve-

torial real, avaliando se elas são modelos de espaços vetoriais reais.

Espaço R2 usual

Seja 〈R2,R,+, ·, (0, 0)〉 uma quíntupla ordenada tal que
+ : R2 × R2 → R2

é uma função na qual se abrevia +((a, b), (c, d)) como (a, b) + (c, d) e
· : R× R2 → R2

é uma função na qual se abrevia ·(α, (a, b)) como α ·(a, b) ou simples-
mente α(a, b). Além disso, essas funções são definidas da seguinte
maneira:

(a, b) + (c, d) = (a+ c, b+ d)
e

α · (a, b) = (αa, αb).

Uma primeira crítica que o leitor poderia fazer é a seguinte: se
(a, b) ∈ R2, por que não denotar o par ordenado (a, b) por (α, β),
uma vez que a e b são números reais?
Pois bem, o que está em jogo aqui são apenas duas operações:

adição entre pares ordenados de reais e multiplicação de real por par
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ordenado de reais. Neste contexto, usamos letras gregas minúsculas
apenas para denotar os reais que multiplicam por um par ordenado
de reais. Usamos letras latinas minúsculas, nesta interpretação par-
ticular de espaço vetorial real, para denotar os reais a e b que definem
o par ordenado (a, b).
A quíntupla ordenada 〈R2,R,+, ·, (0, 0)〉 é de fato uma interpre-

tação de espaço vetorial real 〈V,R,+, ·, 0 〉, no sentido de que inter-
pretamos
• o espaço de vetores V como R2,
• a adição + de vetores como adição entre pares ordenados de
reais,
• a multiplicação · de escalar por vetor como a multiplicação de
real por par ordenado de reais e
• o vetor nulo 0 como o par ordenado (0, 0), onde 0 é o real nulo
aditivo.

Porém, a questão importante é se essa primeira interpretação de
espaço vetorial real é um modelo de espaço vetorial real. Para que
seja o caso, é necessário que todos os axiomas de espaço vetorial real
sejam teoremas de ZF nesta interpretação. Ou seja, os doze axiomas
dados na Seção 80 devem ser examinados um a um.
Axioma V1 exige que V seja não vazio. Essa fórmula é teorema na

interpretação dada. Com efeito, existe pelo menos um par ordenado
de reais, por exemplo, (

√
2 − 4

√
7, π). Logo, R2 é um conjunto não

vazio.
Postulado V2 exige que adição de vetores seja dada por uma função

fechada no espaço de vetores. Logo, tal fórmula é teorema no con-
texto da interpretação dada. Com efeito, adição de pares ordenados
de reais foi definida como uma função

+ : R2 × R2 → R2.

Além disso, se (a, b) e (c, d) são pares ordenados de reais, então
(a, b) + (c, d), dado por (a + c, b + d), é um par ordenado de reais
simplesmente porque a adição de reais é fechada nos reais (real mais
real é um real).
V3 demanda que multiplicação de real por vetor seja definida por

uma função fechada no espaço de vetores. Logo, V3 é teorema no
contexto da interpretação aqui sugerida. Com efeito, a multiplicação
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de real por par ordenado de reais foi definida por uma função

· : R× R2 → R2

dada por α(a, b) = (αa, αb).
Além disso, (αa, αb) pertence a R2, uma vez que multiplicação de

real por real é fechada nos reais.
Axioma V4 exige que o vetor nulo seja vetor. Novamente temos um

teorema, uma vez que (0, 0) é um par ordenado de reais e, portanto,
(0, 0) ∈ R2.
V5 afirma que qualquer vetor u somado ao vetor nulo 0 é o próprio

u. Novamente temos um teorema. Com efeito, para qualquer par
ordenado (a, b) de R2 temos

(a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b).

Ou seja, o fato de zero real ser nulo aditivo garante que o par
ordenado (0, 0) é nulo relativamente à operação + definida para pares
ordenados de reais.

V6 exige que adição de vetores seja comutativa. Tal fórmula tam-
bém é teorema de ZF para a interpretação dada. Afinal,

(a, b) + (c, d) = (a+ c, b+ d),
de acordo com a definição de adição de pares ordenados de reais. No
entanto,

(a+ c, b+ d) = (c+ a, d+ b),
uma vez que adição de reais é comutativa. Finalmente,

(c+ a, d+ b) = (c, d) + (a, b),
por conta da definição de adição de pares ordenados de reais. A
transitividade da igualdade garante, portanto, que

(a, b) + (c, d) = (c, d) + (a, b).

Postulado V7 demanda a associatividade da adição de vetores.
Mas,
((a, b)+(c, d))+(e, f) = (a+c, b+d)+(e, f) = ((a+c)+e, (b+d)+f) =

(a+(c+e), b+(d+f)) = (a, b)+(c+e, d+f) = (a, b)+((c, d)+(e, f)).

Observar que, na sequência de igualdades acima, foi usada a de-
finição de adição de pares ordenados de reais, bem como o teorema
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que garante a associatividade da adição de reais. Logo, V7 é teorema
para esta interpretação.
Axioma V8 exige que todo vetor admita um simétrico relativa-

mente à operação de adição de vetores. Ora, se (a, b) é um termo
de R2, temos que (−a,−b) também pertence a R2. Afinal, todo real
admite simétrico aditivo. Além disso,

(a, b) + (−a,−b) = (a+ (−a), b+ (−b)) = (0, 0),
sendo que (0, 0) é interpretado aqui como o vetor nulo. Portanto, V8
é teorema nesta interpretação.
V9 estabelece a distributividade da adição de vetores relativamente

à multiplicação de escalar por vetor. Logo, V9 é teorema. Com
efeito,

α((a, b) + (c, d)) = α(a+ c, b+ d) = (α(a+ c), α(b+ d)) =
(αa+ αc, αb+ αd) = (αa, αb) + (αc, αd) = α(a, b) + α(c, d).

b Levando em conta que os parênteses definem quais são as
primeiras operações a serem efetuadas, cabe ao leitor justificar passo
a passo essa última demonstração.
Postulado V10 demanda a distributividade da adição de escalares

relativamente à multiplicação de escalar por vetor. Notar que
(α + β)(a, b) = ((α + β)a, (α + β)b) = (αa+ βa, αb+ βb) =

(αa, αb) + (βa, βb) = α(a, b) + β(a, b).

Logo, V10 é teorema.
V11 afirma que (αβ)u = α(βu) deve ser teorema. Mas

(αβ)(a, b) = ((αβ)a, (αβ)b) = (α(βa), α(βb)) =
α(βa, βb) = α(β(a, b)).

Ou seja, a associatividade da multiplicação de reais garante que,
de fato, V11 é teorema de ZF nesta interpretação de espaço vetorial
real.
Finalmente, V12 exige que 1u = u seja teorema, para qualquer

vetor u do espaço vetorial. Observar que
1(a, b) = (1(a), 1(b)) = (a, b).

Isso encerra a prova de que a interpretação dada para espaço veto-
rial real é de fato um modelo de espaço vetorial real. Este primeiro
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exemplo aqui discutido é conhecido como espaço vetorial real R2

usual ou, simplesmente, espaço R2 usual.

Interpretação que não é modelo

Seja 〈R2,R,+, ·, (0,−1)〉 uma quíntupla ordenada tal que
+ : R2 × R2 → R2

é uma função na qual se abrevia +((a, b), (c, d)) como (a, b) + (c, d) e
· : R× R2 → R2

é uma função na qual se abrevia ·(α, (a, b)) como α · (a, b). Além
disso, essas funções são definidas da seguinte maneira:

(a, b) + (c, d) = (a+ c, b+ d+ 1)
e

α · (a, b) = (αa, αb).

b Neste caso, axioma V9 não é teorema para esta interpretação.
Basta assumir, por exemplo, α = 3. Além disso, V10 também não
é teorema. Os demais postulados são teoremas. É obviamente re-
comendável que o leitor verifique isso. No entanto, basta um axioma
não ser teorema para termos um exemplo de interpretação de espaço
vetorial real que não é modelo de espaço vetorial real.

Espaço Mm×n usual

Nesta Subseção mostramos que matrizes reais também podem ser
vetores. Antes, é necessário qualificar o que é uma matriz real.

Definição 8.2. Sejam
lm = {1, 2, 3, · · · ,m}

e
cn = {1, 2, 3, · · · , n}.

Ou seja, lm é o conjunto dos naturais i tais que 1 ≤ i ≤ m,
enquanto cn é o conjunto dos naturais j tais que 1 ≤ j ≤ n.
Uma matriz real de m linhas e n colunas é uma função

a : lm × cn → R.
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Chamamos lm de conjunto linhas e cn de conjunto colunas.

b Ou seja, toda matriz real é uma restrição finita de uma função
real com domínio ω × ω. A recíproca desta última afirmação não é
teorema.
O fato de produto cartesiano não ser comutativo é o que permite

discernir linhas de colunas em uma matriz real.
Exemplo 8.1. Se m = 3 e n = 2, então

a = {((1, 1), a(1, 1)), ((1, 2), a(1, 2)), ((2, 1), a(2, 1)),
((2, 2), a(2, 2)), ((3, 1), a(3, 1)), ((3, 2), a(3, 2))}

é uma matriz real de três linhas e duas colunas, desde que as
imagens a(1, 1), a(1, 2), a(2, 1), a(2, 2), a(3, 1) e a(3, 2) sejam
números reais.
Neste exemplo a é uma função com domínio {1, 2, 3} × {1, 2}.

A notação usual para uma matriz real a é uma disposição retan-
gular em linhas e colunas envolvidas por um par de parênteses, de
modo que cada imagem a(i, j) é denotada por aij. No caso do último
exemplo dado acima, a matriz a é escrita simplesmente como

a11 a12
a21 a22
a31 a32

 ,

sendo aij = a(i, j) para 1 ≤ i ≤ 3 e 1 ≤ j ≤ 2.

Teorema 8.1. Sejam a : lm × cn → R e b : lp × cq → R
matrizes reais. Logo, a = b sss m = p, n = q e aij = bij para
quaisquer i e j tais que 1 ≤ i ≤ m e 1 ≤ j ≤ n.

Demonstração: Matrizes reais, de acordo com Definição
8.2, são funções. Ademais, funções são casos particulares
de conjuntos. Portanto, basta empregar o Axioma da Ex-
tensionalidade e Teorema 3.1.

Uma vez que produto cartesiano não é comutativo, sem 6= n, então
a matriz a : lm× cn → R é diferente da matriz b : cn× lm → R. Com
efeito, a matriz b tem n linhas e m colunas.
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Agora consideremos a seguinte interpretação para espaço vetorial

real.
Mm×n = 〈Mm×n,R,+, ·,©〉,

onde
• Mm×n é o conjunto de todas as matrizes reais com m linhas e n
colunas;
• + : Mm×n ×Mm×n →Mm×n é uma função dada por

+(a, b)ij = aij + bij;

• · : R×Mm×n →Mm×n é uma função dada por
·(α, a)ij = αaij;

• © é a matriz real de m linhas e n colunas tal que ©ij = 0 para
todo i e para todo j tais que 1 ≤ i ≤ m e 1 ≤ j ≤ n.

b O conjunto Mm×n pode ser facilmente definido usando o Es-
quema de Separação de ZF. Recomendamos que o leitor faça isso.
A função + é conhecida como a adição usual de matrizes reais. A

função · é conhecida como a multiplicação usual de um real α por
uma matriz real a de m linhas e n colunas. Finalmente, a matriz ©
é chamada de matriz nula, aquela cujas imagens são todas iguais ao
zero real.

Exemplo 8.2. Se m = 3 e n = 2, temos quea11 a12
a21 a22
a31 a32

+

b11 b12
b21 b22
b31 b32

 =

a11 + b11 a12 + b12
a21 + b21 a22 + b22
a31 + b31 a32 + b32

 ,

α ·

a11 a12
a21 a22
a31 a32

 =

αa11 αa12
αa21 αa22
αa31 αa32


e

© =

0 0
0 0
0 0

 .
b Para cada par de naturais m e n, tais que m ≥ 1 e n ≥ 1, a

quíntupla ordenada
Mm×n = 〈Mm×n,R,+, ·,©〉
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é um espaço vetorial real conhecido como Mm×n usual. Para provar
isso, basta demonstrar que cada axioma de espaço vetorial real é teo-
rema para cada interpretaçãoMm×n. Por exemplo, axiomas V6 e V7
são consequências imediatas do fato de que a adição entre reais é co-
mutativa e associativa. Com efeito, adição entre matrizes é definida
a partir da adição de reais.
Logo, nesta Subseção exibimos uma infinidade de espaços vetoriais

reais: um para cada par de valores m e n.

Espaços vetoriais reais de funções

Espaços vetorias reais de matrizes não são os únicos casos de es-
paços vetoriais reais de funções. Considere, por exemplo, a seguinte
interpretação para espaço vetorial real.

F = 〈C0,R,+, ·,©〉,

onde
• C0 é o conjunto de todas as funções reais contínuas com domínio
R;
• + : C0 × C0 → C0 é uma função dada por

+(f, g)(x) = f(x) + g(x);

• · : R× C0 → C0 é uma função dada por

·(α, f)(x) = αf(x);

• © é a função real © : R→ R tal que

©(x) = 0

para todo real x.

Uma vez que adição de funções reais contínuas é uma função real
contínua e multiplicação de um real α por uma função real contínua
é uma função contínua, então não ocorre qualquer inconsistência na
definição da interpretação F dada acima.

b Novamente temos um exemplo de espaço vetorial real. Basta
verificar os axiomas, um a um. Neste caso os vetores são funções
reais contínuas com domínio R.
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〈C0,R,+, ·,©〉 é chamado de espaço C0 usual. Se trocarmos C0 por
Ck, temos o espaço Ck usual, onde Ck é o conjunto das funções reais
k vezes diferenciáveis e com derivada de ordem k contínua.

Espaço Rn usual

Seja 〈Rn,R,+, ·,©〉 uma quíntupla ordenada tal que

+ : Rn × Rn → Rn

é uma função na qual se abrevia +((a1, a2, · · · , an), (b1, b2, · · · , bn))
como

(a1, a2, · · · , an) + (b1, b2, · · · , bn)
e

· : R× Rn → Rn

é uma função na qual se abrevia ·(α, (a1, a2, · · · , an)) como

α · (a1, a2, · · · , an).

Além disso, essas funções são definidas da seguinte maneira:

(a1, a2, · · · , an) + (b1, b2, · · · , bn) = (a1 + b1, a2 + b2, · · · , an + bn)

e
α · (a1, a2, · · · , an) = (αa1, αa2, · · · , αan).

b Se assumirmos também que © é a n-upla ordenada cujas
entradas são todas iguais a 0, temos que

〈Rn,R,+, ·,©〉

é mais um exemplo de espaço vetorial real, conhecido como Rn usual.
A prova desse resultado é análoga àquela feita para R2 usual.
Observar que o caso particular em que n = 1 implica que

〈R,R,+, ·, 0〉

é um espaço vetorial real, onde + e · são as operações de adição e
multiplicação entre reais, respectivamente.
Naturalmente, o caso em que n = 2 corresponde a R2 usual.
O caso em que n = 3 é usado em uma aplicação de espaços vetoriais

reais em mecânica de partículas, na Seção 110.
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Espaço C∞ usual

Seja
R = 〈C∞,R,+, ·,©〉

uma interpretação de espaço vetorial real, onde
i: C∞ é o conjunto de todas as funções reais com domínio R que

admitem derivada de qualquer ordem;
ii: + : C∞ × C∞ → C∞ é uma função tal que

+(f, g)(x) = f(x) + g(x);

iii: · : R× C∞ → C∞ é uma função tal que

·(α, f)(x) = αf(x);

iv: © : R→ R é a função identicamente nula, ou seja, ©(x) = 0
para todo x real.

b Neste caso, R é um espaço vetorial real, conhecido como o
espaço C∞ usual.

Exemplo 8.3. b Se p : R → R é uma função polinomial,
então p é um vetor de C∞ usual.

b As funções seno, co-seno e exponencial também são ve-
tores de C∞ usual.
A função f : R→ R dada por

f(x) = |x|
não é um vetor de C∞ usual. Com efeito, basta ver o Exemplo
5.26 que segue a demonstração do Teorema 5.25.

Resumindo

Dessa maneira fica claro que existem espaços vetoriais reais tais
que seus vetores podem ser números reais, n-uplas ordenadas de
números reais, matrizes reais, funções reais contínuas e funções reais
diferenciáveis um número arbitrário de vezes. De maneira análoga
é possível definir espaços vetoriais reais de funções reais quaisquer
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(desde que compartilhem o mesmo domínio), bem como funções reais
que admitem derivada de ordem n.

Seção 82
Teoremas básicos sobre espaços vetoriais reais

Sumário

Índice
RedeTodos os espaços vetoriais reais − sejam aqueles cujos vetores são

matrizes, números reais, n-uplas ordenadas de reais ou funções reais
− compartilham certas propriedades algébricas em comum.

Teorema 8.2. Se 〈V,R,+, ·, 0 〉 é um espaço vetorial real, en-
tão o vetor nulo 0 é o único nulo aditivo em V .

Demonstração: Supor que existe vetor nulo 0′ diferente de
0 em V . Logo,

0 + 0′ = 0
e

0 + 0′ = 0′

(lembrar que adição de vetores é comutativa). Portanto, a
transitividade da igualdade implica que 0 = 0′. ⊥

Exemplo 8.4. Em R2 usual, (0, 0) é o único vetor nulo adi-
tivo.

Teorema 8.3. Para qualquer vetor v de um espaço vetorial
real

〈V,R,+, ·, 0 〉
temos que

v + v = v ⇒ v = 0.

Demonstração: Consequência do teorema anterior.

Teorema 8.4. Para qualquer vetor v de um espaço vetorial
real

〈V,R,+, ·, 0 〉
temos que

0 · v = 0.
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Demonstração: Observar que
0 · v = (0 + 0) · v.

Mas, de acordo com axioma V10,
(0 + 0) · v = 0 · v + 0 · v.

A transitividade da igualdade garante, portanto, que
0 · v = 0 · v + 0 · v.

Logo, Teorema 8.3 implica que 0 · v = 0.

Exemplo 8.5. Num espaço vetorial real qualquer de matrizes
reais de duas linhas e duas colunas, se(

a11 a12
a21 a22

)
é um vetor, então

0 ·
(
a11 a12
a21 a22

)
=
(

0 0
0 0

)
.

Teorema 8.5. Se v é vetor de 〈V,R,+, ·, 0 〉, temos que
(−1) · v = −v.

Demonstração: Sabemos que
0 · v = (1 + (−1)) · v.

Logo, Teorema 8.4 implica que
(1 + (−1)) · v = 0.

Portanto, de acordo com axioma V10,
1 · v + (−1) · v = 0.

Logo, de acordo com axioma V12,
v + (−1) · v = 0.

Finalmente, postulado V8 garante que
(−1) · v = −v,

sendo −v o simétrico aditivo (relativamente à adição de ve-
tores) de v.
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Exemplo 8.6. Num espaço vetorial real
F = 〈C0,R,+, ·,©〉

de funções reais contínuas, se f : R → R é um vetor dado por
f(x) = − cos(x), então (−1) · f é um vetor g : R → R tal que
g(x) = cos(x).

Teorema 8.6. Para qualquer escalar α de um espaço vetorial
real

〈V,R,+, ·, 0 〉
temos que α · 0 = 0.

Demonstração: Temos que
α · 0 = α · (0 + 0) = α · 0 + α · 0.

Logo, α · 0 = 0.

Exemplo 8.7. Num espaço vetorial real qualquer de matrizes
reais de duas linhas e duas colunas, se α é um escalar real e(

0 0
0 0

)
é o vetor nulo, então

α ·
(

0 0
0 0

)
=
(

0 0
0 0

)

Seção 83
Subespaços

Sumário

Índice
RedeO conceito de subespaço é útil para criar exemplos de espaços ve-

toriais reais sem avaliar todos os postulados V1∼V12 da Definição
8.1, Seção 80.

Definição 8.3. Seja V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real. Dizemos que W = 〈W,R,⊕,�, 0 〉 é um subespaço de V
sss

i: W ⊆ V ;
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ii: 0 ∈ W ;
iii: (u ∈ W ∧ v ∈ W )⇒ (u⊕ v ∈ W ∧ u⊕ v = u+ v);
iv: (u ∈ W ∧ α ∈ R)⇒ (α� u ∈ W ∧ α� u = α · u).

Um subespaço de um espaço vetorial real 〈V,R,+, ·, 0 〉 é definido
por um subconjunto W do espaço de vetores V e restrições ⊕ e � de
+ e ·, respectivamente aos domíniosW ×W e R×W (sobre restrição
de função, ver Definição 4.12). Além disso, ⊕ e � são fechadas em
W (vetor de W ⊕ vetor de W é um vetor de W , e α� v é um vetor
de W se v é vetor de W ) e o vetor nulo 0 pertence a W .
O motivo para a mudança de notação de + para ⊕, e · para �, é

claro: restrições de uma dada função podem ter domínios diferentes;
logo, se for o caso, são funções diferentes de acordo com o Axioma
da Extensionalidade de ZF.

Teorema 8.7. Se V = 〈V,R,+, ·, 0 〉 é um espaço vetorial
real, então V é subespaço de si mesmo.

Demonstração: Lembrando que todo conjunto é subcon-
junto dele mesmo e, consequentemente, toda função é res-
trição dela mesma, a prova é imediata.

Teorema 8.8. W = 〈{0},R,⊕,�, 0 〉 é subespaço do espaço
vetorial real V = 〈V,R,+, ·, 0 〉, se ⊕ é restrição de + ao conjunto
{0} × {0}, e � é restrição de · ao conjunto R× {0}.

Demonstração: Com efeito,
i: {0} ⊂ V ,
ii: 0 ∈ {0},
iii: 0⊕ 0 = 0 e,
iv: para qualquer real α, α� 0 = 0 (Teorema 8.4).

Os subespaços V eW , mencionados nos dois últimos teoremas, são
chamados de subespaços triviais de V . Neste sentido, todo espaço
vetorial real admite pelo menos um subespaço.
Os espaços vetoriais reais que admitem um único subespaço são

aqueles nos quais o conjunto de vetores conta com um único ele-
mento, a saber, o vetor nulo. Portanto, qualquer espaço vetorial real
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com pelo menos um vetor a mais, além do vetor nulo, admite pelo
menos dois subespaços. Mas os subespaços relevantes são os não
triviais, como ilustrado a seguir.

Exemplo 8.8. Seja
V = 〈R2,R,+, ·, (0, 0)〉

o espaço vetorial real R2 usual (conforme Seção 81).
Seja

R = 〈r,R,⊕,�, (0, 0)〉
definido como se segue.

i: r = {(x, y) ∈ R2 | ax + by = 0}, onde a e b são reais não
simultaneamente nulos;

ii: ⊕ : r × r → R2 e � : R × r → R2 são restrições de + e ·,
respectivamente.

Logo, R é subespaço não trivial de V.
Com efeito, sejam (m,n) e (p, q) elementos de r. Logo,

am+ bn = 0 e ap+ bq = 0,
o que implica em

am+ ap+ bn+ bq = 0.
Logo,

a(m+ p) + b(n+ q) = 0,
o que implica que (m+ p, n+ q) também pertence a r.
Mas (m + p, n + q) é igual a (m,n) + (p, q) que, por sua vez,

é igual a (m,n) ⊕ (p, q) (afinal, ⊕ é uma restrição de +). Isso
significa que ⊕ é fechada em r.
Analogamente, se (m,n) pertence a r, então α�(m,n) também

pertence a r. Com efeito,
α� (m,n) = α · (m,n) = (αm,αn).

Mas, se (m,n) pertence a r, então am+ bn = 0, o que implica
que α(am+ bn) = 0; isso, por sua vez, implica que

aαm+ bαn = 0.

Portanto, (αm,αn) ∈ r. Além disso, (0, 0) ∈ r, pois a(0) +
b(0) = 0, para quaisquer reais a e b.
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b Cada conjunto r do último Exemplo (definido pela escolha
dos valores reais a e b) corresponde a uma reta que passa pela origem
(0, 0), conforme Seção 77. Logo, o que provamos acima é que, qual-
quer reta que passa pela origem de R2 define um subconjunto de
vetores de R2 que, por sua vez, define um subespaço do espaço ve-
torial real R2 usual. A versão resumida e informal da demonstração
feita no último Exemplo segue no próximo parágrafo.
Por um lado, o vetor nulo (0, 0) pertence a qualquer reta que passa

pela origem. Por outro, se r é uma reta que passa pela origem, a
adição de pontos quaisquer da reta r resulta em um ponto na reta
r. Além disso, a multiplicação de qualquer real α por um ponto de
r resulta num ponto de r.
Em outras palavras, R2 usual admite uma infinidade de subespaços

não triviais, um para cada escolha de reais a e b, desde que não sejam
ambos nulos.
Os conjuntos s do próximo Exemplo são retas que não passam

pela origem (0, 0). Logo, o que provamos a seguir é que nenhuma
reta que não passa pela origem de R2 define subespaço deste espaço
vetorial real.

Exemplo 8.9. Seja
V = 〈R2,R,+, ·, (0, 0)〉

o espaço vetorial real R2 usual (conforme Seção 81).
Seja

R = 〈s,R,⊕,�, (0, 0)〉
definido como se segue.

i: s = {(x, y) ∈ R2 | ax+by = c}, sendo c 6= 0 e a 6= 0∨b 6= 0;
ii: ⊕ : s × s → R2 e � : R × s → R2 são restrições de + e ·,
respectivamente.

Logo, R não é subespaço de V. Com efeito, basta verificar que
(0, 0) não pertence a s. Afinal,

a(0) + b(0) = 0,
para quaisquer reais a e b.

O próximo Exemplo ilustra como certos espaços vetoriais reais de
funções admitem infinitos subespaços.
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Exemplo 8.10. Seja
F = 〈C0,R,+, ·,©〉

o espaço vetorial real de funções contínuas, como discutido na
Seção 81.
Seja C1 o conjunto de funções reais diferenciáveis com domínio

R e cujas derivadas são contínuas.
Teorema 5.25 garante que

C1 ⊂ C0,

i.e.,toda função diferenciável é contínua.
Teorema 5.21 garante que, se f ∈ C1 e g ∈ C1, então

f + g ∈ C1

(derivada da soma é a soma das derivadas).
Teorema 5.20 garante que, se f ∈ C1, então

α · f ∈ C1

(derivada de constante vezes função é constante vezes a derivada
da função).
Logo, se

G = 〈C1,R,⊕,�,©〉,
onde ⊕ é uma restrição de + ao domínio C1 × C1, e � é uma
restrição de · ao domínio R×C1, então G é subespaço não trivial
de F.
Ademais, se substituirmos, na discussão acima, C1 por C2 (con-

junto de funções reais diferenciáveis duas vezes, com domínio R,
cujas derivadas segundas são contínuas), então temos novo su-
bespaço não trivial de F.
Discussão análoga vale para Ck, o conjunto de funções reais k

vezes diferenciáveis, com domínio R, cujas derivadas de ordem
k são contínuas.

No último Exemplo mostramos que funções reais continuamente
diferenciáveis (aquelas cujas derivadas são contínuas) definem um
subespaço do espaço vetorial real usual de funções reais contínuas
com domínio R. Também indicamos que funções continuamente
diferenciáveis k vezes igualmente definem subespaços do mesmo es-
paço vetorial real.
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b Notar que

C∞ ⊂ Ck+1 ⊂ Ck ⊂ C1 ⊂ C0,

para qualquer k natural maior do que 1, sendo que f ∈ C∞ sss f
admite derivada de qualquer ordem.
Em outras palavras, existem, por exemplo, funções reais três vezes

diferenciáveis, mas não quatro.

Exemplo 8.11. Seja f : R→ R uma função dada por
f(x) = 3

√
x11.

Por conta da Definição de Wallis, 3
√
x11 = x

11
3 . Por conta do

Teorema 5.31,
f ′(x) = 11

3 x
8
3 .

Aplicando novamente Teorema 5.31, temos

f ′′(x) = 88
9 x

5
3 e f ′′′(x) = 440

27 x
2
3 .

Se o domínio de f fosse R− {0}, a derivada quarta seria

f (4)(x) = 880
81 x

−1
3 ,

que é simplesmente

f (4)(x) = 880
81

1
x

1
3

= 880
81

1
3
√
x
.

No entanto, f admite o zero real como um dos elementos de
seu domínio. Lembrando que zero é o único real sem simétrico
multiplicativo, obviamente não pode existir derivada quarta de f
no ponto zero.
Resumidamente, f é uma função que admite derivada terceira

mas não derivada quarta. Neste caso,
f ∈ C3

mas
f 6∈ C4,

o que implica que
C4 ⊂ C3,

ou seja, C4 é subconjunto próprio de C3.
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Teorema 8.9. Todo subespaço de um espaço vetorial real é
um espaço vetorial real.

Demonstração: Seja
W = 〈W,R,⊕,�, 0〉

subespaço do espaço vetorial real
V = 〈V,R,+, ·, 0〉.

Como 0 ∈ W , então axioma V1 é teorema na interpre-
tação W .
Itens iii e iv da Definição 8.3 garantem que axiomas V2

e V3 são teoremas na mesma interpretação.
Axioma V4 é trivialmente verificado.
Finalmente, axiomas V5∼V12 são teoremas na interpre-

tação W por conta do fato de que ⊕ e � são restrições de
+ e ·, respectivamente.

Uma vez conhecido um espaço vetorial real
V = 〈V,R,+, ·, 0 〉,

fica mais fácil definir se
W = 〈W,R,⊕,�, 0 〉

é espaço vetorial real. Basta que W seja subconjunto de V , o vetor
nulo pertença a W e as restrições ⊕ e � sejam fechadas em W .

Exemplo 8.12. Seja
V = 〈R2,R,+, ·, (0, 0)〉

o espaço vetorial real R2 usual (conforme Seção 81).
Seja

R = 〈r,R,⊕,�, (0, 0)〉
definido como se segue.

i: r = {(x, y) ∈ R2 | ax+ by = 0}, onde a 6= 0 ∨ b 6= 0;
ii: ⊕ : r × r → R2 e � : R × r → R2 são restrições de + e ·,

respectivamente.

Logo, R é um espaço vetorial real. Ver Exemplo 8.8.
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Exemplo 8.13. Seja
M2×2 = 〈M2×2,R,+, ·,©〉

o espaço vetorial real das matrizes reais de duas linhas e duas
colunas.
Seja

N2×2 = 〈N2×2,R,⊕,�,©〉
definido como se segue:

i: N2×2 é subconjunto deM2×2 tal que, uma matriz b pertence
a N2×2 sss b11 = 0 e b12 = 0. Ou seja,

b =
(

0 0
b21 b22

)
,

onde b21 e b22 são números reais quaisquer.
ii: ⊕ é restrição de + ao domínio N2×2×N2×2; e � é restrição

de · ao domínio R×N2×2.

b Logo, N2×2 é um espaço vetorial real, uma vez que se trata
de subespaço deM2×2. Cabe ao leitor fazer a demonstração.

Seção 84
Dependência e independência linear

Sumário

Índice
RedeCertos espaços vetoriais reais podem ser univocamente determina-

dos por uma quantia finita de vetores, ainda que exista uma quantia
não finita de vetores no mesmo espaço. Estudamos isso nesta e na
próxima Seção.

Definição 8.4. Sejam V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real e

{v1, v2, · · · , vn}
um conjunto de n vetores de V . Dizemos que um vetor v perten-
cente a V é uma combinação linear dos vetores de {v1, v2, · · · , vn}
sss existem escalares reais α1, α2, · · · , αn tais que

v =
n∑
i=1

αivi.
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Cabe ao leitor recordar que já lidamos com combinações lineares

de funções anteriormente, no Teorema 6.25, na discussão sobre o-
peradores diferenciais (Seção 53) e na discussão sobre soluções da
equação diferencial y′′ + y = 0 (final da Seção 54). Ou seja, o que
fizemos anteriormente foi uma preparação para o estudo de álgebra
linear.

Exemplo 8.14. Seja
x = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}

um conjunto de vetores de R3 usual (caso particular de Rn usual,
conforme Seção 81). Neste caso, o vetor (π,

√
2,−7) é uma com-

binação linear dos vetores de x. Com efeito,
(π,
√

2,−7) = π(1, 0, 0) +
√

2(0, 1, 0) + (−7)(0, 0, 1) + 0(1, 1, 1).

Observar, porém, que esta não é a única possível combinação
linear dos vetores de x para obter (π,

√
2,−7). Afinal, podemos

ter também a seguinte combinação linear:
(π,
√

2,−7) =
0(1, 0, 0) + (

√
2− π)(0, 1, 0) + (−7− π)(0, 0, 1) + π(1, 1, 1).

Além disso, qualquer vetor (a, b, c) de R3 usual é combinação
linear dos vetores de x:

(a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) + 0(1, 1, 1).

Exemplo 8.15. Seja y = {(1, 0, 0), (0, 1, 0)} um conjunto de
vetores de R3 usual. Logo, o vetor (2, 2, 2) não é uma combinação
linear dos vetores de y. Com efeito, se

(2, 2, 2) = α(1, 0, 0) + β(0, 1, 0),
então

(2, 2, 2) = (α, β, 0),
uma contradição.
No entanto, qualquer vetor (a, b, 0) deste espaço é combinação

linear dos vetores de y. Com efeito,
(a, b, 0) = a(1, 0, 0) + b(0, 1, 0).

b No Exemplo 8.14 (1, 1, 1) é combinação linear dos demais
vetores de x. Cada vetor de x é combinação linear dos demais.
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Definição 8.5. Sejam V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real e

{v1, v2, · · · , vn}
um conjunto de n vetores pertencentes a V .
Dizemos que x é linearmente independente sss nenhum vetor

de x é uma combinação linear dos demais. Podemos escrever isso
como ‘x é L.I.’, onde L.I. abrevia ‘linearmente independente’.
Caso contrário, x é linearmente dependente e escrevemos isso
como ‘x é L.D.’, onde L.D. abrevia ‘linearmente dependente’.

Exemplo 8.16. Seja y = {(1, 0, 0), (0, 1, 0)} um conjunto de
vetores de R3 usual. Logo, y é L.I. Com efeito, se

(1, 0, 0) = α(0, 1, 0),
então

(1, 0, 0) = (0, α, 0),
uma contradição; além disso, se

(0, 1, 0) = β(1, 0, 0),
então

(0, 1, 0) = (β, 0, 0),
uma contradição. Portanto, nenhum dos dois vetores de y é
combinação linear do único vetor que resta em y.

Exemplo 8.17. Seja V = 〈S,R,⊕,�,©〉, onde
i: S = {y ∈ C∞ | y′′ + y = 0},
ii: ⊕ é restrição de + (no espaço C∞ usual) a S,
iii: � é restrição de · (no espaço C∞ usual) a S, e
iv: © é a função real identicamente nula, com domínio R.

Se y1 e y2 pertencem a S, então a combinação linear αy1 +βy2

também pertence a S (b demonstração análoga à do Teorema
6.25). Ademais, © ∈ S. Logo V é subespaço de C∞ usual, o que
implica que V é espaço vetorial real.
Lembrando que as funções seno e co-seno pertencem a S, temos

que {sen, cos} é L.I. neste espaço. Com efeito, não existe α tal
que sen = α cos, nem β tal que cos = βsen. Ver Seção 54.
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b É altamente recomendável que o leitor prove circunstancial-
mente todas as afirmações feitas no último Exemplo. As ideias u-
sadas na demonstração do Teorema 6.25 podem ser facilmente adap-
tadas para provar que o Exemplo acima de fato descreve um subes-
paço não trivial de C∞ usual.
Com relação à tese de que {sen, cos} é linearmente independente,

basta observar o que se segue. Uma vez que sen(0) = 0 e cos(0) = 1,
não há real β tal que cos(0) = βsen(0). Logo, não há β tal que

cos(x) = βsen(x)
para todo x real.
A prova de que não existe α de modo que sen(x) = α cos(x) é

análoga.
Definição 8.5 (sobre conjuntos de vetores linearmente indepen-

dentes) não é uma ferramenta muito prática para efeitos de cálcu-
los. Se um conjunto de vetores conta com n elementos, precisamos
testar cada um deles para determinar se o conjunto é linearmente
independente. O próximo teorema, porém, oferece um critério mais
econômico para determinar se um conjunto finito de vetores é L.I.

Teorema 8.10. Um conjunto de vetores
x = {v1, v2, · · · , vn}

de um espaço vetorial real
〈V,R,+, ·, 0 〉

é linearmente independente sss a equação
n∑
i=1

αi · vi = 0

admite uma única solução, onde cada αi é um escalar.

Demonstração: Obviamente a equação
n∑
i=1

αi · vi = 0

sempre admite pelo menos uma solução. Basta fazer αi = 0
para todo i tal que 1 ≤ i ≤ n. Teorema 8.4 e axioma
V5 garantem isso. Esta é chamada de solução trivial da
equação acima.
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Supor que a mesma equação admite outra solução, além

da trivial. Isso implica que existe pelo menos um αj, diferen-
te de 0, tal que a igualdade acima é teorema. Por conta da
comutatividade e da associatividade da adição de vetores,
podemos assumir que esse αj é α1, sem perda de generalida-
de. Logo, multiplicando ambos os lados da igualdade acima
pelo simétrico multiplicativo de α1, podemos reescrever a
mesma equação como

v1 +
n∑
i=2

(αiα−1
1 ) · vi = 0,

uma vez que
α1α

−1
1 = 1 e 1 · v1 = v1,

de acordo com axioma V12. Logo,

v1 =
n∑
i=2

(−αiα−1
1 ) · vi,

por conta do Teorema 8.5. Isso prova que v1 é combinação
linear dos demais vetores de x. Portanto, acabamos de
provar que, se a equação em questão admite outra solução
além da trivial, então x é L.D.
Por outro lado, supor agora que x é L.D. Uma vez que o A-
xioma da Extensionalidade garante que a ordem dos vetores
listados em x é irrelevante, podemos assumir, sem perda de
generalidade, que v1 é combinação linear dos demais vetores
em x. Ou seja, existem β2, β3, · · · , βn tais que

v1 =
n∑
i=2

βi · vi.

Mas isso implica que

v1 +
n∑
i=2

(−βi) · vi = 0,

a qual é a mesma equação do enunciado do Teorema, onde
α1 = 1 e os demais αi são iguais a −βi. Uma vez que α1 6= 0,
então a equação admite outra solução além da trivial.
Com este último passo, provamos que a equação em questão
admite mais de uma solução sss x é L.D. Fórmulas 7 e 12 da
lista de dezessete teoremas da Seção 10 concluem a prova.
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Exemplo 8.18. Em C∞ usual o conjunto
{sen, cos}

é L.I., como já adiantado no Exemplo 8.17. Mas agora usamos
Teorema 8.10 para provar o mesmo resultado. Se

α sen(x) + β cos(x) = 0,
para todo x real (observar que o símbolo 0 à direita da igualdade
corresponde à função identicamente nula), então α = 0 e β = 0,
de acordo com Seção 54.

Exemplo 8.19. Em R2 usual o conjunto
{(1, 1), (2, 2)}

é L.D. Com efeito, se
α · (1, 1) + β · (2, 2) = (0, 0),

então existem outras soluções para essa equação, além da trivial
(α = β = 0). Basta assumir, por exemplo, α = −2 e β = 1.

Teorema 8.11. Seja
x = {v1, v2, · · · , vn}

um conjunto de vetores de um espaço vetorial real
〈V,R,+, ·, 0 〉.

Se algum dos vetores de x for 0, então x é L.D.

Demonstração: Considere a equação
n∑
i=1

αi · vi = 0.

Se existe j tal que vj = 0, então, independentemente de
qualquer valor real αj, temos

αj · vj = 0,
de acordo com Teorema 8.4. Logo, a equação acima admite
infinitas soluções, além da trivial. Basta assumir qualquer
αj 6= 0. Logo, Teorema 8.10 garante que x é L.D.

Naturalmente, a recíproca do último teorema não é teorema (E-
xemplo 8.19).
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Seção 85

Espaços vetoriais reais de dimensão finita
Sumário

Índice
RedeQualificamos aqui o conceito de base para certos espaços vetoriais

reais.
Definição 8.6. Seja

V = 〈V,R,+, ·, 0〉
um espaço vetorial real.
Um conjunto de vetores

x = {v1, v2, · · · , vn}
gera V sss todo vetor v pertencente a V pode ser obtido por
combinação linear (Definição 8.4) dos vetores de x.

Exemplo 8.20. Seja V = 〈S,R,⊕,�,©〉, onde
i: S = {y ∈ C∞ | y′′ + y = 0},
ii: ⊕ é restrição de + (no espaço C∞ usual) a S,
iii: � é restrição de · (no espaço C∞ usual) a S, e
iv: © é a função real identicamente nula, com domínio R.

O conjunto {sen, cos} gera os vetores de V, conforme final da
Seção 54. Com efeito, qualquer função y, onde y′′ + y = 0, é tal
que

y(x) = α cos(x) + β sen(x).

Exemplo 8.21. Seja

x =


1 0

0 0
0 0

 ,
0 1

0 0
0 0

 ,
0 0

1 0
0 0

 ,
0 0

0 0
0 1


.

Logo, x não gera M3×2 usual. Com efeito, sea b
c d
e f

 = α

1 0
0 0
0 0

+ β

0 1
0 0
0 0

+ γ

0 0
1 0
0 0

+ δ

0 0
0 0
0 1

 ,
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então a b

c d
e f

 =

α β
γ 0
0 δ

 .
Logo, nenhum vetor a b

c d
e f

 ,
onde d ou e são diferentes de 0, é combinação linear dos vetores
de x.

Exemplo 8.22. O conjunto x do último Exemplo gera o su-
bespaço de M3×2 usual cujos vetores sãoa b

c 0
0 f

 .
Com efeito, basta fazer α = a, β = b, γ = c e δ = f .

Exemplo 8.23. O conjunto

y =


0 0

2 0
0 0

 ,
 0 0
−π 0
0 0




gera o subespaço de M3×2 usual cujos vetores são0 0
c 0
0 0

 .
Com efeito, se0 0

c 0
0 0

 = α

0 0
2 0
0 0

+ β

 0 0
−π 0
0 0

 ,
basta fazer α = c

2 e β = 0.
Outra opção é fazer α = 0 e β = −c

π
.

Definição 8.7. Seja V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real. O conjunto de vetores {v1, v2, · · · , vn} é uma base finita
(ou base) de V sss x gera V e x é linearmente independente.
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Exemplo 8.24. O conjunto d = {(2, 2), (2, 1)} é uma base de
R2 usual. Provamos isso a seguir.
Por um lado, se

α(2, 2) + β(2, 1) = (0, 0),
então

(2α + 2β, 2α + β) = (0, 0),
o que implica em

2α + 2β = 0 e 2α + β = 0.
Portanto, 2β = β, fórmula esta que é teorema apenas para β = 0.
Mas, se β = 0, então α = 0. Logo, a primeira equação acima
admite apenas a solução trivial para garanti-la como teorema.
Portanto, Teorema 8.10 garante que d é L.I.
Por outro lado, se (a, b) é um vetor qualquer de R2 usual e

(a, b) = α(2, 2) + β(2, 1),
então

(a, b) = (2α + 2β, 2α + β).
Portanto, 2α + 2β = a e 2α + β = b. Mas essas duas últimas
fórmulas são teoremas somente se

α = b− a

2 e β = a− b.

Afinal, para quaisquer a e b reais, temos

(a, b) =
(
b− a

2

)
(2, 2) + (b− a)(2, 1).

Logo, d gera R2 usual.
Portanto, Definição 8.7 garante que d é uma base de R2 usual.

Exemplo 8.25. O conjunto c = {(2, 2), (2, 1), (1, 1)} não é
uma base de R2 usual. Por um lado, conforme último Exem-
plo, c gera R2, uma vez que

(a, b) = α(2, 2) + β(2, 1) + γ(1, 1)
se

α = b− a

2 , β = a− b e γ = 0.
Porém, c é L.D. Com efeito, (2, 2) = 0(2, 1) + 2(1, 1).

Página 356



Matemática Pandêmica Parte 8 Seção 85

Exemplo 8.26. O conjunto
y = {(1, 0, 0), (0, 1, 0)}

do Exemplo 8.16 não é uma base de R3 usual.
Apesar de y ser L.I., não gera R3 usual. Com efeito, se (a, b, c) ∈

R3 e
(a, b, c) = α(1, 0, 0) + β(0, 1, 0),

então
(a, b, c) = (α, β, 0).

Logo, nenhum vetor (a, b, c) deste espaço vetorial real, tal que
c 6= 0, pode ser obtido por combinação linear dos vetores de y.
Porém, y é uma base do supespaço de R3 usual cujos vetores

são da forma (a, b, 0).

Exemplo 8.27. O conjunto x do Exemplo 8.21 não é uma
base de M3×2 usual. Isso porque x não gera o espaço vetorial real
M3×2 usual.

Exemplo 8.25 ilustra uma situação na qual um conjunto de ve-
tores gera um espaço vetorial real, mas não é linearmente indepen-
dente. Exemplo 8.26, não obstante, exibe uma situação na qual
um conjunto de vetores é linearmente independente, mas não gera o
espaço vetorial real dado. Portanto, as duas condições exigidas na
Definição 8.7 (sobre base) são independentes entre si.
Observar também que um mesmo espaço vetorial real pode admitir

mais de uma base.
Exemplo 8.28. Ambos os conjuntos

{(2, 2), (2, 1)} e {(1, 0), (0, 1)}
são bases de R2 usual.

Em contrapartida, qualquer espaço vetorial real cujo único vetor é
o vetor nulo 0 não admite base alguma, por conta do Teorema 8.11.
Graças aos conceitos de base e bijeção (ver Definição 4.16), pode-

mos agora introduzir bases ordenadas, bem como coordenadas de um
vetor em certos espaços vetoriais reais. Como vemos a seguir, uma
base ordenada é uma base finita munida de uma bijeção com um
ordinal finito.
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Definição 8.8. Sejam V um espaço vetorial real e
b = {v1, v2, · · · , vn}

uma base de V. Seja ainda f : n→ b uma bijeção, onde n é um
ordinal finito e f(i) = vi+1 para cada i pertencente a n. Se, para
qualquer vetor v de V tivermos

v =
n∑
i=1

αivi,

os escalares αi definem as coordenadas
(α1, α2, · · · , αn)

de v relativamente ao par ordenado (b, f). Chamamos (b, f) de
base ordenada de V.

É uma prática comum escrever as coordenadas de um vetor, rela-
tivamente a uma base ordenada, na forma de n-uplas ordenadas

(α1, α2, · · · , αn).

Isso porque os vetores de qualquer base são obviamente distintos
entre si. Apesar disso, eventualmente as coordenadas de um vetor,
relativamente a uma base ordenada, podem ser iguais entre si. Ou
seja, a coordenada α1 é o escalar que multiplica por v1, a coordenada
α2 é o escalar que multiplica por v2, e assim por diante. O que define
a ordem na n-upla ordenada é a bijeção f da base ordenada (b, f).

Exemplo 8.29. No Exemplo 8.24 foi provado que
d = {(2, 2), (2, 1)}

é uma base de R2 usual.
Logo, as coordenadas do vetor (

√
2, 4) relativamente à base d

são (
8−
√

2
2 ,

√
2− 4

)
.

Com efeito,

(
√

2, 4) = 8−
√

2
2 (2, 2) + (

√
2− 4)(2, 1).

Estamos assumindo que a bijeção f da base ordenada (d, f) é
dada por f : 2→ d, onde f(0) = (2, 2) e f(1) = (2, 1).
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Se assumirmos uma base ordenada (d, g) onde g : 2 → d é

dada por g(0) = (2, 1) e g(1) = (2, 2), então as coordenadas do
mesmo vetor são (√

2− 4, 8−
√

2
2

)
,

relativamente à nova base ordenada.
Em contrapartida, as coordenadas do mesmo vetor relativa-

mente à base
{(1, 0), (0, 1)}

ordenada por h : 2→ {(1, 0), (0, 1)}, onde h(0) = (1, 0) e h(1) =
(0, 1), são (

√
2, 4). Afinal,

(
√

2, 4) =
√

2(1, 0) + 4(0, 1).

Comumente a bijeção f de uma base ordenada (b, f) não é expli-
citada, uma vez que a própria ordem (α1, α2, · · · , αn) já deixa clara
a bijeção f . Neste contexto, é usual a expressão ‘coordenadas de
um vetor relativamente a uma base finita’ no lugar de ‘coordenadas
de um vetor relativamente a uma base finita ordenada’. Neste livro
adotamos essa convenção, como ocorre no próximo teorema.

Teorema 8.12. Se um espaço vetorial real V admite base
b = {v1, v2, · · · , vn}

com n elementos (onde n é um natural), então as coordenadas
de qualquer vetor v de V são únicas.

Demonstração: Sejam (α1, α2, · · · , αn) as coordenadas de
um vetor v qualquer de V relativamente à base b. Logo,

v =
n∑
i=1

αivi.

Supor que v admite coordenadas (β1, β2, · · · , βn) relativa-
mente à mesma base b. Logo,

v =
n∑
i=1

βivi.

Portanto,
n∑
i=1

αivi −
n∑
i=1

βivi = 0.
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Mas isso implica que

n∑
i=1

(αi − βi)vi = 0.

Lembrando que b é linearmente independente (de acordo
com Definição 8.7), Teorema 8.10 garante que, para todo
i tal que 1 ≤ i ≤ n, temos αi − βi = 0. Logo, αi = βi.
Portanto, as coordenadas são únicas.

Naturalmente, como já alertado, na prova do último teorema as-
sumimos implicitamente uma base ordenada (b, f), onde f : n→ b é
uma bijeção dada por f(i) = vi+1, para todo i pertencente a n.

Teorema 8.13. Se um espaço vetorial real V admite base
b = {v1, v2, · · · , vn}

com n elementos, então qualquer conjunto
c = {w1, w2, · · · , wm}

de m vetores de V, onde m > n, é linearmente dependente.

Demonstração: Cada wj de c é uma combinação linear de
vetores de b, uma vez que b gera V . Logo,

wj =
n∑
i=1

αjivi,

para cada j tal que 1 ≤ j ≤ m. Considere agora
m∑
j=1

βjwj = 0.

Se provarmos que esta última admite mais de uma solução,
além da trivial (i.e., existe pelo menos um βj diferente de
0, tal que a equação acima é teorema), encerramos a prova.
De acordo com axioma V11 da Seção 80, temos m∑

j=1
βjαj1

 v1 +
 m∑
j=1

βjαj2

 v2 + · · ·+
 m∑
j=1

βjαjn

 vn = 0.

Mas esta última equação é teorema se cada somatório
m∑
j=1

βjαji
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que multiplica cada vi for 0.
Logo, temos um sistema de n equações com m valores βj

a serem definidos para garantir que todas as n equações são
teoremas. Lembrando que m > n, isso implica que existe
pelo menos um βj diferente de 0. Esta última afirmação
pode ser demonstrada por indução ao longo de todos os i,
de 1 a n.b Recomendamos que o leitor conclua a prova.

Teorema 8.14. Se o conjunto de vetores {v1, v2, · · · , vn} gera
um espaço vetorial real e o conjunto de vetores

{w1, w2, · · · , wm}
do mesmo espaço é L.I., então m ≤ n.

Demonstração: Notar que, na prova do Teorema 8.13, não
foi necessário usar o fato de que {v1, v2, · · · , vn} é L.I. Foi
suficiente assumir que tal conjunto gera o espaço. Logo, o
enunciado aqui colocado é consequência imediata da prova
do Teorema 8.13.

Teorema 8.15. Se um espaço vetorial real V admite base
b = {v1, v2, · · · , vn}

com n elementos, então qualquer outra base de V tem n elemen-
tos.

Demonstração: Seja
c = {w1, w2, · · · , wm}

outra base de V . Como c gera o espaço e b é L.I., então
Teorema 8.14 garante que n ≤ m.
Analogamente, como b gera o espaço e c é L.I., então

m ≤ n. Mas n ≤ m e m ≤ n sss m = n.

Agora que sabemos que o número n de elementos de uma base de
um espaço vetorial real é invariante, caso exista base

b = {v1, v2, · · · , vn},

podemos finalmente introduzir nova definição, suportada pelo último
teorema acima.
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Definição 8.9. Se um espaço vetorial real V admite base com
n elementos, dizemos que V tem n dimensões. Escrevemos

dim(V) = n.

Exemplo 8.30. Exemplo 8.24 prova que R2 usual tem duas
dimensões.

Exemplo 8.31. Exemplo 8.26 prova que
y = {(1, 0, 0), (0, 1, 0)}

é uma base do supespaço de R3 usual cujos vetores são da forma
(a, b, 0).
Logo, tal subespaço é um espaço vetorial real com duas dimen-

sões.

Exemplo 8.32. Seja V = 〈S,R,⊕,�,©〉, onde
i: S = {y ∈ C∞ | y′′ + y = 0},
ii: ⊕ é restrição de + (no espaço C∞ usual) a S,
iii: � é restrição de · (no espaço C∞ usual) a S, e
iv: © é a função real identicamente nula, com domínio R.

Neste caso, {sen, cos} é uma base de V, de acordo com Exem-
plos 8.17 e 8.20. Logo dim(V) = 2.

Exemplo 8.33. O espaço vetorial real 〈R,R,+, ·, 0〉 tem uma
dimensão. Com efeito, {

√
3} é uma base de tal espaço. Afinal, a

única solução da equação α
√

3 = 0 é a trivial, o que prova que o
conjunto {

√
3} é L.I. Além disso, qualquer vetor r de R pode ser

obtido por combinação linear dos vetores de {
√

3}. Com efeito,
se r = α

√
3, basta fazer

α = r√
3
.

Neste caso, as coordenadas de qualquer vetor r de R relativa-
mente à base {

√
3} são simplesmente r√

3 .

Perceber que qualquer base de um espaço vetorial real de uma di-
mensão, como no Exemplo acima, admite uma única base ordenada
(Definição 8.8) correspondente a ela.
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Exemplo 8.34. Qualquer espaço vetorial real 〈{0},R,+, ·, 0 〉
tem zero dimensões, de acordo com Teorema 8.11.

Teorema 8.16. Seja W = 〈W,R,⊕,�, 0 〉 um subespaço de
um espaço vetorial real V = 〈V,R,+, ·, 0 〉. Se dim(V) = n, então
dim(W) ≤ n.

b A prova fica a cargo do leitor.
Espaços vetoriais reais com n dimensões, onde n é um natural, são

chamados de espaços vetoriais reais de dimensão finita. No Exem-
plo 8.39 e na Seção 97 discutimos sobre espaços vetoriais reais que
não têm dimensão finita. Logo, nem todo espaço vetorial real admite
base finita. Mas, antes de examinarmos essa questão, é relevante dis-
cutirmos outros assuntos.

Seção 86
Espaços métricos

Sumário

Índice
RedeApesar do estudo de espaços métricos usualmente não ser men-

cionado em livros de álgebra linear, seu impacto sobre espaços veto-
riais é muito marcante. Por conta disso, dedicamos esta Seção a um
breve estudo sobre o tema.

Definição 8.10. Um par ordenado m = 〈m, d〉 é um espaço
métrico sss

M1: m 6= ∅;
M2 - Distância: d : m ×m → R é uma função cujas ima-

gens são denotadas por d(a, b);
M3 - Identidade dos Indiscerníveis:

d(a, b) = 0⇔ a = b;

M4 - Simetria:
d(a, b) = d(b, a);

M5 - Desigualdade Triangular:
d(a, c) ≤ d(a, b) + d(b, c).
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Obviamente espaços métricos são definidos por meio de um predi-

cado conjuntista, nos moldes da Seção 71. Logo, no presente con-
texto, todo espaço métrico é um caso muito particular de conjunto,
em ZF.
A função d é chamada de métrica ou função-distância. Para cada

par ordenado (a, b) pertencente a m × m, dizemos que d(a, b) é a
distância entre a e b. Os elementos a e b de m são chamados de
pontos do espaço métrico. Em outras palavras, uma métrica é uma
função real, enquanto uma distância é um número real.
Pontos de um espaço métrico são indiscerníveis sss a distância

entre eles é zero. Axioma M3 assume que pontos de um espaço
métrico são indiscerníveis se, e somente se, forem idênticos.
M4 estabelece que a distância entre a e b é também a distância

entre b e a.
Finalmente, M5 garante a ideia intuitiva de que ‘desvios’ em um

espaço métrico não são ‘atalhos’. A distância entre um ponto ‘de
partida’ a e um ponto de ‘chegada’ c é menor ou igual a quaisquer
desvios que passem por um ponto b qualquer, antes de chegar de a
até c.

Exemplo 8.35. Seja 〈R, d 〉 uma interpretação de espaço mé-
trico, onde d : R2 → R é uma função dada por

d(r, s) = |r − s|.
Fórmulas M1 e M2 da Definição 8.10 são teoremas triviais.
Além disso,

|r − s| = 0⇔ r = s

é teorema, o que implica que M3 é teorema.
Fórmula M4 é teorema por conta de |r − s| = |s − r| para

quaisquer reais r e s.

b Finalmente, cabe ao leitor provar que
|r − t| ≤ |r − s|+ |s− t|.

A última implica que M5 é teorema para a interpretação 〈R, d 〉.
Logo, temos aqui um primeiro modelo de espaço métrico.

O leitor deve ter percebido que o espaço métrico acima foi ampla-
mente usado nas discussões da Seção 44 dedicada a limites de funções
reais. Analogamente, 〈Q, d 〉 é um espaço métrico se d : R2 → R é
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uma função definida como d(r, s) = |r − s|. Este segundo exemplo
foi utilizado nas discussões sobre sequências convergentes da Seção
35.

Exemplo 8.36. b Seja 〈m, d 〉 um par ordenado, onde m 6=
∅ e d : m×m→ R é a função dada por

d(a, b) =
{

1 se a 6= b
0 se a = b.

Neste caso 〈m, d 〉 é um espaço métrico. Cabe ao leitor o ônus
da prova.

O Exemplo acima é conhecido como espaço métrico discreto. Ele
também demonstra que qualquer conjunto m não vazio pode ser
munido de métrica.

Teorema 8.17. Em todo conjunto não vazio é possível definir
uma métrica.

Demonstração: Exemplo 8.36 prova isso.

Teorema 8.18. Em um espaço métrico nenhuma distância é
um real negativo.

Demonstração: Seja 〈m, d〉 um espaço métrico. Sejam ainda
a e b pontos quaisquer do espaço. Logo, de acordo com a
Desigualdade Triangular (axioma M5), temos

d(a, b) + d(b, a) ≥ d(a, a).
Logo, o postulado de Simetria M4 implica que

d(a, b) + d(a, b) ≥ d(a, a).
Logo, a Identidade dos Indiscerníveis M3 garante que

2d(a, b) ≥ 0.
Portanto,

d(a, b) ≥ 0.

O estudo de espaços métricos conta com muitos outros resultados
e aplicações. Exemplos já explorados aqui são os conceitos de limites
de funções reais e de sequências racionais. No entanto, na próxima
Seção exibimos outras aplicações no contexto de espaços vetoriais

Página 365



Matemática Pandêmica Parte 8 Seção 87
reais. Mostramos, entre outras coisas, que certos espaços vetoriais
reais podem ser munidos de métricas não triviais (ou seja, diferentes
da métrica discreta do Exemplo 8.36).

Seção 87
Produto interno

Sumário

Índice
RedeQualificamos aqui produto interno, uma operação binária entre

vetores que produz escalares.

Definição 8.11. Seja V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real. Uma função

〈 , 〉 : V × V → R,
cujas imagens 〈 , 〉(u, v) são denotadas abreviadamente por 〈u, v〉,
é um produto interno em V se as seguintes fórmulas são teore-
mas.

pi1: 〈u, v〉 = 〈v, u〉;
pi2: 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉;
pi3: 〈αu, v〉 = α〈u, v〉, onde α é um escalar;
pi4: 〈u, u〉 > 0 se u 6= 0.

Referimo-nos a (V , 〈 , 〉) como um espaço vetorial real V munido
de produto interno 〈 , 〉.

! É importante que o leitor não confunda pares ordenados 〈a, b〉
com produto interno 〈a, b〉. Para que não exista risco de confusão,
sempre qualificamos quando é um caso ou o outro. No caso de pro-
duto interno, lemos 〈a, b〉 como ‘produto interno entre a e b’.
Axioma pi1 é chamado de simetria. O nome ‘simetria’ é preferido

no lugar de ‘comutatividade’ por conta de produto interno não ser
uma operação fechada no espaço de vetores, apesar de ser definida
sobre pares ordenados de vetores.
Postulados pi2 e pi3 são conhecidos como bilinearidade.
Finalmente, pi4 é chamado de positividade.
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Produtos internos são casos particulares de funcionais. Funcionais

são funções cujos domínios são espaços vetoriais ou produtos carte-
sianos de um espaço vetorial por ele mesmo, tais que suas imagens
são escalares. Neste contexto,

um produto interno em um espaço vetorial real é um funcional
simétrico, bilinear e positivo.

Teorema 8.19. Sejam V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real e

b = {v1, v2, · · · , vn}
uma base de V . Se

(α1, α2, · · · , αn) + (β1, β2, · · · , βn) =
(α1 + β1, α2 + β2, · · · , αn + βn)

e
γ(α1, α2, · · · , αn) = (γα1, γα2, · · · , γαn),

onde γ ∈ R e (α1, α2, · · · , αn) e (β1, β2, · · · , βn) são coordenadas
de vetores quaisquer de V , relativamente a b, então V pode ser
munido de produto interno.

Demonstração: Para qualquer vetor v existem n escalares
αi tais que

v =
n∑
i=1

αivi.

Ou seja, as coordenadas de v relativamente à base b são
(α1, α2, · · · , αn).

Consideremos a função 〈 , 〉 : V × V → R tal que

〈(α1, α2, · · · , αn), (β1, β2, · · · , βn)〉 =
n∑
i=1

αiβi.

Provamos a seguir que essa função define um produto in-
terno em V .
Em primeiro lugar, 〈 , 〉 é um funcional. Além disso, temos

〈(α1, α2, · · · , αn), (β1, β2, · · · , βn)〉 =
n∑
i=1

αiβi =
n∑
i=1

βiαi =

〈(β1, β2, · · · , βn), (α1, α2, · · · , αn)〉,
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por conta da comutatividade da multiplicação entre reais.
Portanto, pi1 é teorema.
Em segundo lugar,
〈(α1, α2, · · · , αn) + (β1, β2, · · · , βn), (γ1, γ2, · · · , γn)〉 =
〈(α1 + β1, α2 + β2, · · · , αn + βn), (γ1, γ2, · · · , γn)〉.

Mas este último termo é idêntico a
n∑
i=1

(αi + βi)γi,

o qual é igual a
n∑
i=1

(αiγi + βiγi) =
n∑
i=1

αiγi +
n∑
i=1

βiγi =

〈(α1, α2, · · · , αn), (γ1, γ2, · · · , γn)〉+
〈(β1, β2, · · · , βn), (γ1, γ2, · · · , γn)〉.

Isso prova que pi2 é teorema.
Em terceiro lugar,

〈α(α1, α2, · · · , αn), (β1, β2, · · · , βn)〉 =
〈(αα1, αα2, · · · , ααn), (β1, β2, · · · , βn)〉.

Observar que α não é necessariamente idêntico a qualquer
αi. Mas o último termo é igual a

n∑
i=1

ααiβi = α
n∑
i=1

αiβi = α〈(α1, α2, · · · , αn), (β1, β2, · · · , βn)〉.

Isso prova que pi3 é teorema.
Finalmente,

〈(α1, α2, · · · , αn), (α1, α2, · · · , αn)〉 =
n∑
i=1

αiαi =
n∑
i=1

α2
i .

Os axiomas da Definição 8.1 garantem que
(α1, α2, · · · , αn) = 0

sss cada αi é 0.
Logo, se algum αi for diferente de 0, então

〈(α1, α2, · · · , αn), (α1, α2, · · · , αn)〉 > 0,
o que prova que pi4 é teorema.
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b Notar que o produto interno sugerido na última demonstração
não é o único possível. A função 〈 , 〉 : V × V → R tal que

〈(α1, α2, · · · , αn), (β1, β2, · · · , βn)〉 =
n∑
i=1

ciαiβi

também define um produto interno em V , se cada ci for um real
estritamente positivo. Cabe ao leitor demonstrar isso. No caso em
que cada ci é 1, temos o produto interno canônico (o mesmo da
demonstração acima) em uma vasta gama de espaços vetoriais reais
de dimensão finita (incluindo qualquer Rn usual). Portanto, um
mesmo espaço vetorial real de dimensão finita admite uma infinidade
de possíveis produtos internos.

Exemplo 8.37. A função 〈 , 〉 : R2 × R2 → R dada por
〈(a, b), (c, d)〉 = ac+ bd

é um produto interno em R2 usual.

Exemplo 8.38. Seja V = 〈S,R,⊕,�,©〉, onde
i: S = {y ∈ C∞ | y′′ + y = 0},
ii: ⊕ é restrição de + (no espaço C∞ usual) a S,
iii: � é restrição de · (no espaço C∞ usual) a S, e
iv: © é a função real identicamente nula, com domínio R.

O conjunto {sen, cos} é uma base de V (conforme Exemplo
8.32), o que implica que qualquer função f de S é da forma
f = α sen + β cos. Logo, se

f = α sen + β cos
e

g = γ sen + δ cos
são vetores de S, então 〈 , 〉 : S2 → R, dada por

〈f, g〉 = π(αγ + βδ),
é um produto interno em V. Lembrar que π é uma constante real
estritamente positiva.

Nem todo espaço vetorial real é de dimensão finita, como se verifica
no próximo Exemplo.
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Exemplo 8.39. Seja V = 〈S,R,⊕,�,©〉, onde
i: S = {y ∈ C∞ | y é polinomial com domínio [−a, a]}, sendo
a 6= 0,

ii: ⊕ é restrição de + (no espaço C∞ usual) a S × S,
iii: � é restrição de · (no espaço C∞ usual) a R× S, e
iv: © é a função real identicamente nula, com domínio R.

Por um lado, adição de funções polinomiais é uma função poli-
nomial, e multiplicação entre um real e uma função polinomial
é uma função polinomial. Isso ocorre mesmo em um domínio
definido por um intervalo fechado não degenerado [−a, a]. Por
outro, a função identicamente nula © é polinomial (de grau 0).
Logo, de acordo com Definição 8.3, V é subespaço de C∞ usual.
Portanto, de acordo com Teorema 8.9, V é espaço vetorial real.
Supor que V admite base finita

b = {p1, p2, · · · , pn},
onde cada pi pertencente a b é polinomial. Logo, existe natural
m tal que m é o grau do polinômio de maior grau entre todas as
funções de b. Portanto, se p for uma função polinomial de grau
maior do que m, p não é combinação linear dos vetores de b, por
conta do Teorema Fundamental da Álgebra (ver Observação
Final da Seção 43).

O fato de um espaço vetorial real não ter base finita não impede
necessariamente a definição de um produto interno:

Exemplo 8.40. No espaço vetorial real V do Exemplo 8.39,
considere a seguinte função 〈 , 〉 : S2 → R, definida por

〈p, q〉 =
∫ a

−a
p(x)q(x)dx.

O produto entre funções polinomiais é polinomial. Além disso,
toda polinomial é integrável. Logo, 〈 , 〉 é um funcional.
Além disso, ∫ a

−a
p(x)q(x)dx =

∫ a

−a
q(x)p(x)dx,

o que garante que pi1 é teorema.
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Também temos que

〈p+ q, r〉 =
∫ a

−a
((p(x) + q(x))r(x))dx =∫ a

−a
(p(x)r(x) + q(x)r(x))dx =∫ a

−a
p(x)r(x) +

∫ a

−a
q(x)r(x)dx = 〈p, r〉+ 〈q, r〉.

Logo, pi2 é teorema. Foi usado acima o Teorema 6.10.
Ademais,

〈αp, q〉 =
∫ a

−a
(αp(x))q(x)dx =

∫ a

−a
αp(x)q(x)dx =

α
∫ a

−a
p(x)q(x)dx = α〈p, q〉,

o que garante que pi3 é teorema. Novamente foi empregado o
Teorema 6.10.
Finalmente,

〈p, p〉 =
∫ a

−a
p(x)2dx ≥ 0,

o que prova que pi4 também é teorema. Foi usado o Teorema
6.7.
Logo, 〈 , 〉 é um produto interno.

Exemplo 8.41. b No mesmo espaço vetorial real V do E-
xemplo 8.39, a função 〈 , 〉 : S2 → R, definida por

〈p, q〉 = c
∫ a

−a
p(x)q(x)dx

é um produto interno em V, se c > 0. Cabe ao leitor a prova.

b Se, em um dado espaço vetorial real não trivial (de dimensão
finita ou não), for possível definir um produto interno 〈 , 〉, então é
possível definir uma infinidade de outros produtos internos.

Teorema 8.20. Seja
V = 〈V,R,+, ·, 0 〉

um espaço vetorial real munido de produto interno 〈 , 〉. Então,
para qualquer vetor u do espaço, temos

〈u, 0〉 = 0.

Página 371



Matemática Pandêmica Parte 8 Seção 88

Demonstração: De acordo com pi1, 〈u, 0〉 = 〈0, u〉. De
acordo com pi2 e axioma V5 da Seção 80,

〈0, u〉 = 〈0 + 0, u〉 = 〈0, u〉+ 〈0, u〉.
Mas a equação

〈0, u〉 = 〈0, u〉+ 〈0, u〉
somente é teorema se 〈0, u〉 = 0.

Seção 88
Norma de um vetor

Sumário

Índice
RedeTodo espaço vetorial real munido de produto interno 〈 , 〉 é um

espaço métrico cuja função-distância é induzida por 〈 , 〉. Este é o
tema principal desta Seção.

Definição 8.12. Seja V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real munido de produto interno 〈 , 〉. A norma de um vetor v é

‖ v ‖ =
√
〈v, v〉.

Teorema 8.21. Seja V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real munido de produto interno 〈 , 〉. Então ‖ 0 ‖ = 0.

Demonstração: Consequência imediata de Teorema 8.20 e
da definição de norma.

Teorema 8.22. Seja V = 〈V,R,+, ·, 0〉 um espaço vetorial
real munido de produto interno 〈 , 〉. Então

‖ λv ‖ = |λ| · ‖ v ‖,
onde λ é um escalar.

Demonstração: De acordo com Definição 8.12 e axiomas
pi1 e pi3 da Definição 8.11,

‖ λv ‖ =
√
〈λv, λv〉 =

√
λ〈v, λv〉 =√

λ2〈v, v〉 =
√
λ2
√
〈v, v〉 = |λ| · ‖ v ‖ .
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Teorema 8.23 (Desigualdade de Cauchy-Schwarz). Se
V = 〈V,R,+, ·, 0 〉

é um espaço vetorial real, munido de produto interno
〈 , 〉 : V × V → R,

e u e v são vetores de V , então
|〈u, v〉| ≤ ‖ u ‖ · ‖ v ‖ .

Demonstração: Se v = 0, a prova é imediata, graças ao
Teorema 8.20. Situação análoga para u = 0, uma vez que
produto interno é simétrico, de acordo com pi1.
Agora consideremos a situação na qual v 6= 0. Neste caso,

Definição 8.12 de norma, bem como os axiomas da Definição
8.11, garantem que

0 ≤ ‖ u+ λv ‖2 = 〈u+ λv, u+ λv〉 =
〈u, u+ λv〉+ 〈λv, u+ λv〉 =

〈u, u〉+ 〈u, λv〉+ 〈λv, u〉+ 〈λv, λv〉 =
〈u, u〉+ 2λ〈u, v〉+ λ2〈v, v〉.

Levando em conta que essa desigualdade vale para qual-
quer λ real, façamos

λ = −〈u, v〉
〈v, v〉

,

uma vez que v 6= 0 e, portanto, 〈v, v〉 6= 0.
Logo, de acordo com a desigualdade acima,

0 ≤ 〈u, u〉 − 2〈u, v〉
〈v, v〉

〈u, v〉+ 〈u, v〉
2

〈v, v〉2
〈v, v〉 =

〈u, u〉 − 〈u, v〉
2

〈v, v〉
.

Portanto,
〈u, u〉 ≥ 〈u, v〉

2

〈v, v〉
,

o que implica em 〈u, u〉〈v, v〉 ≥ 〈u, v〉2. Logo, Definição 8.12
garante que

|〈u, v〉| ≤ ‖ u ‖ · ‖ v ‖ .
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Uma das consequências da desigualdade de Cauchy-Schwarz é a

famosa desigualdade triangular, resultado estratégico para a prova
de que normas induzidas por produtos internos também induzem
métricas.

Teorema 8.24 (Desigualdade Triangular). Seja
V = 〈V,R,+, ·, 0〉

um espaço vetorial real munido de produto interno 〈 , 〉.
Se a e b são vetores de V , então

‖ a+ b ‖ ≤ ‖ a ‖ + ‖ b ‖ .

Demonstração: De acordo com Definição 8.12 e axiomas
pi1 e pi2 da Definição 8.11,
‖ a+ b ‖2 = 〈a+ b, a+ b〉 = 〈a, a+ b〉+ 〈b, a+ b〉 =

〈a, a〉+ 〈a, b〉+ 〈b, a〉+ 〈b, b〉 =
‖ a ‖2 + 2〈a, b〉 + ‖ b ‖2 ≤
‖ a ‖2 + 2|〈a, b〉| + ‖ b ‖2 .

Mas Teorema 8.23 sobre a desigualdade de Cauchy-Schwarz
garante que este último termo é menor ou igual a

‖ a ‖2 + 2 ‖ a ‖ · ‖ b ‖ + ‖ b ‖2,

sendo este último idêntico a (‖ a ‖ + ‖ b ‖)2. Uma vez que
toda norma de qualquer vetor é maior ou igual a zero, então

‖ a+ b ‖ ≤ ‖ a ‖ + ‖ b ‖ .

O próximo teorema mostra que a norma em um espaço vetorial real
munido de produto interno pode ser usada para calcular distâncias
(ver Definição 8.10) entre vetores.

Teorema 8.25. Seja V = 〈V,R,+, ·, 0〉 um espaço vetorial
real munido de produto interno 〈 , 〉. Seja ainda d : V × V → R
uma função dada por

d(u, v) = ‖ u− v ‖ .
Logo, 〈V, d 〉 é um espaço métrico.

Demonstração: Basta provarmos que a função d define uma
métrica no espaço V de vetores. Mas d é uma função cujas
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imagens são reais e cujo domínio é não vazio. Logo, axiomas
M1 e M2 de espaço métrico (Definição 8.10) são teoremas.
Sobre M3 (Definição 8.10), observar o seguinte.

d(u, u) = ‖ u− u ‖ = ‖ 0 ‖ .
Logo, Teorema 8.21 garante que d(u, u) = 0.
Por outro lado, axioma pi4, em parceria com Definição

8.12, garante que o vetor nulo é o único cuja norma é zero.
Logo, se d(u, v) = 0, então ‖ u− v ‖ = 0, o que implica em
u− v = 0. Mas isso somente ocorre se u = v. Portanto, M3
é teorema.
Sobre M4, observar que

d(u, v) = ‖ u− v ‖ = ‖ (−1)(v − u) ‖,
de acordo com Teorema 8.5. No entanto, o termo à direita
da última igualdade é | − 1| · ‖ (v − u) ‖, de acordo com
Teorema 8.22. Logo, d(u, v) = ‖ v−u ‖, sendo que ‖ v−u ‖
é d(v, u). Portanto, M4 é teorema.
O último postulado da Definição 8.10 a ser avaliado é M5.

Ou seja, precisamos provar que
‖ u− w ‖ ≤ ‖ u− v ‖ + ‖ v − w ‖ .

Para isso, basta substituir a por u − v e b por v − w no
Teorema 8.24.

Exemplo 8.42. Seja R2 usual munido do produto interno ca-
nônico

〈 , 〉 : R2 × R2 → R
dado por 〈(a, b), (c, d)〉 = ac+ bd.
Neste caso, a norma induzida pelo produto interno 〈 , 〉 induz

também a seguinte métrica d : R2 × R2 → R:

d((a, b), (c, d)) =
√
〈(a, b)− (c, d), (a, b)− (c, d)〉 =√

〈(a− c, b− d), (a− c, b− d)〉 =
√

(a− c)2 + (b− d)2.

Esta é a métrica euclidiana em R2 usual. É também o compri-
mento do segmento de reta [(a, b), (c, d)], de acordo com Seção
77. Logo, R2 usual, munido do produto interno canônico, é o
plano cartesiano.
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Exemplo 8.43. Em R2 usual munido do produto interno ca-
nônico (como no Exemplo anterior), uma circunferência c com
centro (a, b) é o conjunto dos pontos (x, y) equidistantes de (a, b).
Logo,

c = {(x, y) ∈ R2 |
√

(x− a)2 + (y − b)2 = r},
sendo r > 0 a distância que define o raio da circunferência c.
Notar que a definição da circunferência c em R2 usual foi feita

por aplicação do Esquema de Separação.

Exemplo 8.44. Considere o espaço vetorial real 〈R,R,+, ·, 0〉
usual. Neste caso, a multiplicação entre reais (os quais são ve-
tores, além de escalares) é o produto interno canônico de tal es-
paço. Simetria, por exemplo, é consequência da comutatividade
da multiplicação entre reais.
A norma induzida pelo produto interno canônico neste espaço

induz também a seguinte métrica
d : R× R→ R

dada por

d(r, s) =
√
〈r − s, r − s〉 =

√
(r − s)2 = |r − s|.

Desnecessário dizer que esta é exatamente a mesma métrica u-
sada na definição de limite de função real na Seção 44. Observar
que d(r, s) = |r − s| é a métrica euclidiana na reta dos reais.

Exemplo 8.45. No espaço vetorial real V do Exemplo 8.39,
considere a seguinte função 〈 , 〉 : S2 → R, definida por

〈p, q〉 =
∫ a

−a
p(x)q(x)dx.

Foi demonstrado no Exemplo 8.40 que 〈 , 〉 é um produto in-
terno. Logo, é possível calcular a distância, induzida por 〈 , 〉,
entre as seguintes funções:

p : [−a, a]→ R dada por p(x) = x2

e
q : [−a, a]→ R dada por q(x) = 2x.

b Recomendamos que o leitor faça as contas.
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b Outro exercício interessante é definir um espaço vetorial real
de matrizes, bem como um produto interno neste espaço. Em seguida,
mostrar como calcular a distância entre matrizes deste espaço a par-
tir da métrica induzida pelo produto interno escolhido.
Uma vez que um mesmo espaço vetorial real pode ser munido de

uma infinidade de produtos internos, cada um deles induz uma nova
métrica no mesmo espaço.
A seguir começamos a nos aproximar de geometria analítica.

Seção 89
Ortogonalidade

Sumário

Índice
RedeOrtogonalidade é um conceito algébrico, como se percebe na próxi-

ma definição. Perpendicularismo, porém, é um conceito geométrico
a ser discutido na próxima Seção.

Definição 8.13. Vetores u e v de um espaço vetorial real mu-
nido de produto interno 〈 , 〉 são ortogonais entre si sss

〈u, v〉 = 0.

Um conjunto de vetores {v1, v2, · · · , vn} é ortogonal sss vi é
ortogonal a vj para quaisquer i e j tais que i 6= j, 1 ≤ i ≤ n e
1 ≤ j ≤ n.

Uma vez que produto interno é simétrico, se u e v são vetores
ortogonais entre si, então v e u são ortogonais entre si. Logo, é usual
dizer que u é ortogonal a v, se 〈u, v〉 = 0.

Teorema 8.26. Seja
V = 〈V,R,+, ·, 0 〉

um espaço vetorial real munido de produto interno 〈 , 〉. Logo,
o vetor nulo 0 é ortogonal a qualquer vetor de V .

Demonstração: Consequência imediata do Teorema 8.20 so-
bre produto interno entre vetor nulo e qualquer outro vetor
de um mesmo espaço vetorial real.
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Teorema 8.27. Seja V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real munido de produto interno 〈 , 〉. Logo, qualquer conjunto
{v1, v2, · · · , vn} de vetores ortogonais não nulos é linearmente
independente.

Demonstração: Se x = {v1, v2, · · · , vn} é ortogonal então,
para quaisquer vi e vj pertencentes a x, temos 〈vi, vj〉 = 0
se j 6= i. Considere agora a fórmula

n∑
j=1

αjvj = 0.

Se provarmos que os únicos valores αj a garantirem que a
fórmula acima é teorema são aqueles que correspondem à
solução trivial, demonstramos que x é L.I., de acordo com
Teorema 8.10. A partir desta equação temos〈

n∑
j=1

αjvj, vi

〉
= 〈0, vi〉,

para cada vi pertencente a x. Logo, axiomas pi2 e pi3 da
Definição 8.11 e Teorema 8.20 garantem que

n∑
j=1

αj〈vj, vi〉 = 0.

Uma vez que x é ortogonal, então a igualdade acima implica
em

αi〈vi, vi〉 = 0.
No entanto, lembrando que os vetores pertencentes a x são
não nulos, então axioma pi4 da Definição 8.11 garante que
〈vi, vi〉 6= 0. Logo, αi deve ser zero para cada i tal que 1 ≤
i ≤ n. Portanto, Teorema 8.10 implica que x é linearmente
independente.

A recíproca do último teorema não é teorema, como se ilustra no
próximo Exemplo.

Exemplo 8.46. b O conjunto {(π,
√

3), (
√

3, π)} é linear-
mente independente em R2 usual munido do produto interno
canônico 〈 , 〉. Cabe ao leitor provar isso. No entanto,

〈(π,
√

3), (
√

3, π)〉 = 2π
√

3 6= 0.
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A contrapositiva do Teorema 8.27 garante que, em um conjunto

x = {v1, v2, · · · , vn}

de vetores não nulos, linearmente dependente, existe pelo menos um
par {vi, vj} de vetores distintos não ortogonais entre si.

Exemplo 8.47. Seja V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real munido de produto interno 〈 , 〉. Se {u, v} é um conjunto de
vetores não nulos de V , linearmente dependente, então existe α
real tal que u = αv. Logo,

‖ u ‖ =
√
〈u, u〉 =

√
〈αv, αv〉 =√

α2〈v, v〉 = |α|
√
〈v, v〉 = |α| · ‖ v ‖ .

Este último Exemplo inspira a próxima definição.

Definição 8.14. Seja V = 〈V,R,+, ·, 0〉 um espaço vetorial
real munido de produto interno. Dizemos que um vetor não nulo
v de V é unitário sss

‖ v ‖ = 1.

Vetores unitários nada têm a ver com conjuntos unitários.

Teorema 8.28. Seja V = 〈V,R,+, ·, 0〉 um espaço vetorial
real munido de produto interno 〈 , 〉. Logo, para qualquer vetor
não nulo v de V existe vetor w tal que

v = α · w
e

‖ w ‖ = 1.

Demonstração: Basta fazer α = ‖ v ‖. Com efeito, se
v = ‖ v ‖ · w, então w = ‖ v ‖−1 · v. Logo,

‖ w ‖ =
√
〈w,w〉 =

√
〈‖ v ‖−1 · v, ‖ v ‖−1 · v〉 =√

‖ v ‖−2 〈v, v〉 = ‖ v ‖−1
√
〈v, v〉 = ‖ v ‖−1 · ‖ v ‖ = 1.

O último teorema justifica a prática de normalização de vetores em
espaços vetoriais reais munidos de produto interno. A normalização
de um vetor v não nulo é feita definindo um vetor w tal que {v, w}
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é L.D. e

w = 1
‖ v ‖

· v.

À luz dos Teoremas 8.27 e 8.28 introduzimos o seguinte.

Definição 8.15. Seja V = 〈V,R,+, ·, 0〉 um espaço vetorial
real munido de produto interno 〈 , 〉. Um conjunto

x = {v1, v2, · · · , vn}
define uma base ortonormal de V sss

i: x é uma base de V,
ii: x é ortogonal e
iii: cada vetor de x é unitário.

Exemplo 8.48. b Considere R3 usual munido do produto
interno canônico

〈 , 〉 : R3 × R3 → R
dado por

〈(a, b, c), (d, e, f)〉 = ad+ be+ cf.

Neste caso,
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

define uma base ortonormal de R3 usual, enquanto
{(1, 0, 0), (0, 1, 0), (0, 0, π)}

é uma base para o mesmo espaço, mas não ortonormal.

Exemplo 8.49. b Seja P2 = 〈P2,R,+, ·,©〉 o espaço veto-
rial real tal que

i: P2 é o conjunto das funções reais polinomiais de grau menor
ou igual a 2 e domínio R,

ii: + é a adição usual de funções polinomiais de grau menor
ou igual a 2, ou seja, se p e q são funções de P2, então p+q
é uma função tal que (p+ q)(x) = p(x) + q(x),

iii: · é a multiplicação usual de real por uma função polinomial
de grau menor ou igual a 2, ou seja, se p ∈ P2 e α é um
real, então αp é uma função tal que (αp)(x) = αp(x), e
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iv: © é a função identicamente nula com domínio R.

Cabe ao leitor provar que este é um espaço vetorial real.
Logo, se p, q e r são funções reais com domínio R tais que

p(x) = 1, q(x) = x e r(x) = x2, então o conjunto
m = {p, q, r}

define uma base para P2 (o que implica que P2 tem três dimen-
sões).
Neste contexto, qualquer função v : R→ R de P2 tal que

v(x) = ax2 + bx+ c,

tem coordenadas
(a, b, c)

relativamente à base m.
Se definirmos o produto interno 〈 , 〉 : P2 × P2 → R como

〈ax2 + bx+ c, dx2 + ex+ f〉 = adx2 + bex+ cf,

então m é uma base ortonormal de P2 relativamente a este pro-
duto interno. Recomendamos ao leitor que prove isso.

Seção 90
Noções elementares sobre geometria analítica

Sumário

Índice
RedeGeometria analítica plana, grosso modo, é o estudo de uma in-

terpretação do plano euclidiano (como apresentado na Parte 7) dada
por R2 usual, o qual é munido do produto interno canônico. Detalhes
no Exemplo 8.42.
Geometria analítica espacial, por sua vez, é uma extensão da ge-

ometria analítica plana para R3 usual, também munido de produto
interno canônico.
Geometria analítica trata de geometria analítica plana e geometria

analítica espacial.
Espaços Rn, para n > 3, podem ser usados para generalizar os

resultados de geometria analítica. Discutimos aqui apenas sobre o
plano cartesiano, o qual mostramos a seguir que pode ser identificado
com R2 usual munido do produto interno canônico.
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‖ (r, s) ‖
‖ (t, u) ‖

catetos de um triângulo retângulo com
hipotenusa medindo ‖ (r, s) + (t, u) ‖

Na imagem acima ilustramos ideias intuitivas para o próximo teo-
rema.

Teorema 8.29. Ortogonalidade entre vetores p e q do plano
cartesiano é equivalente a perpendicularismo entre segmentos de
reta definidos por p e q.

Demonstração: Um segmento de reta do plano cartesiano
corresponde a um conjunto definido por dois pontos (a1, b1)
e (a2, b2), onde

(a1, b1) 6= (a2, b2),
conforme imagem acima.
O comprimento deste segmento é

d((a1, b1), (a2, b2)) =
√

(a1 − a2)2 + (b1 − b2)2,

conforme Exemplo 8.42.
Lembrando que

d((a1, b1), (a2, b2)) = ‖ (a1, a2)− (b1, b2) ‖,
temos que

d((a1, b1), (a2, b2)) = ‖ (r, s) ‖,
onde r = a1 − b1 e s = a2 − b2.
Ou seja, (r, s) é um vetor que corresponde a segmentos de

reta dados por pontos (a1, b1) e (a2, b2), distintos entre si,
com comprimento ‖ (r, s) ‖ e tais que

(a1 − a2, b1 − b2) = (r, s).

Analogamente, pontos (c1, d1) e (c2, d2), distintos entre si,
definem segmentos de reta de comprimento ‖ (t, u) ‖, onde
t = c1 − c2 e u = d1 − d2.
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No entanto,

‖ (r, s) + (t, u) ‖2 =
‖ (r, s) ‖2 + ‖ (t, u) ‖2 + 2〈(r, s), (t, u)〉.

Se interpretarmos ‖ (r, s) ‖ e ‖ (t, u) ‖ como compri-
mentos de catetos de um triângulo retângulo, a fórmula
acima é o Teorema de Pitágoras se 〈(r, s), (t, u)〉 = 0, onde
a hipotenusa tem comprimento ‖ (r, s) + (t, u) ‖.
Lembrando que catetos de um triângulo retângulo são per-

pendiculares entre si, a igualdade acima é o Teorema de
Pitágoras se os vetores (r, s) e (t, u) forem ortogonais entre
si, ou seja, 〈(r, s), (t, u)〉 = 0.
Naturalmente, os vetores p e q do enunciado do teorema

são (r, s) e (t, u), respectivamente.

Apesar da demonstração acima não ser rigorosa (uma vez que não
enunciamos o Teorema de Pitágoras na Parte 7), esperamos que o
leitor perceba a relação entre ortogonalidade e perpendicularismo,
pelo menos no contexto do plano cartesiano. Mesmo assim, tudo o
que é desenvolvido nesta Seção pode ser transposto para uma quali-
ficação rigorosa dos conceitos envolvidos.
Na Seção 77 introduzimos uma definição para reta no plano carte-

siano. No entanto, no contexto de álgebra linear, é possível expressar
o mesmo conceito como um teorema.

Teorema 8.30. Uma reta em R2 usual, munido do produto
interno canônico, é o conjunto

{(x, y) ∈ R2 | ax+ by = c},
onde a, b e c são números reais tais que a e b não são simul-
taneamente nulos.

Demonstração: De acordo com os axiomas de incidência,
uma reta pode ser definida em R2 usual por dois pontos.
Isso equivale a afirmar que uma reta pode ser definida por
um ponto e uma direção, no seguinte sentido.
Seja (a, b) um vetor não nulo de R2. Quaisquer pontos

distintos (x1, y1) e (x2, y2) de uma reta perpendicular a (a, b)
são tais que 〈(x2, y2) − (x1, y1), (a, b)〉 = 0, de acordo com
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Teorema 8.29. Neste sentido, a reta é definida, por exemplo,
pelo ponto (x1, y1) e pela direção

(x2, y2)− (x1, y1)
perpendicular a (a, b).
Logo,

〈(x2 − x1, y2 − y1), (a, b)〉 = 0, ou seja,
a(x2 − x1) + b(y2 − y1) = 0, que é equivalente a

ax2 + by2 = ax1 + by1.

Portanto, dado um ponto (x1, y1), todos os pontos (x, y)
tais que

(x, y)− (x1, y1)
é perpendicular a

(a, b),
são os pontos de uma mesma reta (a qual é perpendicular
a (a, b)).
Em outras palavras, para quaisquer (x, y) desta reta, temos

que
ax+ by

é o mesmo valor real constante.
Se chamarmos tal constante de c, temos que

ax+ by = c.

A razão para exigirmos que a e b não podem ser simul-
taneamente nulos é o Teorema 8.26: o vetor nulo é ortogonal
a todo e qualquer vetor do espaço. Logo, (0, 0) não pode
definir uma reta no plano cartesiano.

Foi provado, portanto, que plano cartesiano e R2 usual munido de
produto interno canônico são conceitos equivalentes.
Observar que os parâmetros a e b, na equação

ax+ by = c,

definem a direção da reta, a qual deve ser perpendicular a (a, b). Já o
parâmetro c permite localizar ‘onde está’ a reta, conforme discutido
no próximo Exemplo.
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Exemplo 8.50. Se r = {(x, y) ∈ R2 | ax + by = c} é uma
reta, então

i: c = 0 implica que r passa pela origem (0, 0), pois
a(0) + b(0) = 0.

ii: a = 0 implica que r é uma reta horizontal, ou seja, paralela
ao eixo x ou coincidente com ele; com efeito,

y = c

b
,

onde b 6= 0, uma vez que (a, b) 6= (0, 0), como exige Teorema
8.30; logo, neste caso, a reta está a um distância∣∣∣∣cb

∣∣∣∣
do eixo x;

iii: b = 0 implica que r é uma reta vertical, ou seja, paralela
ao eixo y ou coincidente com ele; com efeito,

x = c

a
,

onde a 6= 0, uma vez que (a, b) 6= (0, 0), como exige Teorema
8.30; logo, neste caso, a reta está a um distância∣∣∣∣ ca

∣∣∣∣
do eixo y;

iv: b 6= 0 implica que r é uma reta não vertical; com efeito,

y = −ax
b

+ c

b
,

onde −a
b
é chamado de coeficiente angular de r e c

b
é conhe-

cido como coeficiente linear de r; observar que neste caso a
reta passa pelo ponto

(
0, c

b

)
, entre muitos outros.

No contexto acima, uma reta r dada por
r = {(x, y) ∈ R2 | ax+ by = c}

é paralela a uma reta
s = {(x, y) ∈ R2 | a′x+ b′y = c′}

se, e somente se, existe λ real tal que
(a, b) = λ(a′, b′) e c 6= λc′.
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Uma reta

t = {(x, y) ∈ R2 | a′′x+ b′′y = c′′}
é coincidente com r se, e somente se, existe λ real tal que

(a, b) = λ(a′′, b′′) e c = λc′′.

Uma reta
u = {(x, y) ∈ R2 | a′′′x+ b′′′y = c′′′}

é perpendicular a r se, e somente se,

〈(a, b), (a′′′, b′′′)〉 = 0.

b Cabe ao leitor provar as três últimas afirmações, as quais são
teoremas.

Seção 91
Transformações lineares

Sumário

Índice
RedeTransformações lineares são funções, cujos domínios e codomínios

são espaços vetoriais, que preservam a estrutura algébrica de tais
espaços. Este conceito é tornado preciso a seguir.

Definição 8.16. Sejam
V = 〈V,R,+, ·, 0 〉 e W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais. T é uma transformação linear de V em
W sss

i: T : V → W é uma função;
ii: T (u+ v) = T (u)⊕ T (v);
iii: T (α · u) = α� T (u).

Ou seja, transformações lineares T : V → W entre espaços vetori-
ais reais são funções que fazem o seguinte:

i: A cada vetor u de V , T (u) é um vetor de W .
ii: Se + é a adição de vetores em V e ⊕ é a adição de vetores em
W , então os dois processos a seguir produzem o mesmo vetor
de W :
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(i) somar vetores u e v de V e, em seguida, calcular a imagem
T (u+ v) de u+ v relativamente à função T e

(ii) calcular as imagens T (u) e T (v) de u e v pela função T e
somar tais imagens no espaço W , ou seja, T (u)⊕ T (v).

iii: Se · é a multiplicação entre escalares reais α e vetores u de V ,
então os dois processos a seguir produzem o mesmo vetor deW :
(i) multiplicar α por u, obtendo α·u, e então calcular a imagem
T (α · u) e

(ii) calcular a imagem T (u) de u e multiplicar α por T (u) no
espaço W , ou seja, α� T (u).

Em particular, se 〈V,R,+, ·, 0 〉 é um espaço vetorial real, então
f : V → V , tal que f(u) = u, é uma transformação linear do espaço
vetorial nele mesmo.

Exemplo 8.51. Considere o espaço vetorial real
P2 = 〈P2,R,+, ·,©〉

das funções polinomiais de grau menor ou igual a 2, conforme
Exemplo 8.49. Considere agora o espaço vetorial real R3 usual,
ou seja,

R3 = 〈R3,R,+, ·, (0, 0, 0)〉.
Podemos definir a seguinte transformação linear T : P2 → R3:
se

p(x) = ax2 + bx+ c

é um vetor de P2, então
T (p) = (a, b, c).

Considerando o último Exemplo, item i da Definição 8.16 é tri-
vialmente um teorema. Examinemos agora as demais exigências para
transformações lineares.
Se p : R→ R e q : R→ R são funções tais que

p(x) = ax2 + bx+ c e q(x) = a′x2 + b′x+ c′,

então (p + q) : R → R é uma função polinomial de grau menor ou
igual a 2 tal que

(p+ q)(x) = (ax2 + bx+ x) + (a′x2 + b′x+ c′) =

(a+ a′)x2 + (b+ b′)x+ (c+ c′).
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Neste caso,

T (p+ q) = (a+ a′, b+ b′, c+ c′),
de acordo com a definição de T no Exemplo 8.51.
No entanto, T (p) = (a, b, c) e T (q) = (a′, b′, c′). Logo,

T (p) + T (q) = (a+ a′, b+ b′, c+ c′).

Isso garante que item ii da Definição 8.16 é teorema, uma vez que
a transitividade da igualdade implica que T (p+ q) = T (p) + T (q).
Finalmente, α · p : R→ R é uma função polinomial de grau menor

ou igual a 2 tal que
(α · p)(x) = α(ax2 + bx+ c) = αax2 + αbx+ αc,

o que implica que
T (α · p) = (αa, αb, αc).

Porém, uma vez que T (p) = (a, b, c), então
α · T (p) = α · (a, b, c) = (αa, αb, αc).

Logo, item iii da Definição 8.16 também é teorema.
Isso conclui a demonstração de que Exemplo 8.51 de fato ilustra

uma transformação linear do espaço das funções polinomiais de grau
menor ou igual a 2 no espaço vetorial real R3 usual.
Notar também que as coordenadas de qualquer vetor (a, b, c) de

R3 usual, relativamente à base canônica {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
são (a, b, c). Além disso, as coordenadas de qualquer vetor

p(x) = ax2 + bx+ c

do espaço P2, relativamente à base ortonormal do Exemplo 8.51,
são igualmente (a, b, c).

Exemplo 8.52. Seguindo Exemplo 8.51, seja agora
U : P2 → R3

uma função tal que, para cada p ∈ P2 onde
p(x) = ax2 + bx+ c,

temos
U(p) = (2a− 3c, 0, 2b).

Neste caso, U também é uma transformação linear.
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Considerando este novo Exemplo, item i da Definição 8.16 é tri-

vialmente um teorema. Examinemos agora as demais exigências para
transformações lineares.
Se p : R→ R e q : R→ R são funções tais que

p(x) = ax2 + bx+ c

e
q(x) = a′x2 + b′x+ c′,

então (p + q) : R → R é uma função polinomial de grau menor ou
igual a 2 tal que

(p+ q)(x) =
(ax2 + bx+ x) + (a′x2 + b′x+ c′) = (a+ a′)x2 + (b+ b′)x+ (c+ c′).

Neste caso,
T (p+ q) = (2(a+ a′)− 3(c+ c′), 0, 2(b+ b′)),

de acordo com a definição de T no Exemplo 8.51.
No entanto, T (p) = (2a − 3c, 0, 2b) e T (q) = (2a′ − 3c′, 0, 2b′).

Logo,
T (p) + T (q) = (2a− 3c, 0, 2b) + (2a′ − 3c′, 0, 2b′) =

(2a− 3c+ 2a′ − 3c′, 0 + 0, 2b+ 2b′) =
(2(a+ a′)− 3(c+ c′), 0, 2(b+ b′)).

Isso garante que item ii da Definição 8.16 é teorema, uma vez que
a transitividade da igualdade implica que T (p+ q) = T (p) + T (q).
Finalmente, α · p : R→ R é uma função polinomial de grau menor

ou igual a 2 tal que
(α · p)(x) = α(ax2 + bx+ c) = αax2 + αbx+ αc,

o que implica que
T (α · p) = (2αa− 3αc, 0, 2αb).

Porém, uma vez que T (p) = (2a− 3c, 0, 2b), então
α · T (p) = α · (2a− 3c, 0, 2b) = (2αa− 3αc, 0, 2αb).

Logo, item iii da Definição 8.16 também é teorema.
Isso conclui a demonstração de que Exemplo 8.52 também ilustra

uma transformação linear do espaço das funções polinomiais de grau
menor ou igual a 2 no espaço vetorial real R3 usual.
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Exemplo 8.53. Seguindo Exemplos 8.51 e 8.52, seja agora
R : P2 → R3

uma função tal que, para cada p ∈ P2 onde
p(x) = ax2 + bx+ c,

temos
R(p) = (2a− 3c, 7, 2b).

b Neste caso, R não é uma transformação linear. Com
efeito, itens ii e iii da Definição 8.16 não são teoremas. Cabe
ao leitor justificar.

Exemplo 8.54. b Em R3 usual, seja f : R3 → R3 tal que
f(x, y, z) = (αx+ βy + γz, δx+ εy + ζz, ηx+ θy + κz).

Logo, f é uma transformação linear de R3 usual em R3 usual,
para quaisquer reais α, β, γ, δ, ε, ζ, η, θ e κ. Recomendamos
que o leitor prove isso.

Teorema 8.31. Sejam
V = 〈V,R,+, ·, 0 〉 e W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais. Se T : V → W é uma transformação
linear, então

T (0) = 0.

Demonstração: Teorema 8.4 garante que, para qualquer ve-
tor v ∈ V ,

T (0) = T (0 · v).

Mas item iii da Definição 8.16 exige que a fórmula
T (α · u) = α� T (u)

seja teorema. Portanto,
T (0 · v) = 0� T (v).

Uma vez que T (v) é um vetor de um espaço vetorial real,
então Teorema 8.4 garante que

0� T (v) = 0.
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Exemplo 8.55. Teorema 8.31 garante que a função R do E-
xemplo 8.53 não é uma transformação linear. Com efeito, se
© : R→ R, dada por

©(x) = 0,
é o vetor nulo de P2, então R(©) = (0, 7, 0) é diferente do vetor
nulo (0, 0, 0) de R3 usual.

Se um espaço vetorial real 〈V,R,+, ·, 0 〉 admite base finita b, qual-
quer vetor v ∈ V é uma combinação linear única dos elementos de b
(Teorema 8.12). Graças a isso, transformações lineares T podem ser
univocamente determinadas a partir de imagens dos elementos de b
relativamente a T , como se percebe no próximo teorema.

Teorema 8.32. Sejam
V = 〈V,R,+, ·, 0 〉 e W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais e
b = {v1, v2, · · · , vn}

uma base de V.
Se R : b→ W é uma função, então existe uma única transfor-

mação linear
T : V → W

tal que R é restrição de T .

Demonstração: Se R : b→ W é uma função, então
R(vi) = wi,

para todo i tal que 1 ≤ i ≤ n, sendo cada wi pertencente a
W .
Se b = {v1, v2, · · · , vn} é uma base de V , então cada vetor

v de V é dado por

v =
n∑
i=1

αivi.

Se R é uma restrição de T , então
T (vi) = wi,

para todo i tal que 1 ≤ i ≤ n.
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Se T é uma transformação linear de V em W , então

T (v) = T
(

n∑
i=1

αivi

)
=

n∑
i=1
T (αivi) =

n∑
i=1

αiT (vi),

graças aos itens ii e iii da Definição 8.16. Logo, basta co-
nhecer as imagens T (vi) para definir as imagens de uma
transformação linear

T : V → W .

Ou seja, apesar de poder existir uma infinidade de funções
T : V → W

tais queR é restrição de T , apenas uma delas é transformação linear.
Cada função R : b→ W define uma e apenas uma transformação

linear de V em W .
Exemplo 8.56. Seja R : {(1, 0), (0, 1)} → R3 uma função tal

que
R(1, 0) = R(0, 1) = (5, 7, 9),

onde {(1, 0), (0, 1)} é a base canônica de R2 usual e R3 é o espaço
de vetores de R3 usual.
Logo, existe uma única transformação linear T : R2 → R3 tal

que R é restrição de T . Com efeito,
T (x, y) = T (x(1, 0) + y(0, 1)) = T (x(1, 0)) + T (y(0, 1)) =

xT (1, 0) + yT (0, 1) = x(5, 7, 9) + y(5, 7, 9) =
(5x, 7x, 9x) + (5y, 7y, 9y) = (5x+ 5y, 7x+ 7y, 9x+ 9y).

b Recomendamos que o leitor faça uma versão do Exemplo
acima na qual seja trocada apenas a função R, substituindo-a por
uma função injetiva.
Os próximos teoremas mostram que transformações lineares tam-

bém podem ser interpretadas como vetores.

Teorema 8.33. Sejam
V = 〈V,R,+, ·, 0 〉 e W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais.
A função T : V → W dada por T (u) = 0 é uma transformação

linear de V em W.
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Demonstração: Item i da Definição 8.16 é imediato.
Sobre item ii, notar que

T (u+ v) = 0, T (u) = 0 e T (v) = 0.

Logo, de acordo com axioma V5 da Definição 8.1,
T (u+ v) = T (u)⊕ T (v).

Finalmente, sobre item iii, Teorema 8.6 garante que
α� T (u) = 0,

uma vez que T (u) = 0.
Logo, lembrando que T (α · u) = 0, temos que

T (α · u) = α� T (u)
também é teorema.

Provamos acima que uma função constante (cuja constante é um
vetor nulo), com domínio em um espaço de vetores, é uma transfor-
mação linear.
A seguir mostramos que escalar vezes transformação linear é uma

transformação linear, desde que essa operação seja definida a partir
da estrutura algébrica do co-domínio, o qual é um espaço de vetores.

Teorema 8.34. Sejam
V = 〈V,R,+, ·, 0 〉 e W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais, α um escalar e T : V → W uma trans-
formação linear. Então α� T : V → W , dada por

α� T (u) = α� T (u),
é uma transformação linear.

Demonstração: Item i da Definição 8.16 é trivial. Para
item ii, notar que
α� T (u+ v) = α� T (u+ v) = α� (T (u)⊕ T (v)) =

α� T (u)⊕ α� T (v) = α� T (u)⊕ α� T (v).

Na sequência acima de quatro ocorrências da igualdade,
a primeira é justificada pela definição de multiplicação de
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escalar por transformação linear, assumida no enunciado do
teorema. A segunda é decorrente da hipótese de que T é
uma transformação linear. A terceira é consequência do a-
xioma V9 da Definição 8.1. Na quarta e última novamente
é usada a definição de multiplicação de escalar por transfor-
mação linear.
Sobre item iii da Definição 8.16, temos que

α� T (β · u) = α� T (β · u) =
α� (β � T (u)) = (αβ)� T (u) =

(βα)� T (u) = β � (α� T (u)) = β � (α� T (u)),
onde β é um escalar.

b Cabe ao leitor justificar cada uma das seis últimas
ocorrências da igualdade.

No teorema a seguir é provado que a soma de transformações li-
neares, definidas sobre um mesmo domínio, é também uma trans-
formação linear, desde que essa operação seja definida a partir da
estrutura algébrica do co-domínio, o qual é um espaço de vetores.

Teorema 8.35. Sejam
V = 〈V,R,+, ·, 0 〉 e W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais.
Sejam

R : V → W e T : V → W

transformações lineares.
Logo, R� T : V → W , definida como

R� T (u) = R(u)⊕ T (u),
é uma transformação linear.

Demonstração: Item i da Definição 8.16 é trivial. Para
item ii, temos que

R� T (u+ v) = R(u+ v)⊕ T (u+ v) =
(R(u)⊕R(v))⊕ (T (u)⊕ T (v)) =
(R(u)⊕ T (u))⊕ (R(v)⊕ T (v)) =

R� T (u)⊕R� T (v).
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Com relação a item iii da Definição 8.16, observar que

R� T (α · u) =
R(α · u)⊕ T (α · u) = α�R(u)⊕ α� T (u) =

α� (R(u)⊕ T (u)) = α�R� T (u),
onde α é um escalar.
Logo, R� T é uma transformação linear.

b Cabe ao leitor justificar cada um dos passos da prova.

Teorema 8.36. Sejam
V = 〈V,R,+, ·, 0 〉 e W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais.
Seja T o conjunto de todas as transformações lineares de V em
W. Logo, 〈T,R,�,�,©〉 é um espaço vetorial real, onde

i: � é a adição de transformações lineares usada no Teorema
8.35,

ii: � é a multiplicação entre escalar e transformação linear
usada no Teorema 8.34 e

iii: © : V → W é a função dada por ©(u) = 0.

Demonstração: b A prova de que axiomas V1∼V12 da
Definição 8.1 são teoremas nesta interpretação fica muito
facilitada, graças aos teoremas 8.33, 8.34 e 8.35.
Detalhes ficam para o leitor.

Exemplo 8.57. Continuando Exemplo 8.54, toda transfor-
mação linear de R3 usual em R3 usual é uma função f : R3 → R3

tal que
f(x, y, z) = (αx+ βy + γz, δx+ εy + ζz, ηx+ θy + κz),

onde α, β, γ, δ, ε, ζ, η, θ e κ são reais.
Podemos reescrever isso na forma matricial, como se segue.α β γ

δ ε ζ
η θ κ

 ·
xy
z

 =

αx+ βy + γz
δx+ εy + ζz
ηx+ θy + κz

 ,
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sendo que a operação acima é a multiplicação usual entre ma-
trizes reais (ver Definição 8.17 imediatamente abaixo, para recor-
dar). Cada matriz α β γ

δ ε ζ
η θ κ


corresponde a uma transformação linear. Se todas as entradas
forem nulas, temos a transformação linear© do último teorema.
Logo, o espaço vetorial real de todas as transformações lineares
de R3 usual em R3 usual tem nove dimensões.
Se o leitor não recorda o conceito de multiplicação matricial usual,

aqui vai.

Definição 8.17. Sejam
a : lm × cn → R

e
b : l′n × c′p → R

matrizes reais, de acordo com a Definição 8.2.
Ou seja, o número de colunas da matriz a coincide com o

número de linhas da matriz b. O produto de a por b é uma
matriz

c : lm × c′p → R
tal que cada entrada cij da matriz c é dada por

cij =
n∑
k=1

aikbkj.

Exemplo 8.58. Ver multiplicação matricial do Exemplo 8.57.

O espaço vetorial real das transformações lineares de R3 usual em
R3 usual do Exemplo 8.57 é simplesmente o espaço M3×3 usual.

i A representação matricial de transformações lineares entre es-
paços vetoriais reais de dimensão finita depende das bases ordenadas
(Definição 8.8) utilizadas para os espaços vetoriais reais envolvidos.
No Exemplo 8.57 utilizamos base canônica para R3 usual. Não
avançamos sobre este importante tópico aqui.
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Seção 92

Imagem de uma transformação linear
Sumário

Índice
RedeProvamos aqui que transformações lineares definem subespaços de

seus contradomínios.
Definição 8.18. Sejam

V = 〈V,R,+, ·, 0 〉
e

W = 〈W,R,⊕,�, 0 〉
espaços vetoriais reais. Se T : V → W é uma transformação
linear, dizemos que

Im(T ) = {w ∈ W | ∃v(v ∈ V ∧ T (v) = w)}
é a imagem de T .

Ou seja, a imagem de uma transformação linear T é o conjunto
dos vetores w tais que w = T (v), para algum v do domínio de T .

Exemplo 8.59. Considere o espaço vetorial real
P2 = 〈P2,R,+, ·,©〉

das funções polinomiais de grau menor ou igual a 2, conforme
Exemplo 8.49. Seja D : P2 → P2 a função dada por

D(p(x)) = d

dx
p(x),

onde p(x) é um vetor de P2.
Observar que D é uma transformação linear. Com efeito, item

i da Definição 8.16 é imediato; item ii decorre do fato de que
derivada da soma é a soma de derivadas (Teorema 5.21); item
iii é consequência do fato de que derivada de constante vezes
função é constante vezes derivada da função (Teorema 5.20).
Se (a, b, c) são as coordenadas de p(x) relativamente à base

ordenada canônica de P2, então D(p(x)) é um vetor com coor-
denadas (0, 2a, b). Com efeito,

d

dx
(ax2 + bx+ c) = 0 + 2ax+ b.
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Neste caso, Im(D) é o conjunto das funções polinomiais de

grau menor ou igual a 1.

No Exemplo acima a imagem da transformação linear D define
um subespaço do contradomínio de D. Isso não é coincidência, como
se percebe no próximo teorema.

Teorema 8.37. Sejam
V = 〈V,R,+, ·, 0 〉

e
W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais. Se
T : V → W

é uma transformação linear, então
〈Im(T ),R,⊕′,�′, 0〉

é subespaço de W, onde ⊕′ e �′ são restrições de ⊕ e �, respec-
tivamente.

Demonstração: Item i da Definição 8.3 é imediato.
Item ii é consequência do Teorema 8.31.
Sobre item iii, se w1 e w2 pertencem a Im(T ), então e-

xistem v1 e v2 tais que T (v1) = w1 e T (v2) = w2. Mas
T (v1 + v2) = T (v1)⊕ T (v2) = w1 ⊕ w2.

Portanto, w1 ⊕ w2 pertence a Im(T ).
Para finalizar, se w ∈ Im(T ), então existe v ∈ V tal que
T (v) = w. Mas

T (α · v) = α� T (v) = α� w,
se α é um escalar. Logo, α� w pertence a Im(T ).

Seção 93
Núcleo de uma transformação linear

Sumário

Índice
RedeProvamos aqui que transformações lineares definem subespaços de

seus domínios.
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Definição 8.19. Sejam
V = 〈V,R,+, ·, 0 〉 e W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais. Se
T : V → W

é uma transformação linear, dizemos que
N(T ) = {v ∈ V | T (v) = 0}

é o núcleo de T .

Ou seja, o núcleo de uma transformação linear T é o conjunto de
todos os vetores v do domínio de T tais que T (v) é o vetor nulo do
co-domínio de T .

Exemplo 8.60. Considere o espaço vetorial real
P2 = 〈P2,R,+, ·,©〉

das funções polinomiais de grau menor ou igual a 2, conforme
Exemplo 8.49. Seja D : P2 → P2 a função dada por

D(p(x)) = d

dx
p(x),

onde p(x) é um vetor de P2. Como visto no Exemplo 8.59, D
é uma transformação linear.
O núcleo de D é o conjunto das funções reais constantes. Com

efeito, se p(x) = c, então
d

dx
p(x) = 0,

ou seja, a derivada de qualquer função constante é a função iden-
ticamente nula ©.

No Exemplo acima o núcleo da transformação linear D define um
subespaço do domínio de D. Isso não é coincidência:

Teorema 8.38. Sejam
V = 〈V,R,+, ·, 0 〉

e
W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais.
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Se T : V → W é uma transformação linear, então

〈N(T ),R,⊕′,�′, 0〉
é subespaço de W, onde ⊕′ e �′ são restrições de ⊕ e �, respec-
tivamente.

Demonstração: Item i da Definição 8.3 é imediato.
Item ii é consequência do Teorema 8.31.
Sobre item iii, se v1 e v2 pertencem aN(T ), então T (v1) =
T (v2) = 0. Mas

T (v1 + v2) = T (v1)⊕ T (v2) = 0⊕ 0 = 0.
Logo, v1 + v2 pertence ao núcleo de T .
Finalmente, com relação ao item iv da Definição 8.3, se

v ∈ N(T ), então T (v) = 0. Mas
T (α · v) = α� T (v) = α� 0 = 0.

Logo, α · v pertence ao núcleo de T .

Importante notar os seguintes fatos sobre os Exemplos 8.59 e
8.60.
• O espaço vetorial real das funções polinomiais de grau menor
ou igual a 2 tem três dimensões;
• O subespaço Im(D) tem duas dimensões;
• O subespaço N(D) tem uma dimensão;
• 2+1 = 3, onde 2 = dim(Im(D)), 1 = dim(N(D)) e 3 = dim(P2).

Novamente isso não é mera coincidência, como se percebe no pró-
ximo resultado.

Teorema 8.39 (Núcleo e Imagem). Sejam
V = 〈V,R,+, ·, 0 〉

e
W = 〈W,R,⊕,�, 0 〉

espaços vetoriais reais, onde V tem n dimensões. Se T : V → W
é uma transformação linear, então

dim(N(T )) + dim(Im(T )) = n.
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Demonstração: b Basta provar que, se
{v1, v2, · · · , vp}

é uma base para N(T ) e
{T (u1), T (u2), · · · , T (uq)}

é uma base para Im(T ), então
{v1, v2, · · · , vp, u1, u2, · · · , uq}

é uma base para V .
Uma vez que dim(V) = n, segue que p+ q = n. Deixamos

a prova para o leitor.

i O teorema acima é o célebre Teorema do Núcleo e Imagem.
Uma generalização considerável deste resultado, pelo menos para

certos operadores lineares, é o Teorema de Atiyah–Singer [45], o qual
se refere ao índice analítico de operadores diferenciais elípticos. Neste
contexto, índices analíticos estão intimamente relacionados com a
dimensão de um espaço vetorial real cujos vetores são funções que
são soluções de uma dada equação diferencial.
Levando em conta as discussões nesta Seção e na anterior, se uma

transformação linear T é injetiva, então seu núcleo é o subespaço
trivial do domínio de T formado apenas pelo vetor nulo do domínio.
Se T for sobrejetiva, sua imagem é o subespaço trivial do co-domínio
de T formado por todos os vetores deste co-domínio.

Seção 94
Operadores lineares

Sumário

Índice
RedeOperadores lineares são transformações lineares nas quais domínio

e contradomínio são o mesmo espaço de vetores.

Definição 8.20. Seja V = 〈V,R,+, ·, 0 〉 um espaço vetorial
real. Uma transformação linear

T : V → V

é um operador linear.
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Exemplo 8.61. A transformação linear D dos Exemplos 8.59
e 8.60 é um operador linear.

Exemplo 8.62. Seja F = 〈C∞,R,+, ·,©〉 o espaço vetorial
real onde
• C∞ é o conjunto de todas as funções reais diferenciáveis um
número arbitrário de vezes;
• + : C∞ × C∞ → C∞ é uma função dada por

+(f, g)(x) = f(x) + g(x);

• · : R× C∞ → C∞ é uma função dada por
·(α, f)(x) = αf(x);

• © é a função real © : R → R tal que ©(x) = 0 para todo
real x.

b Logo, qualquer operador diferencial (ver Seção 53) definido
sobre C∞ é um operador linear sobre F.

Para efeitos práticos, isso significa que teoremas de álgebra linear
sobre operadores lineares e espaços vetoriais reais sobre os quais eles
atuam encontram repercussão no estudo de equações diferenciais.

Seção 95
Autovalores e autovetores

Sumário

Índice
Rede

Se V = 〈V,R,+, ·, 0 〉 é um espaço vetorial real e
T : V → V

é um operador linear sobre V , um subespaço
W = 〈W,R,⊕,�, 0 〉

de V é invariante sob a ação de T se, e somente se, para qualquer
vetor w pertencente a W , temos T (w) pertencente a W .

Isso equivale a afirmar que a imagem da restrição de T a W está
contida em W .
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Naturalmente, todo espaço vetorial real é invariante sob a ação de

qualquer operador linear definido sobre ele. Por conta disso, estamos
interessado apenas nos casos não triviais. A próxima definição sugere
a investigação de subespaços de uma dimensão que sejam invariantes
sob a ação de operadores lineares.

Definição 8.21. Sejam
V = 〈V,R,+, ·, 0 〉

um espaço vetorial real e T : V → V um operador linear sobre
V . Um vetor não nulo de V é um autovetor de T sss existe λ
real tal que

T (v) = λ · v.
Referimo-nos ao real λ como autovalor do operador linear T .
A equação acima é conhecida como equação de autovalores.

Mais adiante vemos alguns exemplos de operadores lineares que
admitem autovetores (e, consequentemente, autovalores), bem como
exemplos que não admitem. No entanto, antes disso, é útil com-
preender o próximo teorema.

Teorema 8.40. Se um operador linear T admite autovetor v,
então qualquer combinação linear não nula de v também é um
autovetor de T .

Demonstração: Por hipótese, sabemos que existe autovalor
λ de T tal que

T (v) = λ · v,
onde · é a multiplicação de escalar por vetor no espaço ve-
torial real em questão.
Seja w uma combinação linear não nula de v, ou seja,

w = α · v, onde α 6= 0 (lembrar que o vetor nulo jamais é
autovetor de operador linear algum). Logo,

T (w) = T (α · v) = α · T (v) = α · (λ · v) =
(αλ) · v = (λα) · v = λ · (α · v).

Em outras palavras,
T (α · v) = λ · (α · v),

o que faz de α·v um autovetor de T com o mesmo autovalor.
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Ou seja, se um operador linear admite um autovalor λ, existe uma

infinidade de autovetores correspondentes a λ.

Exemplo 8.63. Se T é um operador linear identidade (i.e.,
para qualquer vetor v temos T (v) = v), em um espaço vetorial
real, então T admite um único autovalor λ, a saber, λ = 1. Isso
significa que qualquer vetor não nulo deste espaço vetorial real é
um autovetor de T .

Exemplo 8.64. Seja T o operador linear em R2 usual, na base
canônica {(1, 0), (0, 1)}, dado por

T (x, y) = (3x+ 2y, 2x).

Se T admite autovalor λ, então T (x, y) = λ · (x, y), onde · é
a multiplicação de escalar por vetor em R2 usual.
Logo, devemos ter

(3x+ 2y, 2x) = (λx, λy)
que, por sua vez, é equivalente a

3x+ 2y = λx e 2x = λy.

Logo,
y = 2x

λ
e y = x(λ− 3)

2 .

As duas equações acima garantem que x 6= 0 ⇔ y 6= 0. Logo,
para que ambas sejam teoremas, basta que

λ− 3
2 = 2

λ
,

o que implica que λ pode ser −1 ou 4, de acordo com Seção 43.
Os autovetores correspondentes ao autovalor −1 são

(x,−2x),
onde x 6= 0. Os autovetores correspondentes ao autovalor 4 são

(2y, y),
onde y 6= 0.
Observar que esses autovetores são linearmente independentes.

Além disso, qualquer um deles (e.g., (1,−2) e (−2,−1)) é base
de um subespaço de uma dimensão, invariante sob a ação de T .

Página 404



Matemática Pandêmica Parte 8 Seção 95
Para que o leitor desenvolva uma visão intuitiva sobre o que está

acontecendo no último Exemplo, consideremos o seguinte.
Aprendemos acima que qualquer vetor (2c, c) é autovetor do ope-

rador linear
T (x, y) = (3x+ 2y, 2x),

desde que c seja diferente de 0.
Em particular, (2, 1) é um autovetor com autovalor 4. Neste caso,
T (2, 1) = (3(2) + 2(1), 2(2)) = (6 + 2, 4) = (8, 4) = 4 · (2, 1).

Ou seja, T (2, 1) é uma combinação linear λ(2, 1) de (2, 1), onde
λ é o autovalor 4. Além disso, (2c, c) define um subespaço de R2

invariante sob a ação de T .
O mesmo fenômeno não ocorre com vetores que não são autovetores

de T (x, y). Por exemplo, T (3, 1) = (11, 6), sendo que (11, 6) não é
combinação linear de (3, 1).
Comentários análogos valem para os autovetores (c,−2c) com au-

tovalor −1, onde c 6= 0.

Exemplo 8.65. b Seja R o operador linear em R2 usual,
na base canônica, dado por

R(x, y) = (y,−x).
Logo, R não admite qualquer autovalor.

Exemplo 8.66. Seja F = 〈C∞,R,+, ·,©〉 o espaço vetorial
real onde
• C∞ é o conjunto de todas as funções reais diferenciáveis um
número arbitrário de vezes;
• + : C∞ × C∞ → C∞ é a adição usual entre funções reais;
• · : R×C∞ → C∞ é a multiplicação usual entre real e função
real;
• © é a função real © : R → R tal que ©(x) = 0 para todo
real x.

b Logo, o operador linear D sobre C∞ dado por

D(f(x)) = d

dx
f(x)
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admite infinitos autovalores.
Com efeito, de acordo com Seção 63, se

d

dx
f(x) = λf(x),

então f(x) = f(0) expλx. Ou seja, cada real λ é um autovalor
do operador linear de derivação. Os autovetores correspondentes
são as funções f(x). Notar que autovalores diferentes correspon-
dem a autovetores linearmente independentes.

No caso do problema do decaimento radioativo de Polonium-210,
discutido na Seção 63, o modelo proposto

dm

dt
= km

é uma equação de autovalores.
Resolver a equação diferencial acima é equivalente a determinar os

autovetores do operador de derivação de primeira ordem
d

dt

correspondentes ao autovalor k. Para cada valor m(0) real positivo,
m(t) = m(0) exp(kt) é autovetor correspondente a k. Neste mesmo
caso o próprio autovetor é uma função dependente do autovalor.
Cada elemento, substância ou isótopo conta com sua própria meia-

vida, a qual define univocamente o valor de k. Cada meia-vida pode
ser matematicamente mapeada por um autovalor k do operador de
derivação sobre um espaço vetorial real de funções reais.

Exemplo 8.67. b Seja© o operador nulo sobre um espaço
vetorial real qualquer, ou seja,

©(v) = 0
para todo vetor v, onde 0 é o vetor nulo do espaço dado.
Neste caso, © admite apenas o real 0 como autovalor. Com

efeito,
©(v) = 0 · v

para qualquer vetor v, por conta do Teorema 8.4.
Logo, qualquer vetor não nulo v do espaço é um autovetor cor-

respondente ao autovalor 0.
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Nos Exemplos 8.66 e 8.67 mostramos que o zero real pode ser

autovalor de um operador linear, apesar de nenhum autovetor ser
nulo. Também mostramos que nem todo operador linear admite
autovalor, como ocorre no Exemplo 8.65. Mas um fenômeno comum
aos últimos exemplos é o fato de que autovalores diferentes corres-
pondem a autovetores linearmente independentes. Isso não é mera
coincidência, porém um teorema.

Teorema 8.41. Autovalores diferentes do mesmo operador li-
near correspondem a autovetores linearmente independentes.

Demonstração: A prova é feita por indução, para um con-
junto qualquer de n autovetores correspondentes a n auto-
valores distintos dois a dois.
O caso em que n = 1 é imediato, por conta do Teorema

8.11 e do fato de que nenhum autovetor é nulo.

b A prova de que o caso para n−1 autovetores implica
no caso para n autovetores fica a cargo do leitor. Sugestão:
usar Teorema 8.10.

Detalhes sobre o papel de autovalores de operadores lineares po-
dem ser encontrados em [35]. Por exemplo, existem métodos muito
mais econômicos (do ponto de vista computacional) para determinar
autovalores de operadores lineares sobre espaços vetoriais reais de
dimensão finita do que aquele que foi empregado no Exemplo 8.64.

Seção 96
Outros espaços vetoriais

Sumário

Índice
RedeAté este momento investigamos brevemente espaços vetoriais reais.

Mas existem outros espaços vetoriais. Para que possamos qualificar
isso, precisamos saber o que é um corpo, o qual é definido através de
um predicado conjuntista, nos moldes da Seção 71.

Definição 8.22. Uma quíntupla ordenada
K = 〈K,+, ·, 0, 1〉

é um corpo se as seguintes fórmulas são teoremas.
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K1: K 6= ∅ (seus elementos diferentes de 0 e 1 são denotados

por letras gregas minúsculas);
K2: + : K ×K → K é uma função tal que +(α, β) = α + β;
K3: · : K × K → K é uma função tal que ·(α, β) = α · β

(podemos também escrever simplesmente αβ no lugar de α ·
β);

K4: 0 ∈ K ∧ 1 ∈ K;
K5: α + β = β + α

K6: αβ = βα;
K7: (α + β) + γ = α + (β + γ);
K8: (αβ)γ = α(βγ);
K9: α + 0 = α;
K10: α · 1 = α;
K11: ∀Kα∃Kβ(α + β = 0); β é o simétrico aditivo de α,

denotado por −α;
K12: ∀Kα(α 6= 0 ⇒ ∃Kβ(αβ = 1); β é o simétrico multi-

plicativo de α, denotado por α−1;
K13: α(β + γ) = αβ + αγ.

Usamos quantificadores relativizados (Definição 7.6) em K11 e
K12. Por exemplo, K11 se lê ‘para todo α pertencente a K existe β
pertencente a K tal que α + β é o neutro aditivo 0 (ver K9).

Exemplo 8.68. b De acordo com Seção 31,
〈Q,+, ·, 0, 1〉

é um corpo, onde + é a adição entre racionais, · é a multiplicação
entre racionais, 0 é o neutro aditivo entre os racionais e 1 é o
neutro multiplicativo entre os racionais.

Exemplo 8.69. b De acordo com Seção 39,
〈R,+, ·, 0, 1〉

é um corpo, onde + é a adição entre reais, · é a multiplicação
entre reais, 0 é o neutro aditivo entre os reais e 1 é o neutro
multiplicativo.
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Exemplo 8.70. b De acordo com Seção 40,
〈C,+, ·, 0, 1〉

é um corpo, onde + é a adição entre complexos, · é a multipli-
cação entre complexos, 0 é o neutro aditivo entre os complexos e
1 é o neutro multiplicativo entre os complexos.

Exemplo 8.71. De acordo com Seção 29,
〈ω,+, ·, 0, 1〉

não é um corpo, sendo + a adição entre naturais, · a multipli-
cação entre naturais, 0 o neutro aditivo entre os naturais e 1 o
neutro multiplicativo entre os naturais.
Com efeito, axiomas K11 e K12 não são teoremas nesta in-

terpretação.

Exemplo 8.72. De acordo com Seção 30,
〈Z,+, ·, 0, 1〉

não é um corpo, sendo + a adição entre inteiros, · a multiplicação
entre inteiros, 0 o neutro aditivo entre os inteiros e 1 o neutro
multiplicativo entre os inteiros.
Com efeito, axioma K12 não é teorema nesta interpretação.

Exemplo 8.73. De acordo com Seção 39,
〈I,+, ·, 0, 1〉

não é um corpo, se I é o conjunto dos reais irracionais, + é
a adição entre reais irracionais, · é a multiplicação entre reais
irracionais, 0 é o neutro aditivo entre os reais e 1 é o neutro
multiplicativo entre os reais.
Com efeito, axiomas K2, K3 e K4 não são teoremas nesta

interpretação. Por exemplo, além de 0 e 1 não serem irracionais,
o irracional

√
2 somado do irracional −

√
2 não é um irracional.

Vimos acima três Exemplos de interpretações de corpo que são
modelos de corpo e três que não são. As três primeiras são os exem-
plos mais comuns de corpos, no estudo de espaços vetoriais. A ideia
é admitir escalares que não sejam necessariamente números reais,
como vemos adiante. Mas, antes, é interessante mais um Exemplo.
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Exemplo 8.74. Seja
F4 = 〈{0, 1, 2, 3},+, ·, 0, 1〉

uma interpretação de corpo onde as operações + e · são definidas
pelas tabelas abaixo.

+ em F4

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· em F4

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

b Para fins de ilustração, 3 + 2 = 1 e 2 · 2 = 3.
Neste caso F4 é um corpo finito, no sentido de que o conjunto
{0, 1, 2, 3} conta com apenas quatro elementos.

b Cabe ao leitor verificar que os postulados da Definição
8.22 são teoremas.
Por exemplo, levando em conta que ambas as tabelas dadas são

simétricas em relação à diagonal principal, comutatividade da
adição K5 e comutatividade da multiplicação K6 são imediatos.

Observar que, no Exemplo acima,
• 0 é neutro aditivo e 1 é neutro multiplicativo;
• o simétrico aditivo de n é o próprio n, se n ∈ {0, 1, 2, 3};
• 0 não admite simétrico multiplicativo;
• o simétrico multiplicativo de 1 é o próprio 1;
• o simétrico multiplicativo de 2 é 3;
• o simétrico multiplicativo de 3 é 2.

ibMuitos outros exemplos de corpos finitos podem ser apre-
sentados, os quais são também conhecidos como corpos de Galois. A
ordem de um corpo finito 〈K,+, ·, 0, 1〉 é o número de elementos de
K. Se o corpo tem ordem n, então n é um primo ou uma potência
de um primo (Definição 4.2). No Exemplo acima a ordem de F4 é
22.
Finalmente podemos definir espaços vetoriais quaisquer.
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Definição 8.23. Um conjunto
V = 〈V,K,⊕,�, 0〉

é um espaço vetorial se as seguintes fórmulas são teoremas (os
comentários entre parênteses não fazem parte dos postulados).

V1: V 6= ∅ (os elementos de V são chamados de vetores);
V1’: K é um corpo 〈K,+, ·, 0, 1〉 (os elementos de K são chama-
dos de escalares);

V2: ⊕ : V × V → V é uma função, onde abreviamos ⊕(u, v)
como u ⊕ v, sendo u e v elementos de V (chamamos ⊕ de
adição de vetores);

V3: � : K × V → V é uma função, onde abreviamos �(α, u)
como α�u ou, simplesmente, αu, sendo α um elemento de
K e u um elemento de V (chamamos � de multiplicação
de escalar por vetor);

V4: 0 ∈ V (0 é o vetor nulo);
V5: Se u pertence a V , então u⊕ 0 = u;
V6: Se u e v são elementos de V , então u⊕ v = v ⊕ u;
V7: Se u, v e w pertencem a V , então (u⊕v)⊕w = u⊕(v⊕w);
V8: Se u pertence a V , então existe v pertencente a V tal que
u⊕v = 0 (v é chamado de simétrico aditivo de u e denotado
por −u);

V9: Se α pertence a K e u e v pertencem a V , então
α� (u⊕ v) = (α� u)⊕ (α� v);

V10: Se α e β pertencem a K e u pertence a V , então
(α + β)� u = (α� u)⊕ (β � u);

V11: Se α e β são escalares e u é um vetor, então
(α · β)� u = α� (β � u);

V12: Se 1 é o neutro multiplicativo de K e u pertence a V ,
então 1� u = u.

Novamente adotamos a seguinte convenção: todos os vetores di-
ferentes do vetor nulo são denotados por letras latinas minúsculas,
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enquanto os escalares são sempre denotados por letras gregas minús-
culas, desde que não sejam 0 ou 1.
Se um espaço vetorial admite como único vetor o nulo, ele é dito

um espaço vetorial trivial.
Se o corpo K é o corpo R dos reais (ver Exemplo 8.69), então o

espaço vetorial é chamado de espaço vetorial real, conforme Seção 80.
Se o corpo K é o corpo Q dos reais racionais (ver Exemplo 8.68),
então o espaço vetorial é chamado de espaço vetorial racional. Se o
corpo K é o corpo C dos complexos (ver Exemplo 8.70), então o
espaço vetorial é chamado de espaço vetorial complexo.

Exemplo 8.75. De acordo com Exemplo 8.33, o espaço ve-
torial real

〈R,R,+, ·, 0〉
tem uma dimensão. Isso porque qualquer base dele admite um
único elemento. A base canônica é {1}.
Porém, o espaço vetorial racional

V = 〈R,Q,+, ·, 0〉
não admite base com apenas um vetor. Com efeito, supor que
existe base

b = {r}
para V. Neste caso, r é real racional ou real irracional. Afinal, os
vetores de V são números reais quaisquer, enquanto os escalares
são apenas reais racionais.
Se r for real racional, nenhum vetor s de R que seja real ir-

racional pode ser obtido por combinação linear dos elementos
de {r}. Com efeito, qualquer escalar α do corpo Q é um real
racional e, por isso, α · r é real racional e, portanto, diferente de
s.
Por outro lado, se r for real irracional, nenhum vetor s de

R que seja real racional pode ser obtido por combinação linear
dos elementos de {r}. Afinal, qualquer escalar α do corpo Q é
um real racional e, por isso, α · r é real irracional e, portanto,
diferente de s.

No Exemplo acima foi provado que a reta dos reais sobre o corpo
dos racionais não tem uma dimensão, apesar da mesma reta dos
reais − mas desta vez sobre o corpo dos reais − ter uma dimensão.
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É possível provar que o espaço vetorial racional acima não admite
qualquer base finita e, portanto, não tem dimensão finita.
Para lidarmos com o conceito de dimensão infinita em um espaço

vetorial real, ou qualquer outro, precisamos estender o conceito de
base, como fazemos adiante, na Seção 97.
Um conceito de importância estratégica é o de espaço de Hilbert.

Um espaço de Hilbert é um espaço vetorial complexo munido de
produto interno (devidamente definido de maneira a generalizar a
Definição 8.11) de modo que a norma induzida por este produto
interno defina um espaço métrico completo. Por sua vez, um espaço
métrico (Definição 8.10) é completo se toda sequência de Cauchy
definida nele (relativamente à métrica) for convergente.
Espaços de Hilbert são a principal base matemática para o estudo

de mecânica quântica não relativística. Física quântica, por sua
vez, é responsável por grandes fatias do PIB de países desenvolvi-
dos, servindo de suporte teórico de tecnologias para a concepção e
fabricação de computadores, smartphones, televisores, instrumentos
de telecomunicações, lasers, aparelhos de GPS, relógios atômicos,
máquinas de ressonância magnética, entre muitos outros.

! Portanto, espaços vetoriais impregnam o cotidiano do leitor,
independentemente de seu interesse sobre o assunto.

bUm exercício interessante é investigar a possibilidade de definir
espaços vetoriais sobre corpos finitos, como F4, do Exemplo 8.74.

Seção 97
Espaços vetoriais de dimensão infinita

Sumário

Índice
RedeComo sabemos, nem todo espaço vetorial tem base finita.

Definição 8.24. Seja V = 〈V,K,⊕,�, 0〉 um espaço vetorial
sobre um corpo K = 〈K,+, ·, 0, 1〉. Um vetor v de V é combi-
nação linear de vetores v1, v2, · · · , vn sss existem escalares α1,
α2, · · · , αn pertencentes a K tais que

v =
n∑
i=1

αivi.
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Em outras palavras, a definição acima generaliza Definição 8.4, no

sentido de permitir escalares de um corpo qualquer.

Definição 8.25. Seja V = 〈V,K,⊕,�, 0〉 um espaço vetorial
sobre um corpo K. Um conjunto finito

x = {v1, v2, · · · , vn}
de vetores de V é linearmente independente sss nenhum dos ve-
tores de x é combinação linear dos demais elementos de x. Caso
contrário, dizemos que x é linearmente dependente.

Definição 8.26. Seja V = 〈V,K,⊕,�, 0〉 um espaço vetorial
sobre um corpo K. Um conjunto x de vetores de V é linearmente
independente sss qualquer subconjunto finito de x é linearmente
independente, de acordo com Definição 8.25. Caso contrário,
dizemos que x é linearmente dependente.

Exemplo 8.76. Seja V = 〈V,R,⊕,�,©〉, onde
i: V = {y ∈ C∞ | y é polinomial com domínio R},
ii: ⊕ é restrição de + (no espaço C∞ usual) a V × V ,
iii: � é restrição de · (no espaço C∞ usual) a R× V , e
iv: © é a função real identicamente nula, com domínio R.

Este é um espaço vetorial real similar àquele do Exemplo
8.39. A diferença reside apenas nos domínios das funções poli-
nomiais pertencentes a C∞. Seja

b = {pi ∈ V | pi : R→ R é uma função dada por
pi(x) = xi, onde i ∈ ω}.

Em outras palavras, b é o conjunto das funções monomiais com
coeficientes iguais a 1 e grau i, onde i é um natural.
Escrevendo de outra maneira, b = {1, x, x2, x3, x4, · · · }, onde

cada xi é uma abreviação para uma função monomial com coe-
ficiente 1. Uma vez que ω é infinito e b é equipotente a ω (ver
Seção 33), então b é infinito.
Teorema Fundamental da Álgebra (Seção 43) garante que qual-

quer subconjunto finito de b é linearmente independente. Logo,
b é linearmente independente, conforme Definição 8.26.
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O último Exemplo ilustra o grande alcance da Definição 8.26,

no sentido de conceituar independência linear (e, consequentemente,
dependência linear) para conjuntos finitos e conjuntos infinitos de
vetores de um dado espaço vetorial sobre um corpo qualquer.

Definição 8.27. Sejam V = 〈V,K,⊕,�, 0〉 um espaço veto-
rial, sobre um corpo K, e s ⊆ V um conjunto não vazio. Seja
ainda

c = {x ∈ ℘(s) | x é linearmente independente}.
Se c for não vazio, dizemos que um elemento maximal de c (ver
Definição 4.20) é um subconjunto de s maximal linearmente in-
dependente.

Em outras palavras, dado um espaço de vetores V , um subconjunto
s de V é maximal linearmente independente se, e somente se, para
qualquer vetor v de V diferente de todos os demais pertencentes a s
temos que s ∪ {v} é linearmente dependente.
No caso particular de espaços vetoriais reais V de dimensão finita,

uma base b de V é um conjunto L.I. que gera o espaço de vetores de
V (Definição 8.7). Nem todo conjunto L.I. gera um espaço, como já
vimos (Exemplo 8.26). Mas toda base b de V é maximal linear-
mente independente. Qualquer outro vetor adicionado a b implica
que o novo conjunto é L.D. Essa simples ideia permite generalizar o
conceito de base de um espaço vetorial qualquer, seja real ou não.

Definição 8.28. Seja V = 〈V,K,⊕,�, 0〉 um espaço vetorial
sobre um corpo K. Dizemos que b é uma base de V sss b é um
subconjunto de V maximal linearmente independente.

Exemplo 8.77. O conjunto b do Exemplo 8.76 é uma base
do espaço vetorial do mesmo Exemplo. Afinal, qualquer outra
função polinomial acrescentada a

b = {1, x, x2, x3, x4, · · · }
produz um conjunto linearmente dependente.

b Outra possível base para aquele espaço é o conjunto
d = {pi ∈ V | pi : R→ R é uma função dada por

pi(x) = −38xi, onde i ∈ ω}.
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Uma infinidade de outras bases podem ser exibidas para o espaço

vetorial real das funções polinomiais com domínio R. Porém, é teo-
rema que todas as possíveis bases são equipotentes entre si.

b O leitor deve observar que Definição 8.7 é um caso particular
da Definição 8.28. É um exercício edificante provar isso.

Seção 98
Resumo da ópera

Sumário

Índice
RedeAo contrário do que uns e outros dizem por aí, vetores não são

segmentos de reta orientados ou ‘entes’ com ‘módulo’, ‘direção’ e
‘sentido’, o que quer que signique essa nomenclatura maluca. Um
vetor é tão somente um elemento de um espaço de vetores. Para
saber o que é um espaço de vetores é necessário qualificar o con-
ceito de espaço vetorial (Definição 8.23). Fizemos isso usando um
predicado conjuntista (Definição 7.1) formulado na linguagem de ZF.
Neste contexto, vetores podem ser pares ordenados de números

reais, os quais são consistentes com conceitos de geometria euclidi-
ana, conforme Seção 90. Mas podem ser também n-uplas ordenadas
de reais ou de complexos, funções reais ou funções complexas, bem
como matrizes e até mesmo transformações lineares entre espaços ve-
toriais. Se não for definida uma norma em um espaço vetorial, não
pode haver o tal do ‘módulo’ propagado por certos professores. Uma
vez que cada possível produto interno induz uma norma diferente, é
preciso muito cuidado para qualificar sobre o que se está falando.
Um dos possíveis modelos de espaço vetorial real é o plano carte-

siano, desde que munido de produto interno canônico. Uma vez que
o plano cartesiano é modelo de plano euclidiano, esse fato justifica
interpretar tais casos muito particulares de vetores como segmentos
orientados de reta. Mas, se um vetor é uma matriz real, tal matriz
não é um segmento de reta. Se um vetor é a função exponencial,
esta também não é um segmento de reta.
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Seção 99

Notas históricas
Sumário

Índice
Rede

m
Muito difícil pontuar em qual momento surgiram as primeiras
ideias que conduziram à atual visão sobre espaços vetoriais. A partir
da geometria analítica de René Descartes e Pierre de Fermat, Giuso
Bellavitis concebeu a noção de segmentos orientados. Em meados
do século 19 Arthur Cayley introduziu a notação matricial. Mas foi
Hermann Grassmann o primeiro a perceber a necessidade de tratar
de estruturas algébricas com objetos abstratos e não necessariamente
matrizes ou pares ordenados de reais. Os conceitos de independên-
cia linear, dimensão e produto interno surgiram com Grassmann.
Giuseppe Peano delineou a atual definição de espaço vetorial em
1888.

Da esquerda para a direita, Xining Zhang, Peter Denton e
Stephen Parke, os principais descobridores da IAA

Fonte: Brookhaven National Laboratory.

Apesar do estudo de espaços vetoriais ser antigo e bem estabele-
cido, em 2021 foi publicado um resultado básico até então desco-
nhecido sobre o tema. Trata-se da Identidade entre Autovetores e
Autovalores (IAA), a qual é dada por uma fórmula com grande im-
pacto sobre aplicações. Autovalores de um operador linear são fáceis
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de calcular, enquanto autovetores consomem um esforço computa-
cional muito maior. No entanto, graças à IAA, esse quadro mudou
radicalmente, pelo menos para operadores lineares hermitianos que
atuam sobre espaços vetoriais de dimensão finita. Detalhes em [13].

m
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Nesta parte discutimos sobre um dos assuntos mais importantes
da atualidade: probabilidades.

Seção 100
Motivação

Sumário

Índice
RedeEm 1898 Morgan Robertson publicou Futility, história fic-

cional sobre o navio de passageiros Titan que, em uma noite
de abril, colide contra um iceberg e naufraga. Em 1912, em uma
noite abril, Titanic colide contra um iceberg e afunda.
Numa sexta-feira de 1865, Abraham Lincoln foi assassinado no

Teatro Ford, com um tiro na cabeça, em frente à esposa. Numa
sexta-feira de 1963, John Kennedy foi assassinado em um carro
Ford (uma limousine Lincoln), com um tiro na cabeça, em frente
à esposa. Ambos tiveram sucessores com o sobrenome Johnson.
Em setembro de 2009 a loteria da Bulgária sorteou exatamente

os mesmos seis números em dois jogos consecutivos. Uma comis-
são foi designada pelo Ministro dos Esportes para investigar o
caso, mas nenhuma fraude foi detectada.
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Uma questão natural sobre os três exemplos históricos dados acima

é a seguinte: quais são as chances de ocorrências de tais coincidên-
cias?
Como bem argumenta David J. Hand em seu famoso livro [21],

‘devemos esperar o inesperado’.
Enquanto alguns percebem o caso Titan-Titanic como evidência de

uma profecia, o caso Lincoln-Kennedy como uma macabra conexão
entre dois presidentes distantes por um século, e o caso da loteria
búlgara como evidência de crime, o que realmente está em jogo aqui
é um conflito entre realidade e modos de percepção da realidade.
Matemática não existe como proposta para compreender a reali-

dade. Mas matemática é uma ferramenta muito útil para mapear
fenômenos do mundo real. É claro que mapas podem informar di-
reções equivocadas. Porém, neste caso, o problema não reside no
emprego de mapas, mas em quem criou o mapa.
Uma das ferramentas matemáticas mais utilizadas para mapear

chances de ocorrências de eventos é o conceito de probabilidade. A
partir da próxima Seção fazemos isso, novamente utilizando predica-
dos conjuntistas no contexto de ZF.
Na Seção 105 discutimos sobre os casos Titan-Titanic, Lincoln-

Kennedy e loteria da Bulgária.

Seção 101
σ-álgebra

Sumário

Índice
RedeProbabilidade é uma função. Logo, demanda um domínio. Tal

domínio é uma álgebra de eventos, também conhecida como σ-álgebra.
Portanto, precisamos conhecer este conceito antes de qualificarmos
o que é uma função de probabilidades. Mas, antes de conceituarmos
σ-álgebras, precisamos de um conceito preliminar.

Definição 9.1. Um conjunto x é enumerável sss x é equipo-
tente a algum subconjunto de ω.

Sobre o conceito de equipotência (denotada por ∼), ver Definição
4.17. Sobre ω, este é o conjunto dos números naturais, conforme
Definição 3.5.
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Em outras palavras, x é enumerável se, e somente se, existe bijeção

f : x→ r,

onde r ⊆ ω.
Exemplo 9.1. i: O conjunto ω dos números naturais é enu-

merável. Com efeito, ω ∼ ω.
ii: O conjunto {ω, S(ω)} é enumerável, onde S(ω) é o sucessor

de ω (Definição 3.4). Com efeito,
{ω, S(ω)} ∼ 2,

lembrando que 2 ⊆ ω, onde
2 = {∅, {∅}},

conforme Seção 23. Aliás, o leitor deve perceber que todo
ordinal finito é elemento e subconjunto de ω.

iii: O conjunto R dos números reais não é enumerável. Afinal,
R não é equipotente a qualquer subconjunto de ω, conforme
Seção 34.

Definição 9.2. Seja x um conjunto. Dizemos que Σ é uma
σ-álgebra de x (ou, simplesmente, uma σ-álgebra) sss

i: Σ ⊆ ℘(x), onde ℘(x) é a potência de x;
ii: se s pertence a Σ, então x− s pertence a Σ;
iii: x ∈ Σ;
iv: se y é um conjunto enumerável de elementos de Σ, então⋃

s∈y
s

é um elemento de Σ.

Em outras palavras, os elementos de uma σ-álgebra (lê-se ‘sigma-
álgebra’) de um dado conjunto x são subconjuntos de x, de modo
que o próprio x é um deles. Além disso, se um dado s pertence
à σ-álgebra, seu complementar relativamente a x também pertence,
sendo que o complementar de s relativamente a x é o conjunto de
todos os termos pertencentes a x, exceto aqueles que pertencem a s.
Por último, qualquer união finitária de n elementos da σ-álgebra é um
elemento da σ-álgebra; e qualquer união arbitrária de uma quantia
enumerável de elementos da σ-álgebra é um elemento da σ-álgebra.
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Exemplo 9.2. b
i: Sejam {m} e {n} conjuntos, onde chamamos {m} de cara

e {n} de coroa. Logo, ℘({m,n}) é uma σ-álgebra do par
{m,n}. Observar que cara e coroa são subconjuntos de
{m,n}.

ii: Seja x um conjunto qualquer. Logo, s = {∅, x} é uma
σ-álgebra de x. Observar que, no caso particular em que
x = ∅, temos s = ℘(x). Para os demais casos, s 6= ℘(x).
Isso prova que nem toda σ-álgebra de um conjunto x é a
potência de x.

iii: Seja y = {a, b, c} um conjunto com três elementos. Logo,
o conjunto t = {{a}, {b, c},∅, y} é uma σ-álgebra de y. Ob-
servar que t 6= ℘(y).

Teorema 9.1. A potência de x é uma σ-álgebra de x.

Demonstração: Basta provarmos que todos os quatro itens
da Definição 9.2 são teoremas para o caso do enunciado.
Sobre item i, observar que ℘(x) ⊆ ℘(x) (Teorema 3.5).
Sobre item ii, se s é subconjunto de x (i.e., pertence à

potência de x), então x− s é subconjunto de x e, portanto,
pertence à potência de x.
Sobre item iii, x ∈ ℘(x), uma vez que todo conjunto é

subconjunto dele mesmo (Teorema 3.5).
Finalmente, sobre item iv, observar que, se y é um con-

junto de subconjuntos de x (seja enumerável ou não), então
a união arbitrária de todos os elementos de y é um subcon-
junto de x e, portanto, um elemento da potência de x.

i A recíproca do último teorema não é um teorema. O conjunto
b de todos os conjuntos de Borel de R é uma σ-álgebra de R, apesar
de b 6= ℘(R). No entanto, foge aos nossos propósitos o estudo de con-
juntos de Borel. Queremos aqui apenas introduzir e discutir noções
elementares sobre probabilidades. Neste contexto, o que interessa
saber, pelo menos por enquanto, é que existem σ-álgebras diferentes
das potências de conjuntos, além dos casos envolvendo conjuntos
finitos dos itens ii e iii do Exemplo 9.2.
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Teorema 9.2. O conjunto vazio pertence à σ-álgebra de qual-
quer conjunto.

Demonstração: Seja x um conjunto qualquer. Se Σ é sua
σ-álgebra, então item iii da Definição 9.2 garante que x ∈ Σ.
Mas item ii garante que x− x também pertence a Σ. Uma
vez que

x− x = ∅,
então a substitutividade da igualdade implica que ∅ ∈ Σ.

Teorema 9.3. A interseção entre duas σ-álgebras quaisquer
de um conjunto x é uma σ-álgebra de x.

b Deixamos a demonstração deste último como um divertido
exercício para o leitor.

Exemplo 9.3. Seja x = {a, b, c} um conjunto com três ele-
mentos. Logo, os conjuntos

s = {{a}, {b, c},∅, x}
e

t = {{b}, {a, c},∅, x}
são σ-álgebras de x. Além disso, s∩ t = {x,∅} é uma σ-álgebra
de x, conforme item ii do Exemplo 9.2.
No entanto, observar que

r = s ∪ t = {{a}, {b}, {a, c}, {b, c},∅, x}
não é uma σ-álgebra de x. Com efeito, {a} ∪ {b} = {a, b} é
uma união enumerável de elementos de r, apesar de {a, b} não
pertencer a r. Logo, item iv da Definição 9.2 não é teorema para
este caso.

O último Exemplo deixa claro que união arbitrária de σ-álgebras
não é necessariamente uma σ-álgebra. Obviamente, no caso parti-
cular da união de ℘(x) com qualquer outra σ-álgebra de x é uma
σ-álgebra de x.

b O último teorema pode ser generalizado para interseções arbi-
trárias de σ-álgebras. Interseção arbitrária de termos de x pode ser
definida a partir do Axioma da União e do Esquema de Separação,
como se segue.
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Definição 9.3.⋂
t∈x

t =
{
r ∈

⋃
t∈x

t | ∀z(z ∈ x⇒ r ∈ z)
}

b Neste caso, interseção finitária (Definição 3.10) é um caso
particular de interseção arbitrária
A ideia intuitiva de interseção arbitrária é simples. A interseção

arbitrária de todos os elementos de um dado x é um subconjunto
da união arbitrária de x cujos elementos são apenas aqueles que são
comuns a todos os elementos de x.
O lado esquerdo da igualdade acima se lê ‘interseção de todos os

conjuntos t pertencentes a x’.

Seção 102
Espaço de probabilidades

Sumário

Índice
RedeFinalmente podemos conceituar probabilidades.

Definição 9.4. Um espaço de probabilidades p é uma tripla
ordenada

p = 〈Ω,Σ, p〉
tal que as seguintes fórmulas são teoremas.

p1: Σ é uma σ-álgebra de Ω;
p2: p : Σ→ R é uma função, onde p(e) ≥ 0, para todo e ∈ Σ;
p3: p(Ω) = 1;
p4: se y é um conjunto enumerável de elementos de Σ, dois a

dois disjuntos (ou seja, para quaisquer r e s pertencentes a
y, temos que r 6= s⇒ r ∩ s = ∅), então

p

⋃
s∈y

s

 =
∑
s∈y

p(s).

Se p = 〈Ω,Σ, p〉 é um espaço de probabilidades, chamamos o
conjunto Ω de espaço amostral.
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Os elementos da σ-álgebra Σ de um espaço de probabilidades
são chamados de eventos.

Logo, todo evento é um subconjunto do espaço amostral. Em
particular, o espaço amostral é um evento, de acordo com item iii
da Definição 9.2.

A função p, em um espaço de probabilidades 〈Ω,Σ, p〉, é chamada
de função de probabilidade ou, simplesmente, probabilidade. Se s
é um evento, lemos p(s) como ‘probabilidade de ocorrer o evento
s’ ou ‘probabilidade do evento s’.

Neste contexto, axioma p1 diz que eventos contam com uma es-
trutura algébrica definida pelo fechamento de uniões arbitrárias enu-
meráveis. Ou seja, qualquer união enumerável de eventos é um
evento.
Axioma p2 diz que a probabilidade de qualquer evento é um número

real maior ou igual a zero.
Postulado p3 afirma que a probabilidade do evento Ω é 1.
Observar que Ω é a união arbitrária (enumerável ou não) de todos

os elementos de qualquer σ-álgebra de Ω. Neste contexto é impor-
tante o leitor perceber que uma σ-álgebra não precisa necessaria-
mente ser um conjunto enumerável.

i Segue um resultado surpreendente. Se uma σ-álgebra é
enumerável, ela é obrigatoriamente finita.
Em outras palavras, se Σ é uma σ-álgebra infinita, então qual-

quer função injetora f : ω → Σ é não sobrejetora. Logo, nen-
huma σ-álgebra é equipotente a ω.

Dois eventos r e s distintos entre si e tais que r ∩ s = ∅, são
ditos mutuamente excludentes ou, simplesmente, disjuntos.

Axioma p4 afirma que a probabilidade da união arbitrária de even-
tos mutuamente excludentes é a soma das probabilidades individuais
de tais eventos.
Observar que o termo ∑

s∈y
p(s)
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é um somatório se y for um conjunto finito. Além disso, o mesmo
termo é uma série, se y for enumerável e infinito. No último caso,
p4 garante que a série é necessariamente convergente.

Graças ao Teorema 9.2, o conjunto vazio é um evento em qual-
quer espaço amostral e, consequentemente, em qualquer espaço
de probabilidades. Por conta disso, ele merece um nome espe-
cial. O conjunto vazio é chamado de evento impossível. Ademais,
se 〈Ω,Σ, p〉 é um espaço de probabilidades, dizemos que Ω é o
evento inevitável

Teorema 9.4. A probabilidade do evento impossível, em qual-
quer espaço de probabilidades, é zero.

Demonstração: Seja p = 〈Ω,Σ, p〉 um espaço de probabi-
lidades. Teorema 9.2 e item iii da Definição 9.2 garantem
que ambos Ω e ∅ são eventos. Postulado p4 da Definição
9.4 garante que

p(Ω ∪∅) = p(Ω) + p(∅),
uma vez que Ω∩∅ = ∅. No entanto, postulado p3 garante
que p(Ω) = 1. Logo,

1 = 1 + p(∅).
Isso implica que

p(∅) = 0.

Uma consequência imediata do último teorema e de p3 é que o
espaço amostral jamais é vazio, em um espaço de probabilidades.

Teorema 9.5. Qualquer conjunto não vazio pode ser o espaço
amostral de um espaço de probabilidades.

Demonstração: Seja x um conjunto não vazio. Como visto
no item ii do Exemplo 9.2, s = {∅, x} é uma σ-álgebra
de x. Logo, basta definir a função p : s → [0, 1] dada por
p(x) = 1 e p(∅) = 0.

Teorema 9.6 (Monotonicidade). Se r e s são eventos em
um espaço de probabilidades 〈Ω,Σ, p〉, então

r ⊆ s⇒ p(r) ≤ p(s).
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Demonstração: Se r ⊆ s, seja t = s−r, ou seja, o conjunto
dos termos pertencentes a s que não pertencem a r. Logo,
r ∩ t = ∅. Além disso, r ∪ t = s. Portanto, axioma p4
garante que

p(r ∪ t) = p(r) + p(t).
Mas p(r ∪ t) = p(s). Logo,

p(s) = p(r) + p(t).
Lembrando que todas as probabilidades são maiores ou iguais
a zero, então p(s) ≥ p(r).

O último teorema é conhecido como monotonicidade da probabili-
dade. Como vemos adiante, sua recíproca não é teorema.

Teorema 9.7. Se e é um evento em um espaço de probabili-
dades com probabilidade p, então

0 ≤ p(e) ≤ 1.

Demonstração: Todo evento e é elemento de uma σ-álgebra
e, portanto, um subconjunto do espaço amostral Ω. Logo,
a monotonicidade da probabilidade, garantida pelo teorema
anterior, implica que p(e) ≤ p(Ω).
Uma vez que axiomas p2 e p3 da Definição 9.4 garantem

que p(e) ≥ 0 e p(Ω) = 1, respectivamente, então p(e) ∈
[0, 1], onde [0, 1] é o intervalo fechado dos números reais
entre 0 e 1, incluindo 0 e 1.

Teorema 9.8. Se r e s são eventos em um espaço de proba-
bilidades 〈Ω,Σ, p〉, então

p(r ∪ s) = p(r) + p(s)− p(r ∩ s).

Demonstração: Sabemos que r∩ (s−r) = ∅ e r∪ (s−r) =
r ∪ s. Logo, p4 implica que

p(r ∪ s) = p(r) + p(s− r).

Mas o evento s− r é também idêntico a s− (r∩ s). Logo,
a última equação em destaque pode ser reescrita como

p(r ∪ s) = p(r) + p(s− (r ∩ s)).
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No entanto, s = (s− (r ∩ s)) ∪ (r ∩ s), sendo que

(s− (r ∩ s)) ∩ (r ∩ s) = ∅.

Logo, p4 implica que
p(s) = p(s− (r ∩ s)) + p(r ∩ s).

Uma vez que o termo p(s − (r ∩ s)) é comum à última e
à antepenúltima equação em destaque, então

p(r ∪ s) = p(r) + p(s)− p(r ∩ s).

Levando em conta que união finitária é definível a partir da dis-
junção, e interseção finitária é definível a partir de conjunção, o teo-
rema acima estabelece o seguinte:

A probabilidade de ocorrer o evento r ou o evento s é a
probabilidade de ocorrer o evento r mais

a probabilidade de ocorrer o evento s menos
a probabilidade de ocorrer o evento r e o evento s.

Exemplo 9.4. No Exemplo 9.2 vimos que, se {m} e {n} são
conjuntos (chamados, respectivamente, de cara e coroa), então

℘({m,n}) = {∅, {m}, {n}, {m,n}}
é uma σ-álgebra do par {m,n}.
Podemos, portanto, definir um espaço de probabilidades

〈{m,n}, {∅, {m}, {n}, {m,n}}, p〉,
onde p é uma função com domínio {∅, {m}, {n}, {m,n}} dada,
por exemplo, por

p(∅) = 0,

p({m}) = 1
2 ,

p({n}) = 1
2

e
p({m,n}) = 1.

Neste caso, a probabilidade de ocorrer o evento cara é 1
2 , a

probabilidade de ocorrer o evento coroa é 1
2 , a probabilidade de

ocorrer o evento cara e coroa é 0 e a probabilidade de ocorrer o
evento cara ou coroa é 1.
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Exemplo 9.5. b Seguindo o último Exemplo, se
〈{m,n}, {∅, {m}, {n}, {m,n}}, q〉

é uma tripla ordenada, onde q é uma função com domínio
{∅, {m}, {n}, {m,n}}

dada por
q(∅) = 0,

q({m}) = 1
3 ,

q({n}) = 2
3

e
q({m,n}) = 1,

então tal tripla ordenada também é um espaço de probabilidades.

Exemplo 9.6. b Seguindo os dois últimos Exemplos, se
〈{m,n}, {∅, {m}, {n}, {m,n}}, r〉

é uma tripla ordenada, onde r é uma função com domínio
{∅, {m}, {n}, {m,n}}

dada por
r(∅) = 0,
r({m}) = 1,
r({n}) = 0

e
r({m,n}) = 1,

então tal tripla ordenada também é um espaço de probabilidades.
Neste caso, a probabilidade de ocorrer coroa é zero, enquanto

a probabilidade de ocorrer o evento cara é um.

Os três últimos Exemplos são contraexemplos para a recíproca
do Teorema 9.6 da Monotonicidade de Probabilidades.
O evento impossível ∅ é a interseção entre eventos mutuamente

excludentes. Sua probabilidade, como já mostrado, é sempre zero.
No entanto, no último Exemplo temos um evento não vazio com
probabilidade zero. Se definirmos uma restrição r′ da função r sobre
o domínio {∅, {m}, {m,n}}, com o propósito de ‘nos livrarmos’ do
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evento não vazio com probabilidade zero, perceberemos que o novo
conjunto {∅, {m}, {m,n}} não é uma σ-álgebra. Com efeito, o pos-
tulado ii da Definição 9.2 não é teorema nesta interpretação. Logo,
r′ não é uma probabilidade.
Se ainda insistirmos na ideia de nos livrarmos do evento não vazio

com probabilidade zero, a melhor estratégia é redefinir o espaço
amostral como, no caso do Exemplo acima,

{m,n} − {n} = {m}.

Em seguida definimos uma restrição da probabilidade r para o novo
espaço amostral.
Porém, precisamos também aprender a conviver com eventos não

vazios de probabilidade zero. O problema, não obstante, é o ímpeto
natural de pessoas interpretarem probabilidade nula como sinônimo
de impossibilidade de ocorrência do evento (em um sentido intuiti-
vo). Vemos no próximo Exemplo que a interpretação intuitiva de
probabilidades é um pouco mais ardilosa do que isso.

Exemplo 9.7. i Seja b = 〈[0, 1], ℘([0, 1]), p〉, onde
p : ℘([0, 1])→ [0, 1]

é uma função definida da seguinte maneira.

p(x) =



b− a se x é o intervalo real [a, b] ou
(a, b) ou [a, b) ou (a, b],
onde a ∈ [0, 1] ∧ b ∈ [0, 1] ∧ a < b

0 se x é o intervalo degenerado [a, a],
onde a ∈ [0, 1]

∑
s∈y p(s) se existe conjunto enumerável y tal que

seus elementos são intervalos dois a dois
disjuntos contidos em [0, 1] e x ⊆ ⋃s∈y s

K para os demais casos.

O símboloK designa o fato de que o leitor precisará de muitas
xícaras de café para uma plena compreensão deste Exemplo,
uma vez que não apresentamos aqui todos os detalhes. Como
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dizia Paul Erdös, ‘matemático é uma máquina que transforma
café em teoremas’. Mas não se desespere! O que realmente inte-
ressa aos nossos propósitos elementares é detalhado aqui.
Existe uma conhecida σ-álgebra Σ definida sobre [0, 1], de modo

que Σ ⊂ ℘([0, 1]). Trata-se do conjunto de todos os conjuntos de
Borel contidos em [0, 1]. Para efeitos ilustrativos deste Exem-
plo, basta que o leitor saiba as seguintes informações:

i: qualquer intervalo, degenerado ou não, contido em [0, 1], é
um conjunto de Borel;

ii: qualquer união enumerável de conjuntos de Borel é um con-
junto de Borel.

Uma vez definido o domínio da probabilidade p como ℘([0, 1]),
item K nos diz que, se x é elemento de ℘([0, 1]) mas não é
um conjunto de Borel, então p(x) = 0. No entanto, há conjun-
tos de Borel com probabilidade zero também. Qualquer intervalo
fechado degenerado é um conjunto de Borel com probabilidade
nula. Até mesmo o conjunto de todos os reais racionais perten-
centes a [0, 1] é um conjunto de Borel. Isso porque esse conjunto
é enumerável (conforme Seção 34) e, além disso, é a união arbi-
trária de todos os intervalos degenerados [r, r], onde r é um real
racional. Por conta disso, tal conjunto tem probabilidade zero (o
que implica que a probabilidade do evento x definido por todos
os reais irracionais pertencentes a [0, 1] é 1).
Neste caso, b é um espaço de probabilidades. Em particular,

p([0, 1]) = 1− 0 = 1, p

([√
2

2 ,

√
2

2

])
= 0 e

p
((1

3 ,
1
2

]
∪
(2

3 ,
3
4

))
= 1

2 −
1
3 + 3

4 −
2
3 = 3

12 .

De acordo com a Seção 24, é possível definir uma função
c : {[0, 1]} → [0, 1]

tal que c([0, 1]) = r, onde r é um elemento escolhido pelo Axio-
ma da Escolha de ZFC, sendo r um real do intervalo [0, 1]. Tal
função c é conhecida como função escolha. Neste caso, o real r
permite definir o singleton {r} que, por sua vez, é o intervalo
fechado degenerado [r, r]. O Axioma da Escolha escolheu um
evento do espaço de probabilidades acima com probabilidade nula.

Página 431



Matemática Pandêmica Parte 9 Seção 103
Se pensarmos numa analogia meramente intuitiva, podemos inter-

pretar o espaço amostral [0, 1] do último Exemplo como um alvo.
Neste contexto, o Axioma da Escolha pode ser interpretado como
um dardo lançado em direção ao alvo. A probabilidade do dardo
acertar o alvo é um. Isso porque p([0, 1]) = 1. A probabilidade do
dardo acertar a região (1

3 ,
1
2 ]∪ (2

3 ,
3
4) do alvo é 3

12 . Em contrapartida,
a probabilidade do dardo acertar um ponto {s} específico (onde s
é um real pertencente ao alvo e, portanto, {s} é um evento da σ-
álgebra) é zero. Apesar disso, o dardo acerta de fato um ponto {r},
cuja probabilidade é nula.

Definição 9.5. Seja p = 〈Ω,Σ, p〉 um espaço de probabili-
dades no qual Ω é equipotente a um ordinal finito n (ou seja, Ω
tem n elementos). Dizemos que p é um espaço equiprovável sss
para todo evento unitário {x} de Σ tivermos

p({x}) = 1
n
.

Exemplo 9.8. Exemplo 9.4 se refere a um espaço equipro-
vável. Exemplos 9.5 e 9.6 se referem a espaços não equipro-
váveis.

Seção 103
Probabilidade condicional

Sumário

Índice
RedeO conceito de espaço de probabilidade apresentado na última Seção

encontra ampla aplicabilidade. Do ponto de vista matemático, uma
função de probabilidade é um caso muito particular de medida, tema
de expressivo interesse em vários ramos da matemática e da mate-
mática aplicada.

Se trocarmos o axioma p3 da Definição 9.4 pela fórmula
p(∅) = 0,

a tripla ordenada 〈Ω,Σ, p〉 daquela definição passa a ser um es-
paço de medidas e a função p é uma medida definida sobre Σ.

i Ou seja, σ-álgebras não são usadas apenas no estudo de proba-
bilidades, mas também na investigação de medidas. No último caso,
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medidas servem de fundamentação para o conceito de integral de
Lebesgue [29]. Outra aplicação de σ-álgebras é em estatística, na
qualificação de estatística suficiente.
No entanto, historicamente, probabilidades nasceram como pro-

postas para teorias físicas. Tal tradição histórica obviamente persiste
até os dias de hoje, justamente por conta do grande sucesso dessa
ferramenta.
Tal contexto histórico é responsável pela confusão muito comum

entre os conceitos de medida e medição. Afinal, toda probabilidade é
uma medida, enquanto probabilidades são também fortemente mo-
tivadas por problemas do mundo real.
Medidas são funções p em um espaço de medidas, conforme a

definição acima. Medições, por sua vez, são processos físicos de com-
paração entre objetos ou eventos do mundo real com outros objetos e
eventos do mundo real. Em inúmeros contextos sócio-linguísticos as
palavras ‘medida’ e ‘medição’ são sinônimos. Mas, no que se refere
a um discernimento entre matemática e física, é preciso ter muito
cuidado.
No sentido acima exposto, a definição de espaço de probabilidades

funciona muito bem para aquilo que chamamos de uma tentativa.
Jogando uma moeda, é possível modelar matematicamente a proba-
bilidade de ocorrer o evento cara ou o evento coroa em uma única
tentativa. Se a medida de probabilidade para o evento cara é 1

2 ,
experimentos no mundo real devem apontar que a medição de ocor-
rências de cara, para uma moeda não viciada, é aproximadamente
50% (para uma quantia ‘suficientemente grande’ de tentativas).
Em um baralho de cartas misturadas, em princípio, é possível de-

terminar a probabilidade de alguém escolher um dois de copas em
uma única tentativa. Basta usarmos a Definição 9.4, no sentido de
definir uma σ-álgebra que mapeie todos os possíveis eventos e uma
função de probabilidades.
No entanto, aplicações de probabilidades exigem mais. É de in-

teresse respondermos qual é a probabilidade de um evento, se um
evento anterior já ocorreu. O que está implícito neste discurso é que,
em uma primeira tentativa, há a probabilidade de ocorrência de um
evento. Em uma próxima tentativa, a probabilidade de um evento
pode depender do que já ocorreu. O que já ocorreu é uma tentativa.
O que ocorre a seguir é uma nova tentativa.
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No caso de um jogo de cara-ou-coroa, a probabilidade de uma

moeda não viciada resultar em cara, após uma primeira tentativa,
é 1

2 . Em uma segunda tentativa, ao se jogar a mesma moeda, a
probabilidade de ocorrer o evento cara continua sendo 1

2 . Este é um
exemplo bem conhecido de eventos que são independentes entre si.
Porém, no caso do baralho de cartas misturadas mencionado acima,
se as cartas escolhidas não forem devolvidas ao baralho, as probabi-
lidades de cada evento dependem da ocorrência de eventos em ten-
tativas anteriores. Temos aqui uma situação de eventos dependentes
daquilo que já ocorreu ou daquilo que poderia ter ocorrido, depen-
dendo da interpretação que se promova para fins de mapeamento do
mundo real.
Logo, a pergunta natural é como mapear matematicamente o con-

ceito de uma tentativa. Mais importante, como mapear a ideia de
que tentativas ocorrem sequencialmente, no sentido de que devemos
discernir tentativas anteriores de tentativas posteriores?
Pois bem. Mais uma vez ZF conta com aparato suficiente para

lidar com essa situação: trata-se do conceito de produto cartesiano
(Definição 3.7) e, consequentemente, de par ordenado. Com efeito,
um par ordenado (m,n) é igual a um par ordenado (p, q) sss m = p
e n = q (Teorema 3.4). Isso significa, para efeitos práticos, que a or-
dem em que os termos ocorrem em um par ordenado é relevante para
fins de identificação do mesmo. Neste sentido, podemos interpretar
a primeira entrada m de um par ordenado (m,n) como primeira ten-
tativa, e a segunda entrada n como segunda tentativa. Uma vez que
pares ordenados permitem definir r-uplas ordenadas, onde r é um
ordinal finito, isso significa que podemos lidar com quantas tentati-
vas quisermos, desde que (por enquanto) seja uma quantia finita de
tentativas.
Outra questão importante é a seguinte: qualquer que seja a pro-

posta para a definição de uma probabilidade condicional a eventos
de tentativas anteriores, ela deve ser consistente com a existência de
eventos independentes entre si, bem como com a existência de even-
tos dependentes. Obviamente os conceitos de eventos dependentes e
eventos independentes são meras arbitrariedades matemáticas. Mas,
uma vez que probabilidades foram concebidas para mapear fenô-
menos do mundo real, é altamente desejável que elas façam isso de
forma bem sucedida do ponto de vista experimental. A discussão
sobre o sucesso de probabilidades é feita na Seção 105.
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De agora em diante, por uma questão de mera conveniência, even-

tualmente podemos nos referir a uma σ-álgebra como uma álgebra
de eventos.

Definição 9.6. Sejam x e y conjuntos não vazios e Σ uma
σ-álgebra de x× y. Se r1 ⊆ x e r2 ⊆ y, definimos er1 e er2 como
se segue.

∀t

t ∈ r1 ⇔
⋃

{(t,k)}∈Σ
{(t, k)} ∈ er1


e

∀t

t ∈ r2 ⇔
⋃

{(k,t)}∈Σ
{(k, t)} ∈ er2

 .
Dizemos que r1 é ‘evento’ de x correspondente a er1 de Σ, e

r2 é ‘evento’ de y correspondente a er2 de Σ. Equivalentemente,
er1 é correspondente a r1 e er2 é correspondente a r2.

Os subscritos 1 e 2 em er1 e er2 são usados para discernir primeira
entrada de segunda entrada em um par ordenado pertencente a um
evento de Σ.
Importantíssimo notar o emprego de aspas nos conceitos de ‘evento’

de x e ‘evento’ de y. Os motivos para isso são os seguintes:
i: Estamos falando de um conjunto x×y munido de uma σ-álgebra.

Logo, não estamos tratando (ainda) de um espaço de probabi-
lidades, uma vez que sequer mencionamos qualquer função de
probabilidades. Obviamente nossa meta é empregar esses con-
ceitos para tratar de certos tipos especiais de espaços de proba-
bilidades. Mas eventos se referem apenas a espaços de proba-
bilidades, e não necessariamente a elementos de uma σ-álgebra.
Com efeito, σ-álgebras são empregadas em muitas outras situa-
ções, além de probabilidades.

ii: Muito mais importante é o fato de estarmos falando de sub-
conjuntos de x e de y. Portanto, não estamos tratando apenas
de subconjuntos de x× y na última definição. Se usarmos x× y
como espaço amostral e Σ como álgebra de eventos, para definir-
mos um espaço de probabilidades (acrescentando uma função
de probabilidades com domínio Σ), apenas os elementos de Σ
são eventos deste espaço, os quais são subconjuntos de x × y.
Nenhum elemento de uma σ-álgebra de x × y é elemento ou

Página 435



Matemática Pandêmica Parte 9 Seção 103
subconjunto de x ou sequer elemento de uma σ-álgebra de x.
Além disso, observar que o produto cartesiano de σ-álgebras
não é uma σ-álgebra de conjunto algum. Daí a necessidade de
cuidados especiais!

Notar também que o emprego de bicondicionais na definição acima.
Todo ‘evento’ r1 de x corresponde a um e apenas um elemento er1

de Σ, e todo elemento er1 de Σ corresponde a um e apenas um
subconjunto r1 de x. Comentário análogo vale para ‘eventos’ de y.
O que a última definição estabelece é que um evento er1 da álgebra

de eventos de x × y é o conjunto de todos os pares ordenados (t, k)
de Σ tais que t pertence a r1 (lembrando que r1 é um subconjunto
qualquer de x). Analogamente, er2 da álgebra de eventos de x×y é o
conjunto de todos os pares ordenados (k, t) de Σ tais que t pertence
a r2 (lembrando que r2 é um subconjunto qualquer de y).
A definição acima não é usual em textos sobre sobre probabilidades.

Em geral, a literatura não é clara sobre esses conceitos, apelando
muitas vezes a uma visão meramente intuitiva sobre probabilidades
condicionais. Neste livro, porém, nos comprometemos ao esclareci-
mento sobre como ZF e ZFC permitem fundamentar grande parte
da prática matemática. Daí a necessidade da última definição, antes
que possamos qualificar o que é uma probabilidade condicional.
Antes de irmos ao ponto principal desta Seção, se a σ-álgebra Σ

de x × y for ℘(x × y), naturalmente cada ‘evento’ de x ou de y é
elemento das σ-álgebras ℘(x) e ℘(y), respectivamente.

Definição 9.7. Seja 〈x×y,Σ, p〉 um espaço de probabilidades.
Seja

pc : Σ× Σ→ [0, 1]
uma função definida como

pc(e1, e2) = p(e1 ∩ e2)
p(e2) ,

onde p(e2) 6= 0 e pc(e1, e2) é denotada abreviadamente como
pc(e1 | e2).
Se r1 é um ‘evento’ de x correspondente ao evento er1 de Σ, e

r2 é um ‘evento’ de y correspondente ao evento er2 de Σ, dizemos
que a probabilidade de r1 condicionada a r2 é pc(er1 | er2). Além
disso, a probabilidade de r2 condicionada a r1 é pc(er2 | er1).
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A função pc é chamada de probabilidade condicional. Evento

er2 é chamado de condicionante em pc(er1 | er2), enquanto er1 é
o condicionante em pc(er2 | er1).

Por abuso de linguagem, podemos nos referir a pc(er1 | er2) como
a probabilidade de er1 condicionada a er2 , e pc(er2 | er1) como a
probabilidade de er2 condicionada a er1 .

Por conta da monotonicidade da probabilidade (Teorema 9.6),

p(e1 ∩ e2) ≤ p(e2).

Logo,
pc(e1 | e2) ≤ 1,

para quaisquer pares ordenados (e1, e2) de eventos de Σ.
No entanto, notar que a probabilidade condicional não é uma fun-

ção de probabilidade, apesar de ser definida a partir de uma. Com
efeito, seu domínio não é uma álgebra de eventos, mas um produto
cartesiano de uma álgebra de eventos por ela mesma. Como já foi
destacado, o produto cartesiano entre uma álgebra de eventos e ela
mesma não é uma álgebra de eventos.
Apesar disso, para efeitos práticos, a probabilidade condicional

opera como uma probabilidade de ocorrência de um evento, desde
que condicionada à ocorrência de outro evento. Justificamos essa
última afirmação no próximo parágrafo.
Dado um evento er2 , as imagens pc(er1 | er2) da probabilidade

condicional pc são imagens de uma função de probabilidade per2
com

domínio Σ. Logo, podemos definir o conjunto pcer2
como a união

arbitrária de todas as probabilidades per2
, para todos os possíveis er2 .

Comentário análogo vale para a probabilidade de er2 condicionada a
er1 . Isso faz da função de probabilidade condicional pc a união do
conjunto pcer2

de todas as probabilidades per2
com o conjunto pcer1

de todas as probabilidades per1
.

Ou seja, uma probabilidade condicional pc(e | e′) tem as mesmas
imagens de uma função de probabilidades aplicada sobre o evento e,
desde que o evento e′ de Σ seja fixado.
Outra observação relevante é o fato de que a probabilidade de

um evento condicionada a um condicionante pode ser interpretada
como um fator de correção aplicado à probabilidade de ocorrência
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do condicionante. Com efeito, basta observar que

p(e1 ∩ e2) = p(e2)pc(e1 | e2) = p(e1)pc(e2 | e1).

Logo,
p(e2)
p(e1) = pc(e2 | e1)

pc(e1 | e2) .

A igualdade acima é o célebre Teorema de Bayes, assunto a ser
discutido na próxima Seção.

Exemplo 9.9. Em um jogo com uma moeda não viciada, qual
é a probabilidade de ocorrer cara após ocorrer coroa?
Podemos definir o conjunto x = {m,n}, onde {m} é o ‘evento’

cara, e {n} é o ‘evento’ coroa. Uma vez que a segunda tentativa
usa a mesma moeda empregada na primeira tentativa, devemos
definir uma álgebra de eventos para o espaço amostral

x× x = {(m,m), (m,n), (n,m), (n, n)},
a qual é ℘(x× x). Notar que ℘(x× x) tem 16 elementos. Cada
um desses elementos é um evento.
Assumir que a moeda é não viciada equivale a afirmar que a

probabilidade com domínio ℘(x×x) é dada da seguinte maneira:

p(e) = número de elementos de e
número de elemento de x× x,

i.e., 〈x×x, ℘(x×x), p〉 é um espaço equiprovável (Definição 9.5).
O evento condicionante e2, correspondente ao ‘evento’ coroa,

é {(m,n), (n, n)}.
O evento e1 sobre o qual queremos determinar a probabilidade

condicional é {(m,n), (m,m)}.
Logo, e1 ∩ e2 = {(m,n)}. Isso implica que

p(e1 ∩ e2) = 1
4 ,

enquanto
p(e2) = 2

4 .

Logo,

pc(e1 | e2) =
1
4
2
4

= 1
2 .
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Definição 9.8. Sejam 〈x × y,Σ, p〉 um espaço de probabili-
dades e pc uma probabilidade condicional com domínio Σ × Σ.
Dizemos que o evento e1 é independente do evento e2 sss

pc(e1 | e2) = p(e1).

Caso contrário, dizemos que e1 e e2 são eventos dependentes.

Exemplo 9.10. Exemplo 9.9 ilustra evento e1 independente
do evento e2. Uma vez que o espaço de probabilidades é equipro-
vável,

p(e1) = 2
4 = 1

2 .
Mas este é exatamente o mesmo valor de pc(e1 | e2).

Exemplo 9.11. Consideremos dois dados de seis faces, nu-
meradas de 1 a 6, não viciados. Digamos que um dos dados é
azul e o outro é vermelho. Qual é a probabilidade de ocorrer uma
face numerada 2 no dado azul, se a soma das faces numeradas
de ambos os dados for menor do que 6?
Neste caso, podemos definir o conjunto x = {1, 2, 3, 4, 5, 6},

onde cada evento unitário é uma ocorrência de uma face nume-
rada de um dado qualquer. Definimos uma álgebra de eventos
para o espaço amostral

x× x,
a qual é

℘(x× x).

Notar que x × x tem 36 elementos e ℘(x × x) tem 236 ele-
mentos (i.e., mais de 68 bilhões de elementos). Cada um desses
elementos é um evento.
O que permite discernir as tentativas, neste caso, é a discerni-

bilidade dos dados, uma vez que um é azul e o outro é vermelho.
Assumir que os dados são não viciados equivale a afirmar que a

probabilidade com domínio ℘(x×x) é dada da seguinte maneira:

p(e) = número de elementos de e
número de elemento de x× x,

ou seja,
〈x× x, ℘(x× x), p〉
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é um espaço equiprovável.
O evento condicionante e2, correspondente ao ‘evento’ ‘a soma

das faces é menor do que 6’, é
{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}.
O evento e1 sobre o qual queremos determinar a probabilidade
condicional é

{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)},
onde o ‘evento’ {2} se refere ao dado azul, aqui retratado na
primeira entrada dos pares ordenados acima.
Logo, e1 ∩ e2 = {(2, 1), (2, 2), (2, 3)}. Isso implica que

p(e1 ∩ e2) = 3
36 ,

enquanto
p(e2) = 10

36 .

Logo,

pc(e1 | e2) =
3
36
10
36

= 3
10 .

Notar que
p(e1) = 6

36 = 1
6 6=

3
10 .

Logo, e1 e e2 são eventos dependentes.

Teorema 9.9. Dois eventos e1 e e2 em um espaço de proba-
bilidades com probabilidade p e probabilidade condicional pc são
independentes sss p(e1 ∩ e2) = p(e1)p(e2).

Demonstração: b Basta usar a definição de eventos inde-
pendentes dada a partir de probabilidade condicional (De-
finição 9.8), bem como o próprio conceito de probabilidade
condicional (Definição 9.7).

! Aqui é cabível um alerta. É uma prática comum na literatura
a ‘definição’ de probabilidade condicional da seguinte maneira:

p(e1 | e2) = p(e1 ∩ e2)
p(e2) ,
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sem deixar claro qual é o domínio da nova função introduzida. O
próprio emprego da mesma letra p usada para duas funções diferen-
tes (uma probabilidade e uma probabilidade condicional) também
pode colaborar para dificuldades nos estudos. Com efeito, apesar da
probabilidade condicional depender de uma álgebra de eventos, seu
domínio não é uma álgebra de eventos.

Seção 104
Teorema de Bayes

Sumário

Índice
RedeEm uma noite de nevoeiro, um táxi é envolvido em um grave

acidente, com vítima fatal. Mas o motorista fugiu no mesmo veículo,
sem prestar socorro.
Uma única testemunha prestou relatório às autoridades. Em seu

depoimento, ela afirmou que o táxi era azul. Como parte da investi-
gação, a polícia testou a confiabilidade da testemunha, submetendo-a
a condições semelhantes de visibilidade. Afinal, naquela cidade havia
apenas duas operadoras de táxis. Em uma delas os veículos eram to-
dos azuis. Em outra, eram todos verdes. Dependendo das condições
de luminosidade, não é de espantar que alguém confunda uma cor
com a outra.
Após vários testes, foi finalmente avaliado que a testemunha era

capaz de dizer corretamente a cor do táxi em oitenta por cento das
simulações. Logo, temos um depoimento com elevado grau de confia-
bilidade, apesar das condições adversas. A questão agora é a seguin-
te: o que mais provavelmente aconteceu naquela dramática noite? A
vítima foi atropelada por um táxi azul ou por um táxi verde?
O problema acima foi formulado pela primeira vez por Amos Tver-

sky e Daniel Kahneman [20]. O objetivo desses psicólogos israelenses
era avaliar uma tendência natural de pessoas julgarem fatos com
rapidez e eficiência, mas sem dados completos que exijam tempo e
energia para pensar racionalmente. O testemunho confiável certa-
mente não é o bastante para lidar com o problema proposto. É neste
momento que entra em cena um exemplo muito simples de aplicação
do Teorema de Bayes, tema desta Seção.
A ideia é a seguinte. Uma informação é a probabilidade do táxi

ser azul, se a testemunha relata a cor azul. Outra, é a probabilidade
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da testemunha relatar a cor azul, se o táxi é azul. Estes não são
necessariamente o mesmo número.

Teorema 9.10 (Teorema de Bayes). Sejam
〈x× y,Σ, p〉

um espaço de probabilidades e pc uma probabilidade condicional
com domínio Σ× Σ. Logo,

pc(e1 | e2) = pc(e2 | e1)p(e1)
p(e2) ,

se e1 6= e2 e p(e2) 6= 0.

Demonstração: A demonstração já foi feita no último pará-
grafo que antecede o Exemplo 9.9.

O resultado acima é devido ao reverendo presbiteriano Thomas
Bayes, apesar deste jamais ter publicado seu mais famoso trabalho.
Foi graças a Richard Price que hoje conhecemos o autor do célebre
teorema. Price editou o texto original de Bayes em Philosophical
Transactions, o primeiro periódico da história a ser dedicado exclu-
sivamente à ciência.

Capa do primeiro volume de Philosophical Transactions
Fonte: Wikipedia.
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Exemplo 9.12. No problema proposto por Tversky e Kahne-
man, colocado no início desta Seção, a probabilidade da teste-
munha relatar a cor corretamente é importante, sem sombra de
dúvida. Mas devemos considerar também a probabilidade de um
táxi ser de fato azul.
Chamemos de {A} e {V} os ‘eventos’ ‘táxi azul’ e ‘táxi verde’,

respectivamente. Também chamemos de {T A} e {T V} os ‘even-
tos’ ‘testemunha afima que táxi era azul’ e ‘testemunha afima que
táxi era verde’, respectivamente.
Consideremos dois possíveis cenários.
Cenário i: A probabilidade p({V}) de um táxi ser verde é

maior do que a probabilidade da testemunha relatar corre-
tamente a cor do veículo. Para fins de ilustração, digamos
que p({V}) = 0, 85.

Cenário ii: A probabilidade p({V}) de um táxi ser verde é
menor do que a probabilidade da testemunha relatar corre-
tamente a cor do veículo. Para fins de ilustração, digamos
que p({V}) = 0, 5.

Começamos com o Cenário i.
De acordo com o problema proposto, a probabilidade da teste-

munha relatar cor azul, no caso em que o táxi tem cor azul, é
0, 80. Logo,

pc({T A} | {A}) = 0, 80.

O que queremos responder é a probabilidade do táxi ser azul,
diante do fato da testemunha afirmar que o veículo era azul. Ou
seja, precisamos calcular

pc({A} | {T A}).

Teorema de Bayes estabelece que

pc({A} | {T A}) = pc({T A} | {A})p({A})
p({T A}) .

Uma vez que táxis verdes e táxis azuis são eventos mutuamente
excludentes, sabemos que p({A}) = 1− p({V}).
Isso, no Cenário i, implica que p({A}) = 0, 15. Mas como

conhecer p({T A})?
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p({T A}) é a probabilidade da testemunha relatar que o táxi

era azul. Mas só existem duas possibilidades: (i) a testemunha
diz que é azul, sendo o táxi azul; (ii) a testemunha diz que é azul,
sendo o táxi verde. Lembrando que táxis azuis e táxis verdes são
mutuamente excludentes, logo,

{A} ∩ {T A} e {V} ∩ {T A}
são mutuamente excludentes.
Portanto,

p({T A}) = p({A} ∩ {T A}) + p({V} ∩ {T A}).

Aplicando o Teorema de Bayes sobre as duas parcelas à direita
da igualdade na última equação, temos
p({T A}) = p({A})pc({T A} | {A}) + p({V})pc({T A} | {V}),

lembrando que pc({T A} | {V}) = 0, 2, uma vez que os eventos
‘dizer a cor corretamente’ e ‘dizer a cor errada’ são mutuamente
excludentes e pc({T A} | {A}) = 0, 8.
Podemos agora finalmente determinar pc({A} | {T A}):

pc({A} | {T A}) = 0, 15(0, 80)
0, 15(0, 80) + 0, 85(0, 2) .

Isso nos dá um valor aproximado de 0, 41.
Ou seja, no Cenário i, há 41% de chances do táxi ter sido

azul, apesar do relato afirmar que era azul. Isso implica que
mais provavelmente a vítima foi atropelada por um táxi verde,
com 59% de chances de ser o caso.

b Cenário ii fica como exercício para o leitor.

O Exemplo acima dá suporte a uma famosa declaração de Carl
Sagan:

Alegações extraordinárias demandam evidências
extraordinárias.

Se uma pessoa afirma ter visto uma nave extraterrestre, existe uma
probabilidade de seu depoimento estar certo. No que se refere a tal
probabilidade, dificilmente é aceitável que seja 1. Com efeito, pessoas
podem interpretar erroneamente o que veem. Se a probabilidade de
não ocorrência de naves extraterrestres em nossos quintais for maior
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do que a probabilidade de acerto em um depoimento dessa natureza,
o que mais provavelmente ocorreu é que nenhuma nave extraterrestre
visitou o quintal da testemunha.
O que foi dito no último parágrafo não é uma tentativa de desa-

creditar testemunhos, espalhados pelo mundo, de eventos extraordi-
nários, como avistamentos de lobisomens ou fantasmas. Mas é um
alerta das severas limitações para lidarmos com depoimentos de tais
eventos.

Seção 105
Mapeamento com probabilidades

Sumário

Índice
RedeComo já comentado, o conceito de probabilidade nasceu da neces-

sidade humana de identificar padrões matemáticos específicos que
parecem ocorrer em certos fenômenos do mundo real. Se admitirmos
que é possível mapear tais fenômenos através de predicados conjun-
tistas, a questão a ser respondida é a seguinte: quais fenômenos
podem ser mapeados por probabilidades?
Neste sentido, estamos falando de possíveis interpretações pre-

tendidas para probabilidades, probabilidades condicionais e outros
conceitos relacionados, como distribuição de probabilidades, variáveis
aleatórias, probabilidades fuzzy, probabilidades em espaços topológi-
cos, geometria estocástica, processos estocásticos, processos de Mar-
kov, teoria das decisões, mecânica estatística, lógica indutiva, infe-
rências Bayesianas etc.
Se nos concentrarmos apenas em probabilidades e probabilidades

condicionais, as interpretações pretendidas mais comuns para esses
conceitos podem ser divididas em três grandes grupos.

Probabilidade como suporte epistemológico: Neste caso,
probabilidades servem ao propósito de fornecer medidas objeti-
vas de evidências de relações entre fenômenos. Por exemplo,
levando em conta as atuais taxas de consumo de recursos natu-
rais em parceria com avanços tecnológicos, a probabilidade de
colapso irreversível da civilização nas próximas décadas é acima
de 90% [7].
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Probabilidade como grau de crença: Por exemplo, ‘não te-

nho certeza que o mundo como o conhecemos deixará de existir
em 2040, mas provavelmente será o caso’.

Probabilidade como conceito físico: Neste caso, probabi-
lidades são aplicáveis a vários sistemas físicos, independente-
mente de avaliações subjetivas. Não importa o que uma pessoa
pensa sobre uma moeda não viciada, se ela for jogada dez mil
vezes, em aproximadamente cinco mil vezes resultará em coroa.

Os poucos exemplos aqui explorados se referem ao terceiro grupo.
A literatura sobre probabilidades é suficiente para consumir o tempo
de uma vida e ainda assim ficar muito longe de esgotar o tema.
Para finalizar esta brevíssima introdução ao assunto, retomemos a

provocação colocada na Seção 100.
Sobre o caso Titan-Titanic, o mero acaso explica as coincidências

entre o romance Futility e o naufrágio do Titanic? Afinal, assim como
podemos obter duas coroas seguidas por mero acaso em um jogo de
cara-ou-coroa, podemos atribuir o mesmo acaso ao romance? Ou
estamos diante de uma intrigante evidência de profética previsão do
futuro?
Pois bem. Infelizmente, teoria de probabilidades, por si só, não

permite responder a essa questão. É necessário um espaço de proba-
bilidades que mapeie o mundo real. Logo, como propor um espaço
amostral para fins de avaliação? Esse espaço amostral deve incluir
todos os romances já escritos e todos os eventos reais já ocorridos? Se
a meta é comparar ficção com realidade, qual é o período de tempo
a ser considerado? Décadas? Séculos? Milênios? Essa questão é
relevante o bastante para ser digna de pesquisa?
Situação análoga ocorre com o caso Lincoln-Kennedy. Por exem-

plo, Lincoln teve quatro filhos. Kennedy teve três. Logo, não há
coincidência entre ambos, no que se refere a número de filhos. Quais
outros aspectos devem ser levados em consideração para que seja
definido um espaço amostral? Devemos considerar apenas os presi-
dentes dos Estados Unidos ou todos os estadistas que já existiram?
Com relação à loteria da Bulgária, esta já existia há mais de cin-

quenta anos, antes do inusitado evento das mesmas dezenas em dois
sorteios consecutivos. Além disso, não é a única loteria do mundo.
Se escolhermos como espaço amostral o conjunto de todas as loterias
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espalhadas pelo planeta, é tão inusitado assim que, em uma delas,
ocorra tal coincidência? Afinal, os registros mais antigos de loterias
datam da época da Dinastia Han, na China, há mais de dois mil
anos.
A mesma mente humana, capaz de reconhecer padrões na natureza

e transformá-los em matemática, também é capaz de interpretar co-
incidências como atos divinos ou até mesmo milagres. Não é por
acaso que Georg Cantor percebia na teoria de conjuntos uma forma
de conhecer a mente de Deus [57].

Seção 106
Resumo da ópera

Sumário

Índice
RedeQualificamos probabilidades e probabilidades condicionais na lin-

guagem de ZFC. Neste contexto, mostramos que
• probabilidades são casos muito particulares de medidas;
• qualquer conjunto não vazio pode ser espaço amostral em um
espaço de probabilidades;
• probabilidades foram concebidas para resolver problemas do
mundo real;
• a interpretação intuitiva de probabilidades é um problema ex-
traordinariamente difícil;
• probabilidades condicionais não são probabilidades, mas uma
concatenação de probabilidades.

Seção 107
Notas históricas

Sumário

Índice
Rede

m
em 1900 David Hilbert apresentou no Congresso Internacional de
Matemáticos, de Paris, uma histórica palestra que, posteriormente,
resultou em uma lista de 23 problemas que, em sua opinião, eram
as principais questões legadas pelos matemáticos do século 19 aos
do século 20. Os problemas por ele enunciados serviram, e ainda
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servem, para direcionar relevantes trabalhos nos campos da mate-
mática pura e da matemática aplicada. Em sua lista, é de especial
interesse aqui, o sexto problema:

Investigações sobre os fundamentos da geometria sugerem o
problema: tratar do mesmo modo, por meio de axiomas, as
ciências físicas nas quais a matemática desempenha papel
importante: são prioritárias a teoria de probabilidades e a

mecânica.

Andrey Kolmogorov
Fonte: https://www.kolmogorov.com/.

Claramente o texto acima mostra que teoria de probabilidades era
um ramo das ciências físicas. Foi somente em 1933 que Andrey
Kolmogorov apresentou uma solução parcial ao Sexto Problema de
Hilbert, ao publicar um livro onde são introduzidos essencialmente
os mesmos axiomas que o leitor encontra na Definição 9.4.
Mais do que um teórico, Kolmogorov colaborou com as forças

armadas russas durante a Segunda Guerra Mundial, para prote-
ger Moscou dos bombardeiros alemães. Sua arma: estatística. O
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matemático russo desenvolveu uma engenhosa distribuição estocás-
tica de balões barragem.
Por conta de sua vasta obra, hoje o nome Kolmogorov está entre

os mais citados em matemática, incluindo homologia de Kolmogorov,
espaços de Kolmogorov, paradoxo de Borel-Kolmogorov, critério de
Kolmogorov, equação de Fisher-Kolmogorov e complexidade de Kol-
mogorov, entre algumas dezenas de outras referências, incluindo, na-
turalmente, os axiomas de Kolmogorov para probabilidades.

m
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PARTE 10

Informações complementares
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Nesta parte discutimos sobre alguns assuntos complementares.

Seção 108
Newton-Raphson

Sumário

Índice
RedeSeja f : R → R uma função diferenciável tal que existem valores

em um intervalo [a, b] onde f(x) muda de sinal. A existência de pelo
menos um c ∈ [a, b], tal que f(c) = 0, é garantida pelo fato de f ser
contínua (Teorema 5.25). Isso é consequência do Teorema do Valor
Intermediário, mencionado muito brevemente na Seção 59.
Supor que existe apenas um c ∈ [a, b] tal que f(c) = 0. Logo, pode-

mos introduzir o método de Newton-Raphson, se certas condições
forem atendidas. Detalhes em um bom livro sobre análise numérica.
Se xn é uma entrada de f(xn), xn+1 é obtido da seguinte maneira:

f ′(xn) = f(xn)− 0
xn − xn+1

.

A derivada f ′(xn) é o coeficiente angular de uma reta definida por
(xn, f(xn)) e (xn+1, 0),

conforme a imagem a seguir.
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x

y
f(x)

tangente

xn

f(xn)

xn+1

Logo,
xn − xn+1 = f(xn)

f ′(xn) .

Finalmente,
xn+1 = xn −

f(xn)
f ′(xn) .

A fórmula acima descreve o método de Newton-Raphson. Observar
que, se f(xn) = 0, então xn+1 = xn, para todo n natural. Além disso,
se f ′(xn) = 0, o método de Newton-Raphson não é aplicável.

Exemplo 10.1. Como calcular a raiz quadrada x de um número
real a ≥ 0?
Por um lado temos x =

√
a. Logo, x2 = a, o que implica que

x2 − a = 0.
Logo, a raiz quadrada x de a é um zero de f : R→ R dada por

f(x) = x2 − a.

O método de Newton-Raphson permite obter aproximações com
precisão arbitrária para x =

√
a. A função recursiva é dada por

xn+1 = xn −
x2
n − a
2xn

,
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sendo x0 6= 0 uma estimativa inicial para a raiz quadrada de a.
A função recursiva pode ser reescrita como

xn+1 = 2x2
n

2xn
− x2

n − a
2xn

.

Logo,

xn+1 =
xn + a

xn

2 .

Observar que esta é a mesma sequência introduzida na Seção 39,
no caso em que x0 é um número racional e a = 2. Naquela Seção
há exemplos ilustrativos da sequência recursiva acima para valores
de x0 = 2 e x0 = 5 com o propósito de obter aproximações racionais
para x =

√
2.

Uma curiosidade histórica é que a equação

xn+1 =
xn + a

xn

2
reproduz oMétodo Babilônico para o Cálculo de Raiz Quadrada, con-
cebido há mais de quatro mil anos. Os matemáticos babilônicos não
eram capazes de justificar o método acima por meio de cálculo dife-
rencial, que só foi concebido no século 17. Mas empregavam a mesma
ideia: aproximações de raízes quadradas por médias aritméticas.
O Exemplo acima pode ser estendido para aproximações de x =

m
√
a, onde m é um inteiro positivo maior do que 1:

xn+1 =
(m− 1)xn + a

xm−1
n

m
.

Ou seja, médias aritméticas de m termos (notar que todos os m
termos ocorrem no numerador) podem ser usadas para obtermos
aproximações de m

√
a, ideia essa que, aparentemente, jamais passou

pela cabeça dos pensadores do Império Babilônico.
A representação decimal dessas aproximações permite estabelecer

um critério de parada em função do número de casas de precisão
desejada. No entanto, este método não exige que x0 seja racional
ou que f seja polinomial. Logo, pode ser aplicado a funções f en-
volvendo exponenciais, logaritmos, senos, co-senos, entre outras (in-
cluindo composições não triviais), desde que (entre outras condições)
sejam localmente diferenciáveis em um intervalo aberto onde há um
zero de f .
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Exemplo 10.2. Um dos zeros de seno é π, conforme Seção 57.
Portanto, para obter aproximações de π, basta aplicar o Método
de Newton-Raphson, uma vez que seno é diferenciável.
Se f : R→ R é uma função dada por f(x) = sen(x), então

xn+1 = xn −
sen(xn)
cos(xn) .

Falta agora uma semente x0, para obter x1, x2, x3 etc.
Podemos usar, como inspiração, alguma referência histórica.

Afinal, é divertido.
De acordo com Arquimedes de Siracusa, π está entre

223
71 e 22

7 ,

ou seja, entre
3, 140845070422535 e 3, 142857142857142,

com precisão de 15 dígitos após a vírgula.
Outra referência histórica é a Bíblia Sagrada. No Primeiro

Livro de Reis, Capítulo 7, Versículo 23, lê-se o seguinte:
Fez o tanque de metal fundido, redondo, medindo qua-
tro metros e meio de diâmetro e dois metros e vinte
e cinco centímetros de altura. Era preciso um fio de
treze metros e meio para medir a sua circunferência.

A versão acima, entre dezenas de traduções para o português
brasileiro feitas desde o final do século 19, é de https://www.
bibliaon.com/ . Logo,

π =
13 + 1

2
4 + 1

2
= 3.

Mas o metro não era padrão adotado há 2700 anos. No original
em hebraico clássico o tanque tem dez cúbitos curtos de diâmetro
e trinta cúbitos curtos de circunferência, o que corresponde a

π = 30
10 = 3.

Na literatura especializada em história bíblica há extensas dis-
cussões sobre o cúbito curto e o cúbito longo, entre outras dezenas
de unidades de medição empregadas no Antigo Testamento. Mas,
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o que nos interessa é a proporção de valores. Logo, afirmar que o
Primeiro Livro de Reis estabelece que π = 3, é uma tese segura,
com pouco espaço para debate.
Observar que sen(3) é um real estritamente positivo, o qual

pode ser calculado com precisão arbitrária a partir do trunca-
mento da série de potências discutida na Seção 54. Além disso,
sen(22

7 ) é um real negativo, que pode ser calculado da mesma
maneira. Neste caso, π está em algum lugar do corpo totalmente
ordenado dos números reais, entre a estimativa bíblica 3 e uma
das aproximações de Arquimedes, 22

7 .
Apesar da proposta sagrada não ser tão precisa quanto a es-

timativa de Arquimedes, escolhemos ela como semente x0, para
fins de uma avaliação superficial do desempenho do Método de
Newton-Raphson.
Logo,

x0 = 3, 000000000000000 x1 = 3, 142546543074278
x2 = 3, 141592653300477 x3 = 3, 141592653589793

x4 = 3, 141592653589793

Com apenas quatro iterações, conseguimos uma aproximação
de π com quinze dígitos após a vírgula. O critério de parada é o
fato de que, com uma precisão de quinze dígitos, existe n natural
tal que

xn+1 − xn = 0, 000000000000000.

Esse valor n é 3. Logo, o processo recursivo é interrompido
em x4. Esse exemplo ajuda a ilustrar a eficiência do Método de
Newton-Raphson.

Seção 109
Método de Euler

Sumário

Índice
RedeMétodos numéricos implementáveis em máquinas não servem ape-

nas ao propósito de determinar zeros de certas funções reais dife-
renciáveis. É possível também estimar funções que sejam soluções
aproximadas de equações diferenciais.
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Seja x : R→ R uma função x(t) real tal que

d2x

dt2
= α,

sendo α um número real qualquer. Logo,
dx

dt
= αt+ β,

sendo β ∈ R. Portanto,

x(t) = α
t2

2 + βt+ γ,

onde γ ∈ R.
Se usarmos t para mapear tempo em segundos e x(t) para mapear

posição em metros de uma partícula em R, dependente de tempo,
temos que

d2x

dt2
= α

é a aceleração constante da partícula em metros por segundo por
segundo, e

dx

dt
é a sua velocidade instantânea em metros por segundo. Observar que
x(0) = γ. Logo, γ pode ser usada para mapear posição x0 metros no
instante 0 segundos. Além disso,

dx

dt

∣∣∣∣
t=0

= β,

o que significa que podemos usar β para mapear velocidade instan-
tânea v0 no instante t = 0. Logo, β = v0 e γ = x0 são condições de
contorno da equação diferencial

d2x

dt2
= α.

Outra maneira de examinarmos o problema acima é através da
substituição de dx

dt
por v(t), uma função de velocidade instantânea.

Logo, d2x
dt2

= α é equivalente a

dv

dt
= α.
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A forma integral dessa última equação diferencial é∫ vF

v0
dv =

∫ tF

t0
αdt.

Logo, v
∣∣∣vF

v0
= αt

∣∣∣tF
t0
. Logo, vF − v0 = α(tF − t0), o que implica em

vF = v0 + α(tF − t0).

Se substituirmos t0 por 0 e tF por t, temos a mesma igualdade
dx

dt
= αt+ β,

onde β = v0 e vF = dx
dt
.

A forma integral da última equação diferencial é∫ xF

x0
dx =

∫ tF

t0
(αt+ β)dt.

Logo, x
∣∣∣xF

x0
= (α t22 + βt)

∣∣∣tF
t0
. Isso implica em

xF − x0 = α
tF

2

2 + βtF −
t0

2

2 − βt0.

Logo,

x(t) = α
t2

2 + βt+ x0,

se substituirmos t0 por 0 e tF por t.
No contexto de mecânica clássica [17], o estado de uma partícula

sujeita às leis de Newton pode ser representado por um par ordenado
(x(t), v(t))

(posição e velocidade em cada instante de tempo t), se a partícula
tiver uma massa constante em relação a tempo. A ideia intuitiva é
simples: o estado da partícula deve descrever onde a partícula está
e em qual velocidade se encontra a cada instante de tempo.
Suponha que uma partícula com massa m constante (em relação

ao tempo) mude seu estado (x(t), v(t)) de acordo com a Segunda Lei
de Newton:

F (t) = m
dv

dt
,

onde F (t) é uma função que descreve força resultante sobre a partí-
cula.
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A forma integral desta equação diferencial é∫ vF

v0
mdv =

∫ tF

t0
F (t)dt.

Sendo m uma constante em relação a t, a integral do lado esquerdo
pode ser facilmente calculada a partir do Teorema Fundamental do
Cálculo. Mas a integral do lado direito da igualdade é algo bem
diferente, pelo fato de depender da função-força F (t).
Se F (t) for uma função constante, a aplicação do Teorema Funda-

mental do Cálculo é viável, uma vez que funções constantes admitem
primitivas dadas por funções elementares.
Existe vasta variedade de funções elementares F (t) que admitem

primitivas dadas por funções elementares, como polinomiais, trigo-
nométricas, exponenciais e logarítmicas. No entanto, nem sempre
isso ocorre. Por exemplo,

F (t) = e−t
2
,

F (t) = 1
ln t

e
F (t) = e−t

t
são funções elementares que não admitem primitivas elementares.
Para detalhes, consultar o Algoritmo de Risch [39].
Para casos envolvendo funções elementares que não admitem pri-

mitivas elementares, uma opção é o emprego de métodos numéricos
a partir de funções recursivas. O Método de Euler é o mais simples
para esse propósito.
O Método de Euler foi concebido por Leonhard Euler no século 18

(ou seja, muito antes do advento de tecnologias digitais) para ofere-
cer soluções aproximadas de equações diferenciais nas quais ocorrem
uma derivada de primeira ordem mas nenhuma derivada de ordem
superior, desde que uma condição de contorno seja dada.
No caso ilustrado acima, podemos reescrever a forma diferencial

F (t) = m
dv

dt

como uma equação a diferenças finitas na qual uma derivada é tra-
tada de fato como uma razão entre números reais, como mostrado
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abaixo. Por conta disso, o Método de Euler fornece apenas uma
solução aproximada da equação diferencial. Neste caso, temos:

m
vn+1 − vn

τ
= F (tn),

sendo que
tn+1 = tn + τ,

onde τ é o passo de integração numérica. Logo,

vn+1 = vn + τF (tn)
m

e
tn+1 = tn + τ.

A partir de uma condição de contorno F (t0) e um passo de in-
tegração τ adequadamente escolhido, em princípio é possível obter
pontos (tn, vn) que correspondem a uma restrição de uma aproxi-
mação da primitiva de F (t), uma vez que qualquer máquina somente
é capaz de processar uma quantia finita de informações .

i Há generalizações do Método de Euler, como os Métodos de
Runge-Kutta. Recomendamos ao leitor que procure informações so-
bre o tema.

Seção 110
Predicados conjuntistas para teorias físicas

Sumário

Índice
RedeComo ressaltado na Seção 107, o Sexto Problema de Hilbert coloca

a seguinte questão:

Investigações sobre os fundamentos da geometria sugerem o
problema: tratar do mesmo modo, por meio de axiomas, as
ciências físicas nas quais a matemática desempenha papel
importante: são prioritárias a teoria de probabilidades e a

mecânica.

Kolmogorov resolveu esse problema para a teoria de probabilidades
(Parte 9). No entanto, mecânica se revelou assunto um pouco mais
complicado.
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A primeira metade do século 20 testemunhou o nascimento da

física moderna, a qual foi definida pela mecânica quântica e pelas
teorias da relatividade (restrita e geral) de Einstein. Posteriormente
surgiram as teorias quânticas de campos. Logo, aquilo que Hilbert
chamava de mecânica é algo que hoje pode ser chamado de mecânica
clássica não relativística.
Apresentamos a seguir a pioneira formulação que John Charles

Chenoweth McKinsey, Alvin Sugar e Patrick Colonel Suppes intro-
duziram para a mecânica clássica não-relativística de partículas, em
1953. O sistema proposto reflete aspectos essenciais da mecânica
newtoniana. Além disso, oferece uma axiomatização, via predicado
conjuntista, suficientemente rica para uma discussão filosófica a res-
peito de outros tópicos, como as mecânicas de Hertz [46] e de Mach
[47].
Nesta Seção, R3 denota o espaço vetorial real usual de triplas or-

denadas de reais, munido das operações usuais de adição de triplas
ordenadas de reais e de multiplicação de real por tripla ordenada
de reais. Também assumimos a base canônica para R3 e que este
mesmo espaço é munido do produto interno canônico. Intuitivamen-
te falando, identificamos R3 com o espaço físico. Espaço físico, por
sua vez, se refere a uma potencial totalidade de possíveis posições e
direções relativas de objetos do mundo real.
A seguir, alguns conceitos preliminares.

Seja f : T → R3 uma função, onde T é um intervalo de números
reais. Dizemos, neste caso, que f é uma função vetorial em R3.
Se t ∈ T , temos que

f(t) = (x(t), y(t), z(t)),
onde x, y e z são funções reais com domínio T .
Neste contexto,

dn

dtn
f(t) =

(
dn

dtn
x(t), d

n

dtn
y(y), d

n

dtn
z(t)

)
.

Exemplo 10.3. b A função f : R→ R3 dada por
f(t) = (cos t, sen t, 3t)

descreve uma helicoidal em R3.
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Neste caso particular,
d

dt
f(t) = (−sen t, cos t, 3) e d2

dt2
f(t) = (− cos t,−sen t, 0).

Rigorosamente falando, a última igualdade na última definição não
é a definição de derivada de função vetorial em R3, mas um teo-
rema que pode ser demonstrado a partir da definição de derivada
de funções vetoriais. Não apresentamos os detalhes porque, para os
atuais propósitos, são desnecessários.
A seguir uma adaptação do trabalho de McKinsey, Sugar e Suppes.

Definição 10.1. P = 〈P, T, s,m, f ,g〉 é um sistema não re-
lativístico de partículas sss:

mcp1: P é um conjunto finito não vazio;
mcp2: T é um intervalo de números reais;
mcp3: s : P ×T → R3 é uma função cujas imagens s(p, t) são
denotadas por sp(t);

mcp4: Para todo t ∈ T existe
d2sp(t)
dt2

;

mcp5: m : P → R é uma função tal que m(p) > 0 para todo
p ∈ P ;
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mcp6: f : P × P × T → R3 é uma função tal que

f(p, q, t) = −f(q, p, t);

mcp7: g : P × T → R3 é uma função, cujas imagens são
denotadas por g(p, t);

mcp8: Se p ∈ P e q ∈ P , então, para todo t pertencente a T ,
f(p, q, t) é uma combinação linear de sp(t)− sq(t);

mcp9: Se p ∈ P , q ∈ P e t ∈ T , então

m(p)d
2sp(t)
dt2

=
∑
q∈P

f(p, q, t) + g(p, t).

• Os elementos de P são chamados de partículas.
• Os elementos de T são instantes de tempo ou, simplesmente,
instantes.
• Cada imagem sp(t) da função s é a posição da partícula p no
instante t.
• Cada imagem m(p) da função m é a massa da partícula p.
• Cada imagem f(p, q, t) da função f é a força da partícula q sobre
a partícula p no instante t.
• Cada imagem g(p, t) da função g é a força perturbativa sobre a
partícula p no instante t.

Axioma mcp1 diz que todo sistema não relativístico de partículas
tem pelo menos uma partícula. Além disso, o conjunto de partículas
não pode ser infinito.
Postulado mcp2 apenas estabelece um conjunto T como parâmetro

para definir funções de posição, força e força perturbativa. A inter-
pretação pretendida é que T seja um intervalo de tempo.
Fórmula mcp3 garante que cada partícula p, em cada instante de

tempo t, pode ser localizada por uma posição sp(t) no espaço R3.
A helicoidal no Exemplo 10.3 descreve uma possível trajetória de
uma dada partícula em um dado intervalo de tempo.
Axioma mcp4 impõe que as posições de partículas são dadas por

funções duas vezes diferenciáveis em relação a tempo. Naturalmente,
a interpretação pretendida é que a derivada primeira descreva ve-
locidade de cada partícula em cada instante de tempo, e a derivada
segunda descreva aceleração.
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mcp5 diz que toda partícula tem massa real estritamente positiva.
Uma vez que R3 é munido de produto interno canônico, isso garante

que podemos definir a norma induzida pelo produto interno. Neste
sentido, postulado mcp6 estabelece que a força da partícula q sobre
a partícula p tem a mesma intensidade (dada pela norma) da força
da partícula p sobre a partícula q, em cada instante t. Além disso,
ambos os vetores têm a mesma direção, mas ‘sentidos opostos’ (um
é simétrico aditivo do outro). A interpretação pretendida é que este
postulado mapeie uma versão fraca da Terceira Lei de Newton.
Para efeitos práticos, é desejável a existência de forças perturbati-

vas. Esta é a razão do axioma mcp7.
Postulado mcp8, em parceria com mcp6, deve mapear a Terceira

Lei de Newton: a força que a partícula q exerce sobre p é um vetor
com a direção da posição de p relativamente à posição de q. Esse
axioma previne ambiguidades na determinação da direção de forças.
Finalmente, mcp9 deve mapear a Segunda Lei de Newton para

partículas com massa constante relativamente ao parâmetro tempo.
O lado direito da igualdade é o que se chama de força resultante
sobre a partícula p.
Naturalmente, postulado mcp9 é uma equação diferencial. Re-

solver tal equação diferencial significa determinar o estado de cada
partícula em cada instante de tempo, sendo que o estado de uma
partícula p no instante t é o par ordenado(

sp(t),
d

dt
sp(t)

)
.

Teorema 10.1. A força que uma partícula exerce sobre ela
mesma, em um sistema não relativístico de partículas, é sempre
nula.

Demonstração: De acordo com mcp6,
f(p, p, t) = −f(p, p, t).

Logo,
f(p, p, t) + f(p, p, t) = (0, 0, 0).

Logo,
f(p, p, t) = (0, 0, 0).
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Teorema 10.2. Primeira Lei de Newton.

Demonstração: De acordo com mcp9, se a força resultante
sobre uma partícula p é nula, então

d2sp(t)
dt2

= (0, 0, 0),

uma vez que m(p) > 0.
Logo,

dsp(t)
dt

= (α, β, γ),
onde α, β e γ são constantes reais.
Logo,

sp(t) = (αt+ a, βt+ b, γt+ c).

Mas esta é exatamente uma trajetória retilínea, se α, β
ou γ forem diferentes de 0, ou um estado de repouso, se α,
β e γ forem todos nulos.

Exemplo 10.4. b A função f : R→ R3 dada por
f(t) = (2t+ 1, t− 3, 3t+ 2)

descreve uma trajetória retilínea em R3.
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Neste caso particular,

d

dt
f(t) = (2, 1, 3)

e
d2

dt2
f(t) = (0, 0, 0).

Uma limitação óbvia do sistema axiomático acima é o fato das
partículas terem massas invariantes em relação a tempo. Mas esta
é uma limitação facilmente contornável se modificarmos adequada-
mente os axiomas mcp5 e mcp9.
No entanto, há uma limitação muito mais severa: o fato de que

essa formulação assume explicitamente um único papel para forças:
mudar o estado de uma partícula ao longo do tempo. É bem sabido
que forças, no contexto de mecânica clássica, contam com outro papel
relevante: deformar corpos.
Apesar disso, o sistema concebido por McKinsey, Sugar e Suppes

foi pioneiro no emprego de técnicas modernas de axiomatização para
teorias físicas. Desde então, muitas outras propostas surgiram na
literatura. Algumas delas se refeream a sistemas axiomáticos para a
mecânica dos meios contínuos, para teorias de campos (clássicas ou
quânticas) e para a termodinâmica, entre muitos outros exemplos de
teorias físicas.
Sobre o impacto dessas ideias, ver [12]. O que mostramos aqui

é uma porção insignificante sobre o que o método axiomático pode
fazer pela física teórica.

Seção 111
Modelos de ZF

Sumário

Índice
RedeComo enfatizado na Seção 1, a linguagem S de ZF é desprovida

de semântica. Apesar das vantagens já discutidas sobre essa carac-
terística, há dificuldades inerentes a ZF que exigem algum tipo de
consideração de caráter semântico.
Como já foi dito, matemáticos são caçadores de teoremas não tri-

viais. Neste contexto, considere o seguinte fato:

`ZF−{Axioma do Par} Axioma do Par.
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O que está escrito acima é o seguinte: em ZF− {Axioma do Par}

(a qual é uma teoria formal com todos os postulados de ZF, exceto
o Axioma do Par) o Axioma do Par é teorema, como se verifica a
seguir.

Teorema 10.3. `ZF−{Axioma do Par} Axioma do Par.

Demonstração: Axioma do Vazio e Teorema 3.2 garantem
a existência e unicidade do conjunto vazio ∅. Axioma da
Potência garante a existência do conjunto

t = ℘(℘(∅)) = {∅, {∅}}.

Sejam r e s conjuntos quaisquer e F(x, y) a fórmula
(x = ∅⇒ y = r) ∧ (x 6= ∅⇒ y = s).

Logo, aplicando o Esquema de Substituição sobre t, usando
a fórmula F(x, y), obtemos o par {r, s}.

Resumidamente, o que foi provado acima é que o Axioma do Par
é desnecessário, desde que tenhamos os postulados Vazio, Potência
e Substituição. A teoria formal axiomática ZF − {Axioma do Par}
é equivalente a ZF, no sentido de que todos os teoremas de uma são
teoremas da outra. Por conta disso, alguns autores simplesmente
omitem esse postulado em certas formulações de ZF e ZFC.

Se F é um postulado de ZFC, dizemos que F é independente dos
demais axiomas de ZFC sss

6`ZFC−{F} F .
Caso contrário, dizemos que F é dependente.

Logo, o último teorema é equivalente à seguinte proposição.

Proposição 10.1. O Axioma do Par é dependente dos de-
mais postulados de ZF.

Consequentemente, é natural questionar se fenômeno análogo o-
corre com outros axiomas de ZF e ZFC. Afinal, matemáticos querem
genuinamente conhecer essa teoria formal.
No entanto, não é tão fácil assim responder se outros postula-

dos podem ser simplesmente omitidos, mantendo todos os teoremas.
Provar a dependência de um postulado é, em princípio, fácil. Basta

Página 466



Matemática Pandêmica Parte 10 Seção 111
exibir uma demonstração. Provar a independência, porém, é algo
que exige ferramentas metamatemáticas. Afinal, se um matemático
não consegue exibir uma demonstração, isso não implica que tal de-
monstração não exista. O Axioma da Escolha é um exemplo histórico
bem conhecido.
A primeira pessoa a trazer alguma luz sobre o tema foi Kurt Gödel,

apesar de Abraham Fraenkel e Andrzej Mostowski terem apresentado
resultados relacionados ao Axioma da Escolha para uma variação de
ZF conhecida como ZFU [22].
Gödel criou ummodelo de ZF, hoje conhecido como L, ou, universo

construtível de Gödel. Para isso ele precisou qualificar qual é um
possível universo de discurso L de ZF.
Em outras palavras, uma vez que os axiomas de ZF empregam

quantificadores lógicos, o que podem significar fórmulas como
‘para todo x, isso ou aquilo acontece’?

O que é ‘para todo’? Obviamente, esse ‘para todo’ não pode incluir
objetos como elefantes, calças desbotadas ou molas de grampolas. É
neste momento que um modelo de ZF cumpre o papel de estabelecer
um possível universo de discurso para uma teoria como ZF.
O que Gödel propôs foi um universo de discurso L minimamente

necessário para satisfazer todos os axiomas de ZF. A ideia, intuiti-
vamente, é a seguinte.
Um conjunto y é definível a partir de um conjunto x se existe

uma fórmula Φ tal que t pertence a y sss t pertence a x e t satisfaz
a fórmula Φ. Uma vez estabelecido o que é um conjunto definível
a partir de outro, é possível introduzir um universo de conjuntos
hierarquicamente definíveis a partir do conjunto vazio como se segue.

i: Admite-se a existência de um conjunto vazio chamado de L0;
ii: Se existir fórmula Φ que permita definir um novo conjunto a

partir de L0, este novo conjunto é elemento de um conjunto L1;
iii: De fato, é possível definir um conjunto x a partir de L0 da se-

guinte forma: t pertence a x sss t pertence a L0 e Φ (seja qual for
a fórmula Φ, neste caso muito particular); com efeito, nenhum
t pertence a vazio; logo, neste caso muito especial, qualquer
fórmula funciona; logo, x é novamente o vazio; a partir disso
é definido o conjunto L1 cujos elementos são todos os conjun-
tos definíveis a partir de L0, ou seja, o próprio L0; em outras
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palavras, L1 conta com um único elemento, a saber, L0; escreve-
mos L1 = {L0};

iv: Se existir fórmula Φ que permita definir um novo conjunto x
a partir de L1, este novo x é elemento de um conjunto L2; logo,
os elementos de L2 são apenas L0 e L1, definíveis pela escolha
apropriada de fórmulas; ou seja, L2 = {L0, {L0}};

v: Se existir fórmula Φ que permita definir um novo conjunto
x a partir de L2, este novo x é elemento de um conjunto L3;
logo, os elementos de L3 são apenas quatro, definíveis a par-
tir de fórmulas apropriadas para este fim: L0, L1, L2 e um
conjunto que tem como único elemento L1; escrevemos L3 =
{L0, {L0}, {L0, {L0}}, {{L0}}};

vi: Repetimos o processo acima para L4, L5, L6 e assim por diante,
até cobrir todos os ordinais finitos;

vii: Chamamos de Lω o conjunto que satisfaz a seguinte condição:
um conjunto x pertence a Lω sss x pertence a algum Ln, onde
n é um ordinal finito;

viii: Chamamos de Lω+1 o conjunto dos conjuntos definíveis a
partir de Lω; Lω+2 o conjunto dos conjuntos definíveis a partir de
Lω+1, e assim por diante, até novamente cobrir todos os ordinais
finitos;

ix: Chamamos de L2ω o conjunto que satisfaz a seguinte condição:
um conjunto x pertence a L2ω sss x pertence a algum Lω+n, onde
n é um ordinal finito;

x: Chamamos de L2ω+1 o conjunto dos conjuntos definíveis a par-
tir de L2ω; L2ω+2 o conjunto dos conjuntos definíveis a partir
de L2ω+1, e assim por diante, até novamente cobrir todos os
ordinais finitos;

xi: Chamamos de L3ω o conjunto que satisfaz a seguinte condição:
um conjunto x pertence a L3ω sss x pertence a algum L2ω+n,
onde n é um ordinal finito;

xii: Repetimos o procedimento acima para L4ω, L5ω, e assim por
diante.

xiii: Finalmente, dizemos que um conjunto x pertence a L sss x
pertence a algum Lp, onde p é um ordinal finito n ou p émω+n.

No contexto acima, um conjunto é qualquer x que pertence a L.
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Pois bem. O que Gödel provou é que todos os axiomas de ZFC são

satisfeitos em L.
Por exemplo, o Axioma do Vazio é satisfeito graças à existência de

L0, o qual é um elemento de L. O Axioma do Par é satisfeito graças
ao seguinte fato: dados x e y pertencentes a L, existem Lp e Lq tais
que x pertence a Lp e y pertence a Lq, para algum p e algum q da
construção acima; logo, existe algum Lr tal que r é maior do que
ambos p e q e tal que o conjunto {x, y} pertence a Lr; logo, o par
{x, y} pertence a L, ou seja, é um conjunto.
Uma vez que todos os axiomas de ZFC são satisfeitos em L, Gödel

provou com isso que os axiomas de ZF não permitem inferir a negação
do Axioma da Escolha como teorema. Ou seja, apesar de até hoje
não existir prova de que ZF é consistente, pelo menos Gödel provou
que, se ZF for consistente, então ZFC também é.
Observar que o universo construtível L de Gödel oferece uma pos-

sível interpretação para o conceito de conjunto. Neste sentido, uma
fórmula qualquer de ZFC é verdadeira em L sss essa fórmula for sa-
tisfeita em L. Caso contrário, a fórmula é falsa em L. Logo, todos
os axiomas de ZFC são verdadeiros em L, enquanto a negação do
Axioma da Escolha é falsa em L.
No entanto, todo esse esforço de Gödel não foi suficiente para res-

ponder se o próprio Axioma da Escolha é teorema ou não de ZF.
Quem respondeu a essa questão foi Paul Cohen, na segunda metade
do século 20.
Cohen criou uma técnica hoje conhecida como forcing, a qual per-

mite criar outros modelos de ZF a partir, por exemplo, do universo
L de Gödel. Graças a forcing é possível criar um modelo M de ZF
no qual L está contido mas tal que L 6= M . Em um dos modelos
M Cohen provou que todos os axiomas de ZF são verdadeiros, mas
o Axioma da Escolha é falso. Logo, ZF é consistente tanto com o
Axioma da Escolha quanto com a negação do Axioma da Escolha.
Portanto, o Axioma da Escolha não pode ser demonstrado a par-
tir dos demais postulados de ZF. Com efeito, se pudesse, qualquer
modelo de ZF seria também modelo de ZFC.
Qualquer modelo de ZF ou ZFC oferece possíveis interpretações

para conjuntos e para a pertinência ∈. Neste sentido, modelos de
ZF e de ZFC qualificam o que é ‘para todo’. Com efeito, ao enunciar
‘para todo conjunto x’ estamos falando apenas dos x pertencentes
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a um universo de discurso particular que opera como modelo de ZF
ou ZFC. Teorias como ZF e ZFC podem ter muitos universos de
discurso. Esta é a ambiguidade inerente aos quantificadores lógicos
∀ e ∃. Não existe um único possível universo de discurso para ZF
ou ZFC, ou seja, não existe uma única possível interpretação para a
totalidade de conjuntos de ZF ou ZFC.
Além disso, os conceitos de verdade e falsidade são relativos a mo-

delos. Ou seja, dada uma fórmula Φ de ZF, como saber se essa
fórmula é verdadeira ou falsa? Para responder a essa questão é
necessário qualificar o modelo que está sendo usado. No modelo
L de Gödel o Axioma da Escolha é verdadeiro. No modelo M de
Cohen, a mesma fórmula é falsa.
Logo, os conceitos semânticos de verdade e falsidade em uma lin-

guagem formal como a de ZF têm uma conotação muito diferente dos
conceitos de verdade e falsidade em uma linguagem natural como o
português.
Uma questão natural é a seguinte: se existe modelo para ZF e

ZFC, por que esse modelo não permite provar a consistência dessas
teorias? A resposta é simples. Qualquer modelo, por exemplo, de
ZFC qualifica apenas um único possível universo de discurso para a
teoria. Mas ZF e ZFC são muito mais do que qualquer modelo possa
revelar. Uma vez que a consistência de ZF ou ZFC não pode ser
teorema da própria teoria [28], modelos não são capazes de responder
sobre consistência.

Seção 112
Princípio de Partição

Sumário

Índice
RedeO Princípio de Partição (PP) é a seguinte fórmula:

Para toda função sobrejetora f : x→ y existe uma função
injetora g : y → x.

Exemplo 10.5. Seja
f : {1, 2, 3, 4, 5, 6} → {1, 2, 3}

dada por f(1) = f(2) = 1, f(3) = f(4) = 2, f(5) = f(6) = 3.
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Cada elemento do contradomínio de f é imagem de algum ele-

mento de seu domínio. Isso garante que f é sobrejetora. Neste
caso particular certamente existe

g : {1, 2, 3} → {1, 2, 3, 4, 5, 6}
injetora. Por exemplo, g pode ser dada por

g(1) = 1, g(2) = 2 e g(3) = 3.

No Exemplo acima PP é teorema. Naturalmente, se f for finita,
PP sempre é teorema. O problema, no entanto, é provar tal fórmula
para toda e qualquer função sobrejetora.

Teorema 10.4. `ZFC Princípio de Partição

Demonstração: Seja f : x → y sobrejetora. Para cada
elemento s de y existe subconjunto us de x tal que

∀r(r ∈ us ⇒ f(r) = s).
Uma vez que f é função, então

s 6= s′ ⇒ us ∩ us′ = ∅.
O conjunto de todos os us, para todos os s pertencentes

a y, define uma partição px de x (Definição 3.16). Logo,
podemos aplicar o Axioma da Escolha sobre px. O Axioma
da Escolha ‘escolhe’ um e apenas um elemento cs perten-
cente a cada us da partição px. Portanto, podemos definir
uma função injetora g : y → x dada por

g(s) = cs.

Exemplo 10.6. Seja f : {1, 2, 3, 4, 5, 6} → {1, 2, 3} dada por
f(1) = f(2) = 1, f(3) = f(4) = 2, f(5) = f(6) = 3,

exatamente como no Exemplo 10.5.
Neste caso, a partição de {1, 2, 3, 4, 5, 6} induzida por f é

p = {{1, 2}, {3, 4}, {5, 6}}.
Se aplicarmos o Axioma da Escolha sobre p podemos obter, por

exemplo, o conjunto escolha
{1, 3, 5},

entre outras possibilidades.
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Se for o caso, a injetora g : y → x é dada por

g(1) = 1, g(2) = 3 e g(3) = 5.
Obviamente a função injetora do Exemplo anterior não pode

ser obtida por emprego do Axioma da Escolha, pelo menos nos
moldes da prova da último teorema. Mas, seja como for, a es-
tratégia adotada na demonstração do Teorema 10.4 funciona para
toda e qualquer sobrejeção f : x→ y.

Porém, a questão agora é a seguinte: sabendo que o Axioma da
Escolha implica em PP, podemos garantir a recíproca de tal teorema?
Formalmente,

`ZF+{PP} Axioma da Escolha?

Quando Ernst Zermelo propôs o Axioma da Escolha há mais de
um século, ele o fez para garantir PP no contexto da teoria de con-
juntos proposta pelo próprio Zermelo. No entanto, nunca foi capaz
de responder se PP implica em AE (Axioma da Escolha). Até os
dias de hoje esta é uma questão em aberto.
Todos os modelos de ZF, até hoje concebidos, nos quais o Princípio

de Partição é verdadeiro, o Axioma da Escolha também é verdadeiro.
Este fato parece sugerir que PP implica em AE. No entanto, não
existe qualquer classificação de todos os possíveis modelos de ZF.
Consequentemente, a atual teoria de modelos tem se mostrado insu-
ficiente para resolver esse problema.
Em [44] há uma prova de que o Axioma da Escolha é independente

do Princípio de Partição em uma variação de ZF conhecida como
ZFU (Zermelo-Fraenkel com átomos).

Seção 113
O que omitimos

Sumário

Índice
RedeiMuitos assuntos relevantes, relacionados aos temas aborda-

dos, foram omitidos neste livro. Fazemos abaixo uma breve lista de
apenas alguns deles. Paralelamente, recomendamos leituras comple-
mentares.

Teorias formais: A linguagem de ZF (a qual é a mesma de
ZFC) é um caso particular de linguagem de primeira ordem.
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Linguagens de primeira ordem, por sua vez, são casos parti-
culares de linguagens formais. Ambos os assuntos podem ser
estudados em [38], livro extraordinariamente didático. As últi-
mas edições são as melhores. Na mesma obra há uma detalha-
da discussão sobre a teoria de conjuntos NBG (von Neumann,
Bernays, Gödel). Esta é uma teoria de conjuntos que garante
a existência de classes próprias, termos que admitem elementos
mas que não são conjuntos. Em [8] há uma boa discussão sobre
a teoria de Zermelo-Fraenkel em uma linguagem de segunda or-
dem, também conhecida como ZF2. Em [56] há um exemplo de
teoria de conjuntos cuja linguagem formal prescinde de variá-
veis, quantificadores lógicos e até mesmo conectivos lógicos.

Tópicos de teoria de conjuntos: Se a pessoa não está inte-
ressada em aspectos formais de teoria de conjuntos, uma opção
é o estudo de teoria ingênua (também conhecida como teoria
intuitiva de conjuntos). Neste sentido recomendamos [50]. Para
um primeiro estudo detalhado sobre teoria de Zermelo-Fraenkel
ver [28]. No entanto, não é recomendável a leitura deste último
antes de um seguro conhecimento sobre os conteúdos iniciais de
[38]. Os modelos para ZF em [28] podem ser um tanto difíceis de
compreender para o iniciante. É recomendável uma cuidadosa
leitura de [1] para entender os propósitos de teoria de modelos.
Sobre o Axioma da Escolha, ver [27].

Cardinalidades: Ordinais finitos podem ser estendidos para ou-
tra classe de objetos, a saber, os ordinais. Todo ordinal finito
é um ordinal, mas a recíproca não é teorema. Além disso, a
pertinência define uma boa ordem em qualquer ordinal. Logo,
qualquer ordinal admite um menor elemento relativamente à
pertinência. Isso permite definir cardinalidade de um conjunto
(intuitivamente falando, a quantia de elementos do conjunto).
A cardinalidade de um conjunto x é o menor ordinal (relativa-
mente à pertinência) equipotente a x. O estudo de cardinali-
dades encontra enorme impacto sobre assuntos como teoria da
medida, entre outros [28] [30].

Análise matemática: Assim como a Seção 39, sobre números
reais, apresenta um modelo de corpo (no sentido das discussões
nas Seções 71 e 96), também é possível provar que a mesma
interpretação para números reais é um modelo de corpo orde-
nado completo [34]. De maneira análoga, as discussões sobre
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complexos na Seção 40 apenas exibem um modelo para corpo
topológico algebricamente fechado [58]. Corpos ordenados com-
pletos e corpos topológicos algebricamente fechados são casos
particulares de corpo.

Geometria sintética: Avaliar a independência dos postulados
da geometria euclidiana é essencial para a qualificação de ou-
tras geometrias, como a absoluta, as não euclidianas e as não
Paschianas. Detalhes na obra de Castrucci [10].

Álgebra matricial: Operações definidas sobre espaços de ma-
trizes (incluindo posto, determinante, escalonamento, entre ou-
tras) são essenciais para o estudo de representação matricial de
operadores lineares definidos sobre espaços vetoriais de dimen-
são finita. Detalhes em [35].

Cálculo padrão: Muitas aplicações de derivadas foram omiti-
das. Técnicas de integração (como substituição de variáveis,
substituições trigonométricas, integração por partes, entre ou-
tras) são essenciais para a aplicabilidade de cálculo diferencial e
integral padrão. Para uma abordagem intuitiva, [55]. Para um
tratamento mais próximo da análise matemática, [19].

Mecânica clássica: Entre as aplicações mais usuais de cálculo
padrão estão as teorias físicas, como mecânica clássica. Texto
padrão sobre mecânica clássica: [17]. Tratamento para a mecâ-
nica clássica como uma teoria de campos: [2]. Para uma visão
histórica e filosófica sobre o conceito de massa em diferentes
teorias da física: [26].

Leituras complementares: Em [54] há uma extensa análise
do emprego de linguagens de teoria de conjuntos no estudo de
probabilidades, mecânica clássica, linguística e outras áreas. Em
[57] há uma fascinante discussão sobre a abordagem de Bolzano
para o conceito de infinito, ressaltando até mesmo o papel da
religião sobre a concepção da teoria de conjuntos. O artigo de
divulgação científica [52] oferece uma extraordinária visão sobre
parte do impacto de teoria de conjuntos em análise matemática.
Em [31] há uma proposta para privilegiar o emprego de funções
no estudo de matemática.
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Por que tantos nomes em
matemática?
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Nesta última Parte discutimos sobre as motivações para o emprego
de nomes em matemática, bem como seu impacto.

Seção 114
Nomes como arbitrariedades

Sumário

Índice
RedeA matemática carrega algo de hermético em sua prática. Se-

gundo Joannes Philoponus, filósofo neoplatônico cristão do século 6,
na porta de entrada da Academia de Platão lia-se a frase

Ninguém deve entrar se for ignorante em geometria.

Não se sabe se a lenda procede. Mas essa famosa frase não deixa
de encerrar em si uma visão comumente nutrida há milênios. Como
já mencionado, Poincaré afirmou que o matemático nasce, não se
cria. Independentemente de quaisquer considerações sobre a visão
do grande matemático francês, um exemplo que ajuda a ilustrar a
separação entre matemáticos e não matemáticos é exatamente ZF,
como se discute a seguir.
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ZF é conhecida como uma teoria de conjuntos. No entanto, seus

conceitos primitivos são dois predicados binários usualmente denota-
dos pelos símbolos = e ∈. Em ZF não se define o que é um conjunto.
Sequer existe a necessidade de qualificar o que são conjuntos. Logo,
ZF não é uma teoria sobre objetos chamados de conjuntos.
Se um leigo espera aprender algo sobre conjuntos, ao estudar ZF,

apenas aprenderá sobre pertinência e igualdade. Isso porque ZF é
uma teoria sobre as relações entre pertinência e igualdade. Neste
sentido, uma pessoa com pouca familiaridade com matemática pode
se sentir desorientada. Afinal, por que matemáticos se referem a ZF
como uma teoria de conjuntos? Por que não chamar ZF de ‘Teo-
ria da Pertinência Extensional’? O primeiro postulado próprio de
ZF é o Axioma da Extensionalidade, o qual estabelece de imedia-
to o propósito de identificar um conjunto x a partir de todos os y
que pertencem a x. Graças ao Axioma da Extensionalidade é pos-
sível garantir a unicidade de qualquer união arbitrária, de qualquer
potência, de qualquer par. Todos os demais axiomas próprios ‘con-
fiam’ na rigidez do Axioma da Extensionalidade. Qualquer objeto x
que possamos conceber precisa da Sagrada Lei da Extensionalidade
para garantir que x é um conjunto de ZF.
Para que o leitor possa compreender melhor essa questão, pro-

movemos uma pequena mudança de nomenclatura, apenas para fins
de breve ilustração.
Em primeiro lugar, chamemos os termos de ZF de ‘homens’.
Em seguida, chamemos a pertinência de contemplação. No lugar

de dizermos que ‘o conjunto x pertence ao conjunto y’ diremos que ‘o
homem x contempla o homem y’. Além disso, chamemos a igualdade
de fidelidade. No lugar de dizermos que ‘o conjunto x é igual ao
conjunto y’, dizemos que ‘o homem x é fiel ao homem y’.
Como próximo passo, impomos na forma de postulado a Sagrada

Lei da Fidelidade (nome que substitui a expressão ‘Substitutividade
da Igualdade’): todo homem x é fiel apenas a si mesmo. Logo, ao
afirmarmos que x é fiel a y, estamos apenas dizendo que x pode ser
chamado de y, assim como y pode ser chamado de x. Mas, no final
das contas, x e y são apenas nomes de um único homem, uma vez
que todo homem é fiel apenas a si mesmo.
Neste contexto, a Sagrada Lei da Extensionalidade (nome que subs-

titui a expressão ‘Axioma da Extensionalidade’) afirma o seguinte.
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Se todo homem t que contempla o homem x é também um homem
que contempla o homem y e, além disso, todo homem t que contempla
o homem y é também um homem que contempla o homem x, então
o homem x é fiel ao homem y.
Se um leitor qualquer contestar a Sagrada Lei da Fidelidade, suge-

rindo que ele mesmo consegue ser fiel a outras pessoas, tal leitor não
estará entendendo o ponto principal: o nome ‘fidelidade’ é apenas
um nome, assim como o nome ‘igualdade’ é apenas um nome, nada
além disso.
Se chamamos ∈ de pertinência ou contemplação, isso é irrelevante

do ponto de vista matemático. Relevante é apenas aquilo que os
postulados demandam sobre os predicados ∈ e =. Neste sentido,
os nomes ‘pertinência’ e ‘igualdade’ são meras arbitrariedades, não
identificáveis com situações ordinárias do cotidiano de não-matemá-
ticos.
Porém, a prática mostra que nomes dados a predicados, termos ou

fórmulas devem, pelo menos em princípio, refletir uma interpretação
pretendida a tais conceitos. Ao chamarmos os termos de ZF de
conjuntos, isso deve refletir a intuição de que um termo qualquer
deve, de alguma forma, refletir a interpretação pretendida de uma
coleção de objetos. Por conta disso o nome dado ao predicado ∈
deve estar de acordo com tal interpretação pretendida. Um nome,
em princípio, adequado é ‘pertinência’.
Logo, os nomes adotados para conceitos acabam impactando sobre

a própria prática matemática, como se percebe na próxima Seção.

Seção 115
Nomes como arbitrariedades impactantes

Sumário

Índice
RedeNomes desempenham dois papeis relevantes na matemática.

i: Tornam a prática matemática viável. Por exemplo, di-
gamos que não fosse usado o nome ‘número natural’ ou qualquer
outro nome para nos referirmos aos ordinais finitos. Além disso,
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digamos que não exista uma única definição explícita abrevia-
tiva que permita conferir nomes a termos, predicados ou fórmu-
las. Em outras palavras, digamos que não sejam definidos os
seguintes conceitos:
• conjunto vazio,
• conjunto indutivo,
• sucessor de um conjunto,
• união finitária e, claro,
• conjunto ω dos números naturais.
Como poderíamos nos referir a um termo n qualquer como

número natural? Neste caso, seria necessário dizer
∀w((∀m((∀p(¬(p ∈ m)))⇒ m ∈ w) ∧ ∀t(t ∈ w ⇒

∀r((∀s(s ∈ r ⇔ (s ∈ t ∨ s = t)))⇒ r ∈ w)))⇒ n ∈ w).

O que está escrito acima é que o termo n (o único de ocorrência
livre na fórmula) é elemento comum a todo e qualquer conjunto
indutivo w.
Levando em conta que números inteiros são definidos a partir

de classes de equivalência de pares ordenados de naturais (Seção
30), racionais são definidos a partir de classes de equivalência
de pares ordenados de inteiros (Seção 31), e reais são definidos
a partir de classes de equivalência de sequências de Cauchy de
racionais (Seção 39), o leitor já pode imaginar a grande difi-
culdade para escrever algo como ‘seja 1 o neutro multiplicativo
dos reais’, caso não adotássemos qualquer nome para o neutro
multiplicativo dos reais ou para os demais conceitos usados para
defini-lo.

ii: Conferem poder de controle cognitivo sobre con-
ceitos. Exemplo bem conhecido foi a extraordinária habilidade
de Alexander Grothendieck para atribuir nomes provocativos a
conceitos, antes mesmo de uma plena compreensão sobre os mes-
mos. Esquemas, os quais generalizam variedades algébricas, são
um caso bastante famoso. Outro exemplo histórico marcante
foi a atitude de Cantor, ao afirmar que em matemática existem
diversos tipos de infinitos. Um dos nomes escolhidos por Can-
tor foi ‘infinito enumerável’. Por consequência, isso abriu espaço
para o ‘infinito não enumerável’. Tal controle cognitivo exerce
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um poder de criação: coisas passam a existir quando recebem
nomes, como bem insistiu Henri Poincaré. No excelente artigo
[18], Loren Graham compara esse ato de criação com o Gênesis
do Antigo Testamento: ‘Faça-se a luz! E a luz foi feita’. O nome
‘luz’ surgiu antes da própria luz.

No entanto, nas palavras de Nikolai Luzin [18], nomes fazem com
que se perca ‘as partes nebulosas e escuras que nossa intuição sus-
surra para nós’. Neste sentido, nomes podem restringir nossos modos
de percepção sobre conceitos matemáticos.
Por exemplo, ao nos referirmos aos termos de ZF como conjuntos,

podemos deixar de perceber que conjuntos podem ser interpretados
como objetos que nada têm a ver com coleções de outros objetos,
como ocorre nos modelos parciais de Abian e LaMacchia [1].
Principalmente para aqueles que iniciam seus estudos em mate-

mática, nomes usualmente encontrados na literatura especializada
podem facilmente confundir. Citamos a seguir alguns exemplos pon-
tuais.

Seção 116
Inércia histórica

Sumário

Índice
RedeLeopold Kronecker chegou a dizer que

Deus criou os inteiros, o resto é obra dos homens.

Independentemente do significado desta famosa frase, números na-
turais, inteiros, racionais, irracionais, transcendentes, algébricos, re-
ais e complexos são apenas casos especiais de termos, se formulados
na linguagem de ZF. Termos, por sua vez, são conceitos abstratos
desprovidos de significado. O número natural 2015, portanto, não
existe no mundo real. Ainda que uma pessoa creia ser capaz de
contar 2015 canivetes de bolso, apenas os canivetes de bolso são ob-
jetos reais. O número natural 2015 não é qualquer objeto do mundo
real que esteja intrinsecamente associado a 2015 canivetes de bolso.
Uma pessoa pode errar a contagem de canivetes de bolso sem que os
canivetes em si informem de imediato esse erro de contagem.
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A palavra ‘natural’, em contrapartida, se refere à natureza, po-

dendo até mesmo ser sinônimo de banal, comum. Na qualidade de
desesperados advogados do diabo, assumamos temporariamente que
números naturais foram concebidos com o propósito de contar ob-
jetos do mundo real, algo que parece perfeitamente natural, banal,
comum. Quantos números naturais podemos realmente usar para
este propósito?
Estima-se haver algo entre 1078 e 1082 átomos no universo. Em

1920, um garoto de nove anos de idade nomeou o número natural
10100 como ‘googol’, a pedido de seu tio, o matemático Edward Kas-
ner. Logo, um googol é maior do que o número de átomos em todo
o universo observável.
É claro que podemos imaginar situações potencialmente reais en-

volvendo números naturais bem maiores. Por exemplo, segundo
Claude Shannon, o número total de possíveis variações no jogo de
xadrez é algo entre 10111 e 10123, uma quantia muito maior do que
um googol. Porém, um googolplex é obviamente muito maior. Com
efeito, um googolplex é 1010100 , ou seja, o número 1 seguido de um
googol de zeros.
Não importa quantos objetos desejemos contar − entre canivetes

de bolso, átomos no universo observável ou variações no jogo de
xadrez − sempre há números naturais muito maiores. Isso porque
o conjunto dos números naturais é infinito, algo que não ocorre na
natureza. Portanto, números naturais não são naturais, nas acepções
usuais do termo.
Um aspecto mais alarmante sobre a não banalidade do conjunto ω

dos números naturais se refere ao conjunto de todos os subconjuntos
de ω, i.e., sua potência. No universo construtível L de Gödel os
subconjuntos de ω são todos definíveis. Porém, em qualquer extensão
não trivial de L, via forcing, há subconjuntos de ω que não são
definíveis. Se não há banais coleções infinitas na natureza, o que
poderia haver de banal em uma coleção infinita não definível?
Para finalizar, o que há de banal ao afirmar que n é número natural

se, e somente se,

∀w((∀m((∀p(¬(p ∈ m)))⇒ m ∈ w) ∧ ∀t(t ∈ w ⇒

∀r((∀s(s ∈ r ⇔ (s ∈ t ∨ s = t)))⇒ r ∈ w)))⇒ n ∈ w)?
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Um neófito que esteja iniciando seus estudos de matemática pode

desfrutar de equivocada tranquilidade ao saber que está estudando
números naturais. Afinal, é natural contar. Mas contar frutas em
uma cornucópia pouco tem a ver com o conceito de número natural,
a não ser pelas origens históricas do termo. Há muito mais entre
números naturais, além de um, dois e muitos.
Comentários análogos podem ser feitos sobre os números inteiros,

racionais, irracionais, reais, transcendentes e complexos. Números
reais, por exemplo, não são objetos reais. Afinal, são conjuntos. O
que seria transcendido por números reais transcendentes? O que há
de complexo em números complexos, uma vez que todo complexo
não passa de um par ordenado de reais? O que há de tão especial na
unidade imaginária, uma vez que ela não é o único conjunto definível
em ZF? Apenas a unidade imaginária apela à imaginação? Números
irracionais são números incapazes de raciocinar? Os racionais racioci-
nam?
As origens históricas desses nomes não podem ser confundidas com

as concepções atuais sobre tais conceitos. As funções circulares seno
e co-seno ilustram este ponto muito bem. Historicamente, o termo
‘seno’ deriva do latim sinus, que pode ser traduzido como ‘baía’,
‘seio’ ou ‘dobra’, dependendo do contexto. Seja como for, as ori-
gens históricas do termo seno derivam de um apelo visual a formato.
Porém, nos dias de hoje a função seno é definida como solução de uma
equação diferencial, dadas condições de contorno. Essa definição
pode ser estendida para incluir o seno de números complexos e até
mesmo matrizes. Logo, a atual visão matemática da função seno
pouco tem a ver com qualquer intuição de apelo visual.

Seção 117
Nomes que confundem

Sumário

Índice
RedeAlguns nomes empregados na matemática denunciam questionável

escolha de vocabulário entre certos profissionais. Um exemplo mar-
cante é o conceito de símbolo de um operador diferencial linear D. O
símbolo de D é tão somente um polinômio p obtido pela substituição
de derivadas parciais (um caso especial de operador diferencial) por
termos que ocorrem em p. Uma vez que toda a matemática emprega
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símbolos, na acepção da discussão na Seção 7, obviamente o símbolo
de um operador diferencial é um símbolo, apesar de nem todo sím-
bolo ser o símbolo de um operador diferencial. A palavra ‘símbolo’
aqui admite duas acepções não equivalentes entre si. Uma é o sím-
bolo D usado para se referir a um dado operador diferencial linear;
outra é o polinômio p correspondente ao operador linear D.
Outro exemplo digno de nota é o Princípio de Partição (PP), dis-

cutido na Seção 112. De acordo com PP, se f : x→ y é uma função
sobrejetora, então existe função injetora g : y → x. Toda função
sobrejetora f : x→ y define uma partição p do domínio x de f (ver
Teorema 10.4), de modo que, se z é elemento de p, então f restrita
a z é uma função constante. Se estivermos tratando de ZFC, pode-
mos usar o Axioma da Escolha para garantir a existência da função
injetora g : y → x de maneira que g é a inversa de uma função es-
colha bijetora c cujo domínio é subconjunto de x e cujo co-domínio
é y (Teorema 10.4). Exemplos são discutidos na Seção 112. Porém,
PP não exige que a função injetora g : y → x seja a inversa de
qualquer função escolha c. Portanto, em princípio, PP é indiferente
à partição p de x induzida pela função sobrejetora f . Isso mostra
que o nome ‘Princípio de Partição’ é infeliz. É um nome que sugere
atenção especial a uma informação irrelevante.
Muitos outros exemplos podem ser mencionados sobre potenciais

confusões de leitura. Mas, para finalizar, comentamos sobre um dos
mais graves: demonstração por indução.
Demonstrações por indução − como aquelas empregadas nos Teo-

remas 4.2 e 4.6, entre outros − são feitas por infinitas aplicações de
Modus Ponens, o qual é um argumento dedutivo, não indutivo. Ar-
gumentos dedutivos, como discutido na Seção 9, são relações entre
fórmulas, de modo que uma única fórmula é consequência imediata
de outras. Argumentos indutivos, por sua vez, são relações entre
fórmulas nas quais se atribui um grau de suporte para inferir uma
fórmula a partir de outras. Neste sentido, a inferência indutiva não
é necessariamente única. A abordagem mais usual para expressar
graus de suporte é através do emprego de funções de probabilidade
condicional, conforme Seção 103. Detalhes podem ser vistos na Seção
105, bem como no livro de Ian Hacking [20]. No Exemplo 9.12 foi
ilustrado que mais provavelmente a vítima foi atropelada por um
táxi verde. O grau de suporte dessa inferência indutiva em especial
é de 59%.
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Portanto, a palavra indução é um exemplo de polissemia em ma-

temática. Mais de um sentido é atribuído à mesma terminologia.

Seção 118
Neologismos e polissemia

Sumário

Índice
RedeAparentemente o matemático persa Sharaf al-Dı̄n al-Tūs̄ı foi o

primeiro a sugerir a ideia intuitiva de termos dependentes de outros,
no século 12. Isso sugere que al-Tūs̄ı foi o primeiro a sugerir algo
semelhante ao atual conceito de função. Há quem defenda que o
pensador persa chegou a introduzir rudimentos de cálculo diferencial
e integral [25]. Mas, se insistirmos que somente coisas com nomes
podem existir, então fica bem mais fácil determinar quando nasceu
o importantíssimo conceito de função em matemática: foi no século
17.
Gottfried Leibniz foi o primeiro a usar o termo ‘função’, para se

referir à dependência de uma variável relativamente a outras. Mas,
obviamente, o que Leibniz entendia por funções não coincide neces-
sariamente com os atuais conceitos para tal termo. Afinal, em ZF,
funções são casos particulares de conjuntos. A Teoria ZF, por sua
vez, nasceu apenas no século 20.
Isaac Newton, contemporâneo de Leibniz, não usava o termo ‘fun-

ção’. No lugar disso, ele se referia a variáveis independentes como
fluentes e variáveis dependentes como relata quantitas. Apesar da
grande influência da obra de Newton, foi a terminologia de Leibniz
que se estabeleceu, o qual introduziu também as palavras ‘constante’
e ‘parâmetro’ ao vocabulário matemático.
Mas alguns matemáticos claramente demonstram grande preocu-

pação com a introdução de neologismos nesta área do saber. Um
deles foi Ralph Philip Boas Jr. Em seu artigo de 1981 [6], Boas faz
vários alertas. Listamos apenas alguns.

i: Não tente desfazer erros do passado. Se alguém acredi-
ta ser capaz de criar um novo nome mais adequado para um con-
ceito matemático usual, possivelmente este alguém está certo.
No entanto, matemática é uma atividade social que envolve um
esforço coletivo de milhares de pessoas. Convencê-las a mudar
terminologia é possivelmente uma perda de tempo. Com efeito,
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matemáticos preferem se preocupar com matemática, não com
nomes.

ii: Examine a literatura, antes de introduzir nova ter-
minologia. Palavras como distribuição, função característica,
norma e módulo, assumem diferentes significados, dependendo
do ramo matemático em contexto.

iii: Não crie novos nomes para conceitos que são usa-
dos uma única vez. Apesar de nomes serem úteis para fins
de concisão de afirmações, os conceitos matemáticos são mais
importantes do que seus nomes.

Uma excelente discussão sobre a história dos nomes em matemática
pode ser encontrada no link http://www.economics.soton.ac.uk/staff/
aldrich/Mathematical%20Words.htm.
Item i acima aponta para uma contradição inerente entre matemáti-

cos: matemática é mais urgente do que nomes, apesar de nomes
exercerem impacto sobre a matemática. Mas essa atitude é com-
preensível. Com efeito, matemáticos são seres humanos e, portanto,
seres inconsistentes.
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