3
Ia
permite obter os zeros da funcdo polinomial i de grau 4, a qual admite
ho mAximo quatro zeros reais, podendo também ndo ter um tnico

r=t

Zer0.

. ADONAI

L imagem acima temos uma representacao grafica de uma poli-
nomial =az'+ B + yr’ 4+ Sr+ s parao caso a = 1, B =10,
y==2,6=0ce=10

‘ POLINOMIAIS DE GRAU MAIOR OU IGUAL A 5 .

Seja j : R — R uma fungio dada por

Flx) = az® + B 4
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Pl =

Seja f uma fungo real definida sobre um intervalo nio degenc-
rado [a,8]. A integral de Riemann (ou, simplesmente, a integral)
de f em relagio a = em [a,] é dada por

'
_/C ( ,i,:“[l,?g‘)gj =) Az,

sendo Az; = a;yy —a; € z € (a;,0,44)-

PAGINA 242

L L’ n o

> flz)Das

& chamado de soma de Riemann.

Na imagem acima ¢ sugerida uma soma de Riemann

f(zoMar — ao} + f(z)lag — ar) + f(zs)lag — aa).

onde ap=a cay =b

Logo. a soma de Riemann é uma funcéo da particao P e da escolha
de cada z;. Cada partigio e cada escolha de 2, para cada i, corres-
ponde a uma soma de Riemann. Por exemplo, para a mesma funcio
sugerida na imagem acima e para o mesmo dominio de integracio
[a,b] podemos ter a seguinte soma de Riemann sugerida na préxima

' e
imagem
fzo)ar — ag) + 2 —a1) + f(23)(as — az)+
flzi)lay = ag) + fz5)(az — ay)

onde ag=a ¢ as = b.

v Aqui a partigio do intervalo [a,b] ¢
definida por cinco infervalos

T

No caso particular em que f(r) > 0 para todo x pertencente
a0 intervalo [a,b] (como sugerido nas imagens acima), cada termo
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PREFACIO

sta é a quarta e ultima versio de MATEMATICA PANDEMICA.
A proposta é mostrar que aritmética, cdlculo diferencial e integral,
algebra linear, geometria euclidiana e teoria probabilidades podem
ser percebidos simplesmente como o estudo de casos muito parti-
culares de conjuntos. Logo, para conhecer esses temas, ¢ desejavel
familiaridade com alguma teoria usual de conjuntos. Escolhemos a de
Zermelo-Fraenkel por ser a mais popular, além de ser suficientemente
forte para lidar com as necessidades de ferramentas elementares para
desenvolver e aplicar matematica.

Aproveitamos a oportunidade para apontar multiplos possiveis ca-
minhos para desenvolver matematica, a qual é um dos ramos do
conhecimento mais importantes em termos de impacto social, eco-
noémico, tecnoldgico, cultural e filosofico.

Este livro ¢é disponibilizado gratuitamente em formato PDF, com
diversos recursos de navegabilidade. Basta o leitor clicar nos tre-
chos em azul para ser imediatamente levado ao item citado. Mas
foi planejado para funcionar também em forma impressa, caso o
leitor escolha esta opgao. Isso porque Partes, Secoes, Teoremas,
Proposic¢oes, Defini¢oes e Exemplos sao numerados. Além disso, ha
um extenso indice remissivo para auxiliar na busca por informagoes.
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PARTE 1

Introducao

Este livro é aquilo que eu gostaria de ter estudado em meu primeiro
ano como aluno de licenciatura em matematica. Pena que eu nao
sabia disso em 1983.

Nao é um texto que trata exaustivamente sobre os temas aborda-
dos. Longe disso, apenas proponho este livro como um primeiro con-
tato com assuntos basicos indispensaveis a uma compreensao minima
sobre matematica. Mas é necessario um primeiro contato honesta-
mente fundamentado para que o aluno tenha condigoes de buscar
autonomia em seus estudos. Se consigo atingir meu propédsito, ape-
nas os leitores poderao responder. Mas esta é a minha intencao aqui.

A abordagem usual em aulas de matematica mais parece um pro-
cesso de doutrinacao do que um exame critico de conhecimentos cien-
tificos. Aquele que inicia seus estudos de matematica deve perceber
que essa ciéncia é tema de debates acalorados. Debate e doutrinagao
sdo incompativeis entre si. Além disso, deve perceber também que
existem multiplas formas de fazer matematica. Em algumas dessas
formas, por exemplo, o argumento de redugio ao absurdo é legitimo,
enquanto em outras nao é. Em certas formulacoes de célculo dife-
rencial e integral ha infinitesimais, enquanto em outras esse conceito
simplesmente nao é sequer formulavel. Em algumas formulacoes de
algebra linear todo espago vetorial tem base, enquanto em outras isso
nao acontece. Em teorias usuais de conjuntos, fung¢oes tém nomes,
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como f e g. Em calculo lambda isso nao ocorre e nem pode ocorrer.
Matematica é uma area do conhecimento muito flexivel e com con-
sideravel tolerancia para ideias novas e criticas a ideias antigas. Mas,
sem conhecimento, nao ha espago para a criatividade. O estudo de
matematica deve estar focado na direcao da criatividade e da analise
critica, nao de procedimentos eficazes para a aprovagao em exames.

Quando nossos ancestrais contemplaram as estrelas pela primeira
vez — observando padroes de movimentos de corpos celestes, bem
como as relagoes entre o céu e as estacoes do ano — naquele mo-
mento nascia a matematica. Naqueles tempos remotos matematica
era um processo de abstragao que se caracterizava pela identificacao
de padroes na natureza. Ninguém olhou para o céu pensando que
aquela vastidao de complexos padroes era um 6timo ponto de partida
para a criacao de vestibulares e concursos publicos.

2014 Sun Analemma and its pesitions in 24 Seolar Ferms
(07:30am, 2014 in Yuen Long, Hong Kong)

(c) Matthew Chin

ANALEMA MARCANDO A POSIGAO DO SoL As 7H30, EM HonG KoNG
Fonte: EarthSky.

Dai a necessidade de um estudo introdutorio justificado e bem
fundamentado para a matematical O estudo criticamente funda-
mentado da mateméatica é imprescindivel para que alunos aprendam
a nao levar muito a sério professores e autores. Matematica é um
fendmeno humano que paradoxalmente transcende as idiossincrasias
humanas.
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Neste contexto, o presente documento é destinado aqueles que de-
sejam respostas claras, honestas e motivadoras para pelo menos al-
guns dos procedimentos elementares e usuais da matematica. Quais-
quer erros aqui cometidos sao responsabilidade minha, nao da ma-
tematica.

Seguem algumas questoes basicas tratadas neste livro.

I: Ha alguma justificativa para as famosas regras de sinais da mul-
tiplicacao entre inteiros? Ver Secao 30.

11: O que é, afinal, a unidade imagindria dos nimeros complexos?
Ver Secao 40.

11: O que é um numero? Ver inicio da Parte 4.
v: O que é 5Y2? Ver Secao 66.
v: Qual é a diferenca entre equacao e funcao? Ver Secao 43.

vI: O que sao solugdes de uma equacao? Ver Secao 10, bem como
inimeros exemplos importantes ao longo de todo o livro.

VII: Se o conjunto vazio nao tem elementos, como pode estar con-
tido em qualquer conjunto? Ver Teorema 3.6.

viil: O que é um conjunto? Se um conjunto é uma colecao de ob-
jetos, o conjunto vazio pode ser interpretado como uma colecao
de selos sem um tnico selo? Se fosse o caso, qualquer pessoa
¢ um colecionador de selos, mesmo nao tendo uma tnica pecga
que justifique sua suposta colegao! Ver Parte 3.

1X: O que é infinito? O infinito é algo que nao acaba? Qual é
o critério a ser usado para responder se algo acaba ou nao?
Paciéncia eterna? Ver Secao 33.

X: O que tem a ver logaritmos com teoria de grupos? Ver Se¢ao
68.

X1: O que é um ponto no plano euclidiano? Se um ponto nao
tem largura, altura ou profundidade, entdo a cor vermelha é
um ponto? Afinal, a cor vermelha nao tem altura, largura ou
profundidade. Ver Parte 7.

X11: Mais importante, o que tem a ver matematica com a vida de
cada um de nos?
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SECAO 1
Matematica como fenomeno humano

omecamos respondendo parcialmente a ultima questao da Secao
anterior. Matematica é uma das atividades de maior impacto social
na histéria da humanidade, independentemente de convicgoes politi-
cas, religiosas ou pessoais. Matematica nao precisa de bandeiras,
hinos, elei¢oes, brasoes, regulamentacoes ou decretos para se impor.
Isso porque matematica é naturalmente uma boa ideia. Métodos
matematicos sdo empregados com grande sucesso nas seguintes areas.

¥— FISICA: para uma melhor compreensao sobre o universo onde
vivemos, via geometria diferencial, espagos de Hilbert, fungoes
especiais e outros.

e TECNOLOGIA: para a concepc¢ao de equipamentos, métodos e
materiais.

Q ARTES: no desenvolvimento de novas técnicas artisticas basea-
das em processos iterativos, splines, fractais e outros conceitos.

A MEDICINA: na criagao de novas drogas, equipamentos e métodos
de investigacao, incluindo modelos matematicos de proliferacao
de agentes infecciosos.

=¥+ PALEONTOLOGIA: via métodos de datacao.

@M SOCIOLOGIA: na concepgao de modelos que permitam anteci-
par o futuro de civilizagoes.

U PSICOLOGIA: via teoria das decisoes ou cognicao quantica, en-
tre outros.

t LINGUISTICA: através de métodos estatisticos ou graméticas ge-
rativas.

$ ECONOMIA: via teoria dos jogos e pesquisa operacional.
€ MERCADO DE ACOES: via sistemas ergddicos.
X CALCULO DE PREMIOS DE SEGUROS: via matemadtica atuarial.

ADMINISTRACAO DE EMPRESAS: via analise multivariada de
dados.

SISTEMAS DE SEGURANCA CIVIL E MILITAR: via criptografia.
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CIENCIA DA COMPUTACAO: via calculo lambda, maquinas de
Turing, teoria de categorias e séries de Fourier, entre outros.

® GUERRA: via equacoOes diferenciais, teoria das decisoes, teoria
dos jogos, pesquisa operacional, criptografia e muitas outras fer-
ramentas usadas também em tempos de paz.

@ MUITAS OUTRAS AREAS: misica estocdstica, cinema, arquite-
tura, historia, quimica, geografia, esportes, logistica em geral,
inteligéncia artificial etc.

Assim como ocorre com a musica, matematica é naturalmente cul-
tivada por comunistas e capitalistas, crentes e ateus, homossexuais e
heterossexuais, conservadores e liberais, vendedores e compradores,
especuladores e empresarios, indios e europeus, empaticos e psico-
patas, militares e civis, nazistas e judeus, estudiosos e leigos.

No entanto, matematica nao se limita a aplicagoes imediatas para
lidar com problemas do mundo real. A atividade matemaética atingiu
um nivel de amadurecimento que lhe proporcionou a qualidade de
objeto de estudo por mérito proprio. A compreensao da matematica
enquanto legitimo campo de estudos é condicao indispensavel para
antecipar novas aplicagoes no futuro. Dai a énfase neste documento
sobre parte dos fundamentos desta ciéncia formal!

Compreender minimamente a atividade matematica é uma condi-
¢ao necessaria (apesar de nao suficiente) para o amadurecimento de
uma visao sensata e bem informada sobre o mundo onde vivemos.

Dois ingredientes — desde que tratados com certo cuidado — de-
finem matematica: linguagem e logica.

Linguagem ¢é um instrumento de comunicagao [49] (ao lado de ou-
tros, como gestos e pantomimas) que serve ao propdsito de veicular
ideias e sentimentos. Faz parte da natureza humana a veiculacao de
ideias e sentimentos.

Loégica permite concatenar ideias veiculadas pelo emprego de lin-
guagens. Tal concatenagao é realizada por meio de inferéncias. Faz
parte da natureza humana a concatenacao de ideias.

Logo, matemadtica espelha dois aspectos profundos sobre a
natureza humana:
as necessidades de comunicagdo e de inferir consequéncias
a partir daquilo que € comunicado.
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A partir do momento em que naturalmente empregamos lingua-
gens e inferéncias em nosso cotidiano, isso significa que naturalmente
usamos matematica todos os dias. Mas o estudo sistematico de ma-
tematica em si é algo que exige muito mais, além de experiéncias
cotidianas.

Em uma primeira aproximacao sobre linguagens, essas podem ser
divididas em dois grupos:

I aquelas que estao naturalmente comprometidas com uma seméan-
tica e

11 aquelas que nao estao.

A lingua portuguesa se enquadra no item 1. Com efeito, para fins
de mera ilustragao, o termo ‘cadeira’ é usualmente interpretado como
uma cadeira no mundo real. Mais do que isso, nao é usual interpretar
a palavra ‘cadeira’ como um sorvete derretido de baunilha ou um
sentimento de repulsa a aranhas. Neste sentido, hd uma certa rigidez
na dimensao semantica de uma linguagem como o portugués.

E claro que nem todos os termos da lingua portuguesa podem ser
interpretados como objetos do mundo real. Exemplos triviais sao
as palavras ‘unicérnio’ e ‘lobisomem’. No entanto, ainda permanece
invariante o compromisso de associar termos da lingua portuguesa
a coisas, lugares, épocas, sentimentos, intui¢goes ou ideias que trans-
cendem a proépria linguagem, os quais sao os significados dos termos.
Ainda que poetas como Fernando Pessoa consigam explorar certas
liberdades, como na frase ‘O mito é o nada que é tudo’, pessoas sao
compelidas a associarem uma frase da lingua portuguesa a potenciais
significados, mesmo que tais significados nao sejam necessariamente
compartilhados por duas ou mais pessoas.

Neste contexto significados nao podem ser confundidos com sino6-
nimos. Uma palavra da lingua portuguesa pode ser um sinénimo de
outra no sentido de que, pelo menos em certos contextos de carater
pragmatico, elas compartilham um mesmo significado.

Matematica, l6gica formal e ciéncia da computacao, nao obstante,
sao ramos do conhecimento que demandam o emprego de linguagens
formais nao comprometidas com qualquer contraparte semantica.
Em outras palavras, o emprego de lingua portuguesa é, no minimo,
insuficiente para lidar com a matematica exigida hoje em dia. Logo,
nao é surpreendente que pessoas sem treino matematico percebam
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com estranheza essa atividade humana. Mas, assim como os modos
de pensar de mulheres causam estranheza diante de certos homens,
isso nao muda o fato de que mulheres sdo seres humanos. Matemati-
cos, com o perdao dos platonistas, sao apenas criaturas que exploram
certos aspectos da natureza humana nem sempre contemplados por
nao-matematicos.

Enquanto aspectos significativos da lingua portuguesa podem ser
reduzidos ao estudo de morfemas, porgao significativa da matemati-
ca pode ser reduzida ao estudo de objetos matemdticos. Os objetos
matematicos mais amplamente estudados e usados na literatura es-
pecializada sao conjuntos. Logo, a compreensao sobre teoria de con-
juntos é um passo natural para a devida apreciacao da matematica,
pelo menos diante das atuais visdes sobre o que é essa ciéncia. Isso
justifica o fato de que este livro inicia o estudo de matematica a partir
da teoria de Zermelo-Fraenkel, a mais popular teoria de conjuntos.

Para ilustrar essas primeiras consideragoes a respeito das lingua-
gens formais da matematica, considere a equagao

T
=1+ —.
T +2

Uma equagao é um caso particular de formula de uma certa lin-
guagem formal (a qual ndo é comprometida com qualquer semén-
tica em particular). Férmulas de uma linguagem formal sao afir-
magoes feitas (no contexto da linguagem formal) sobre certos objetos
matematicos. Se os objetos de estudo sao conjuntos, os termos x, 1, 2
e 5 (que ocorrem na equacao acima) sao conjuntos. O simbolo + na
equagao acima corresponde a uma operagao entre conjuntos, a qual
produz novos conjuntos. Portanto, 1 + § também é um conjunto.
Mas a férmula em questdo (a qual pode ser entendida como uma
afirmacao sobre os conjuntos x, 1, 2 e §) é desprovida de significado.
Nao ha compromisso com qualquer contraparte semantica. Esse fato
confere significativa liberdade a matematica. Temos a liberdade de
interpretar a férmula acima de varias maneiras:

I: um tijolo pesa um quilo mais meio tijolo (neste caso x é inter-
pretado como o peso de um tijolo em quilogramas);

11: aidade de Alfredo é igual a um ano somado da metade da idade
de Alfredo (neste caso x é interpretado como a idade de Alfredo
em anos);
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III: o numero de pessoas na sala é igual a uma pessoa mais a
metade do nimero total de pessoas da sala (neste caso x é in-
terpretado como nimero de pessoas na sala);

entre muitos outros possiveis exemplos. Por conta disso, a matema-
tica encontra ampla aplicabilidade em multiplas areas do conheci-
mento.

E justamente a renuncia da matemdtica ao mundo real
que a torna tao util no mundo real.

Outra vantagem do descompromisso de linguagens formais com
semantica reside no fato de que linguagens naturais, como o por-
tugués, sao preocupantemente ambiguas para fins cientificos. Por
exemplo, o verbo ‘ser’ pode expressar

UMA PREDICACAO: como na frase ‘Ernst Zermelo é inteligente’;

UMA IDENTIDADE: como na frase ‘Ernst Zermelo é o criador do
Axioma da Escolha;

UMA EXISTENCIA: como na frase ‘Ernst Zermelo &’;

UMA INCLUSAO DE CLASSE: como na frase ‘Ernst Zermelo é um
matematico’;

entre outras possibilidades. Observar, por exemplo, a dificuldade
para discernir PREDICACAO de INCLUSAO DE CLASSE.

Ambiguidades sao nocivas para a atividade cientifica, uma vez que
frequentemente a ciéncia se vé obrigada a lidar com situagoes nao
familiares a maioria das pessoas. Logo, é necessaria clareza de ideias,
antes de avancarmos na atividade cientifica.

Sem compromisso com semantica, linguagens formais nao abrem
espago para ambiguidades no sentido acima colocado. No entanto,
ainda resiste uma certa ambiguidade muito mais sutil, mesmo em
certas linguagens formais. Discutimos sobre isso na Secao 111.

Com relagao a légica, matematica emprega diferentes formas de in-
feréncia, as quais viabilizam relagoes entre férmulas. Logica permite
inferir novas férmulas a partir de férmulas anteriormente conhecidas.
No caso da equacao

x
=14+ =
X +2,
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¢é possivel inferir que x = 2, desde que légica e linguagem sejam
claramente definidas com antecedéncia.

Logo, seguindo os exemplos acima, o tijolo pesa dois quilogramas,
Alfredo tem dois anos de idade e a sala conta com duas pessoas.
Neste livro, porém, estamos interessado em apenas um tipo par-
ticular de inferéncia: as dedutivas. Detalhes sao apresentados nas
proximas segoes.

Para uma visao mais ampla sobre outras formas de inferéncia em
matematica e demais areas do conhecimento, recomendamos o livro
de Ian Hacking [20] sobre indugao e probabilidades. Na obra citada
o autor estimula o leitor com uma lista de sete problemas com enun-
ciados perfeitamente compreensiveis mesmo entre aqueles sem treino
matematico. Sao problemas cujas solu¢oes desafiam aquilo que nor-
malmente se assume como senso comum. Um deles, referente a teste-
munhos de eventos extraordinarios, esta reproduzido na Parte 9.

Senso comum nao ¢ um bom ponto de partida para uma visao
racional de mundo. Com efeito, senso comum reflete uma visao
compartilhada entre segmentos sociais. Racionalidade, porém, néao
¢ democratica.

Como enfatizado por Bertrand Russell, um dos aspectos essenciais
da racionalidade é nao ter qualquer certeza inquestionavel.

SEGAO 2
Bastam linguagem e légica?

savinda que pelo menos alguns ramos da matematica estejam su-
ficientemente definidos pelos ingredientes ‘logica’ e ‘linguagem for-
mal’; a pratica social de fazer, aplicar, justificar, questionar, filoso-
far, especular, cultivar, divulgar e até mesmo financiar matematica
demanda muito mais. Uma pessoa que tenha uma nova ideia ma-
tematica precisa convencer pessoas qualificadas sobre a relevancia,
a originalidade e a validade de sua proposta. A estratégia social
mais comum e confidvel para convencer pessoas sobre novas ideias
matematicas é a veiculagao de artigos cientificos em peridédicos espe-
cializados. Nao pretendemos explorar este delicado ponto aqui. Mas
¢ imprescindivel que o leitor compreenda que matemaéatica ¢ uma
atividade social. Sem trocas de ideias nao ha matemética alguma.

PAGINA 9

SUMARIO

INDICE
REDE



MATEMATICA PANDEMICA PARTE1 SECAO3

[lustramos a seguir em que sentido a pratica matematica exige
muito mais do que linguagem e logica. No final do século 19 Georg
Cantor teve uma ideia: introduzir o conceito de conjunto para qua-
lificar o que é o infinito. Com o passar de décadas de pesquisas,
matematicos do mundo todo perceberam a elegancia, o alcance, a
originalidade, a aplicabilidade e, especialmente, a necessidade das
ideias de Cantor. Antes dele, Bernardus Bolzano teve ideias seme-
lhantes. Mas a proposta dele seguia uma estratégia com severas
limitagoes. A proposta de Bolzano foi esquecida [57], enquanto a de
Cantor triunfou, apesar das duras criticas nas primeiras décadas apos
o primeiro artigo dele sobre o tema. E assim que funciona a prética
social da matematica: ideias seguidas de discussoes. O nascer de
ideias é um aspecto nao matematico da pratica social da matemati-
ca. O mesmo ¢ cabivel para a analise critica de novas ideias. Toda
nova ideia é uma ilha cercada por antigas concepcdes. E necessirio
sair da ilha para aprecia-la como um todo.

Tanto Bolzano quanto Cantor foram os primeiros a perceber a
importancia de qualificacao do infinito. Mas Bolzano sustentou sua
proposta em uma visao muito dificil de colocar em pratica. Neste
sentido, as ideias de Cantor foram mais felizes e, por conseguinte,
mais facilmente aceitaveis. Apesar disso, até mesmo a proposta ori-
ginal de Cantor enfrentou forte resisténcia.

A questao do financiamento da matematica é ainda mais ardilosa,
uma vez que ela depende de decisoes politicas de governantes e em-
presarios, os quais nao sao necessariamente familiarizados com os
poderosos efeitos da matematica a curto, médio e longo prazo so-
bre comunidades, sociedades, nagoes e o0 mundo onde vivemos. Dai
a importancia da divulgacao da matematica para um publico leigo.
Tal discussao, porém, escapa dos propositos desta obra.

O foco deste livro é o emprego de uma unica linguagem formal
e uma unica logica, para fins de fundamentacdo de vastos ramos
da matematica, como aritmética, algebra, algebra linear, topologia,
probabilidades, geometria, calculo diferencial e integral, equacoes
diferenciais e muito mais.

Neste livro é discutida de maneira sucinta a teoria de conjuntos
de Zermelo-Fraenkel (ZF), bem como a aplicabilidade da mesma em
alguns dos ramos mencionados acima. A teoria ZF é a mais popular
entre as formalizacoes atualmente conhecidas para as ideias originais
de Cantor, o criador da teoria de conjuntos.
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SECAO 3

Requisitos para a leitura

Dao trés os resquisitos indispensaveis para a compreensao dos as-
suntos aqui abordados.

e Saber ler.
e Ter a mente aberta.

e Dispor-se a dialogar com pares.

Leitura nao é uma atividade facil. Isso porque ela exige senso
critico e, consequentemente, uma boa dose de cultura. Nao ha senso
critico, por exemplo, entre aqueles que assumem o que o autor quis
dizer sem que ele tenha de fato dito. Nao ha senso critico também
onde certezas estao alojadas, seja por convicgdes pessoais ou por
conta de submissao ao doutrinamento promovido em escolas. Para
fins de ilustracao, se o leitor tem certeza de que 0 + 5 = 5, vale
observar que apenas na Sec¢ao 29 conseguimos provar isso. Tal prova
é feita no Teorema 4.2 e consome uma redagao de trinta e duas
linhas de justificativas. Ademais, ndo héa senso critico onde domina
a ignorancia. A nao familiaridade com cultura cientifica e filosofica
é um terreno arido onde dificilmente podem brotar questionamentos
pertinentes. Senso critico é o exercicio de enunciar questionamentos
pertinentes. A avaliacao da pertinéncia de uma pergunta, no entanto,
é um processo subjetivo. Logo, nao é facil uma pessoa responder a
si mesma se é capaz de ler e levantar questoes relevantes a partir do
que leu. Para ilustrar exemplos de questdes pertinentes, ver Secao
46.

Mente aberta é a qualidade de saber lidar com incertezas como, por
exemplo, o problema de estabelecer o que é pertinente no estudo de
matematica. Um dos principais obstaculos contra o aprendizado de
matematica reside em preconceitos intelectuais. Aquilo que alguém
julga saber pode oferecer espantosa resisténcia contra novos apren-
dizados. Para citar um exemplo simples, teoria de conjuntos nao é
uma teoria sobre coisas chamadas conjuntos. Teoria de conjuntos
é¢ um corpo do conhecimento que trata de dois predicados binarios,
conhecidos como igualdade e pertinéncia. Conjuntos, no contexto
de ZF, sao apenas termos de uma linguagem formal. Do ponto de
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vista matematico, nao faz diferenca alguma chamar os termos de ZF
de conjuntos, unicérnios ou cenouras. O que estd em jogo sdo as
relagoes entre pertinéncia e igualdade, os alicerces da teoria de con-
juntos ZF. Teoria de conjuntos nao visa o estudo de cenouras. Teoria
de conjuntos é um assunto que demanda modos de pensar abstratos
e refinados, algo que s6 pode ser conquistado com um alinhamento
entre aptidao, disposicao e paciéncia. Retomamos esse assunto na
Parte 11, a qual s6 pode ser apreciada apds um detalhado estudo
sobre ZF na Parte 3.

O didlogo com pares se refere a troca de ideias matematicas com
pessoas que compartilham os mesmos interesses e com dedicagao
destacada a matematica. Uma vez que a mente aberta ¢ um fend-
meno emergente entre grupos de pessoas que compartilham a mesma
busca por melhores ferramentas para a compreensao do mundo onde
vivemos, cada um dos requisitos acima esta emaranhado com os de-
mais. A busca pelo conhecimento nao é uma aventura que possa ser
realizada em solitude. Ciéncia é um fenémeno social sinérgico.

Jules Henri Poincaré desenvolveu uma extensa obra de enorme
impacto para os fundamentos de teorias fisicas, como a relatividade
restrita e a mecanica celeste, bem como teorias matematicas, como
topologia, dlgebra e equagoes diferenciais. Também foi um grande
filosofo e um brilhante escritor.

No livro La Valeur de la Science (publicado em 1905 e traduzido
para vérios idiomas), Poincaré afirma:

O matemdtico nasce, nao se cria.

Neste contexto é importante o leitor nao confundir praticas institu-
cionais de ensino de matematica com matematica. Adestrar alunos
a se tornarem mimicos de atitudes tipicamente encontradas entre
matematicos é algo muito diferente de estudar e fazer matematica.
Dai a importancia dos requisitos acima.

SECAO 4
Diferenciais desta obra

v meta principal deste livro é introduzir conceitos basicos tipicos
de um primeiro ano de estudos de graduacao em matematica, fisica e
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areas afins, como engenharia e matematica industrial. No entanto, a
abordagem adotada segue algumas diferencas em relagao a literatura
padrao:

I: Linguagem e logica sao explicitados, para fins de fundamen-
tagdo, bem como seus papeis na pratica matematica.

11: E destacada a existéncia de outras maneiras para desenvolver
matematica, além das mais usuais, como analise infinitesimal
suave, logica intuicionista, loégica paraconsistente, entre outras.

11: E salientado que até hoje nio se sabe se a fundamentaco usual
via teoria de conjuntos de Zermelo-Fraenkel é consistente.

IV: Sao propostos exercicios que visam promover mudangas na
definicao usual de limite de funcao real, com o propodsito de
compreender melhor esse importante conceito.

v: E destacada a importancia de calculo diferencial e integral
para definir seno, co-seno, logaritmo e exponencial, entre outras
fungbes de uso corrente.

VI: As interpretagoes geométricas de seno e co-seno sao exibidas
como teoremas a partir da definicio dada por solu¢oes de uma
equagao diferencial.

VII: Sao qualificados os conceitos de defini¢do, teorema, demons-
tracao, metateorema, premissa, hipotese, argumento, axioma,
postulado, entre outros comumente empregados na literatura es-
pecializada.

vir: E explicitado o poder da pertinéncia em teoria de conjun-
tos, mostrando como esse conceito consegue qualificar niimeros
naturais, inteiros, racionais, irracionais, reais, algébricos, trans-
cendentes e complexos, bem como fundamentar calculo diferen-
cial e integral, geometria euclidiana, geometria analitica, dlgebra
linear, espacos métricos e espagos de probabilidades. Ou seja,
numeros reais sao conjuntos, nimeros naturais sao conjuntos,
pontos no plano euclidiano sdo conjuntos, vetores sao conjun-
tos, matrizes sao conjuntos, relagoes sao conjuntos, fungoes sao
conjuntos, espac¢os amostrais sao conjuntos, probabilidades sao
conjuntos etc.

1X: A definicdo de Carathéodory para funcao real diferenciavel é
abordada aqui, mas na forma de um teorema.
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x: E salientado o papel de verdade e, consequentemente, falsidade,
em matematica.

XI: Mostra-se claramente por que uma probabilidade condicional
nao é uma probabilidade.

X11: E discutido o emprego de nomes em matematica.

Além disso, muitos exemplos sdo dados e detalhadamente justifi-
cados, para fins de ilustragao.

Mas o principal diferencial deste texto é o tom provocativo. Como
disse o matematico britdnico Bertrand Russell [42],

Matemdtica pode ser definida como o assunto no qual
jamais sabemos sobre o que estamos falando ou se o que
estamos dizendo é verdadeiro ou nao.

SECAO 5
Metodologia

N, método aqui adotado para exposi¢ao dos temas ¢ inspirado na
Teoria das Histérias, como apresentada por Robert McKee [37] (ape-
sar de Aristételes, em sua obra Poética, ja ter se ocupado do tema
dois milénios atrds). Na visao de McKee, a maioria das histérias
de cinema, teatro, televisao e literatura conta com a estrutura de
uma arquitrama dividida em trés atos. No primeiro ato a perso-
nagem principal é apresentada, com suas caracteristicas inerentes e
seu atual estado. No segundo ato algo acontece com a personagem
principal, exercendo pressao sobre ela. Essa pressao deve revelar o
carater da personagem principal. Carater, por defini¢ao, é a forma
como alguém reage diante de pressao. Pressao se refere a eventos
que antagonizam com as caracteristicas inerentes e o estado em que
se encontra a personagem. Finalmente, no terceiro ato deve ocorrer
a resolucao da histéria, ou seja, a solugao final que a personagem
apresenta para a pressao iniciada no segundo ato.

Nossa personagem principal aqui ¢ a teoria de conjuntos ZF. Neste
contexto, o primeiro ato consiste nas Partes 2 e 3. A partir da Parte 4
exercemos pressao sobre ZF, para avaliar sua capacidade de lidar com
as praticas matematicas necessarias para o cotidiano de matematicos,
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fisicos, engenheiros e demais interessados em usé-la. Com relacao ao
terceiro ato, este ainda estd em andamento na aventura humana que
busca conhecer ZF e outras formas de fundamentos da matematica
que complementam ou até antagonizam ZF.

Neste contexto, matematica é tratada aqui ndo como uma ar-
quitrama, mas uma minitrama, na acepcao de McKee em sua grande
obra. Detalhes podem ser avaliados pelo leitor no livro citado.

Um dos erros mais graves no ensino de matematica é o foco sobre
alunos e professores, uma vez que este foco deveria estar direcionado
a matematica. Com efeito, em narrativas nao interessa quem esta
narrando ou acompanhando a histéria, mas apenas a historia. No
entanto, essa é uma extensa discussao que nao é contemplada aqui.

Nao obstante, a metodologia aqui adotada pode ser facilmente mal
interpretada. Isso porque o leitor pode ficar com a impressao de que
matemaética é edificada a partir de conceitos basicos (como ZF), na
dire¢ao de conceitos mais sofisticados (como toda a matematica que
pode ser fundamentada em ZF). Porém, ndo ¢é assim que matemética
(ou até mesmo o estudo de matematica) funciona.

Assim como as arquitramas de McKee contam com tramas para-
lelas que se emaranham com a histéria principal, conferindo uma
dinamica que opera em rede sobre a personagem principal, algo a-
nalogo acontece com a pratica matematica.

Consideremos, para fins de ilustragao, o caso do calculo diferencial
e integral padrao, assunto tratado nesta obra. Para demonstrarmos
certos resultados sobre fungdes trigonométricas aplicadas a nimeros
reais, é altamente conveniente conhecermos nimeros complexos. A
teoria ZF qualifica claramente o conceito de nimero complexo. No
entanto, limites, derivadas e integrais de funcoes trigonométricas sé
podem ser definidos no contexto de espagos métricos, assunto este
que pode ser qualificado em ZF sem sabermos o que sao niumeros
complexos. Logo, devemos necessariamente estudar espagos métri-
cos antes de limites, derivadas e integrais de fungoes trigonométricas?
A resposta é claramente negativa, pelo menos do ponto de vista de
opgoes disponiveis para o aprendizado de matematica. Basta exa-
minarmos a literatura padrao de calculo diferencial e integral. Na
maioria dos livros jamais sao conceituados niimeros reais ou com-
plexos, e nem mesmo espagos métricos.
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Este é o principal problema no estudo de matematica a partir de
livros. Livros apresentam contetdos que sao lidos sequencialmente,
da pagina n para a pagina n + 1, como se a matematica pudesse
ser conhecida de maneira linear, lendo pagina por pagina e fazendo
exercicios.

Matematica, porém, nao conta com qualquer estrutura hierarquica
de pré-requisitos que permita avancar do basico a um nivel avangado,
passando em algum momento por temas de nivel intermediario de
sofisticacao. Uma pessoa pode conhecer muito bem aspectos profun-
dos de equagoes diferenciais sem se dar conta dos axiomas de ZF que
sustentam a matematica de equagoes diferenciais.

Por conta disso, apresentamos a seguir uma estrutura em rede dos
temas abordados neste texto.

ZERMELO- GEOMETRIA GEOMETRIA
—_— —_— .
FRAENKEL EUCLIDIANA ANALITICA
PROBABILI- CORPOS
DADES / |
EspPAcos NUMEROS
METRICOS COMPLEXOS
/ EQUAQOES
/ DIFERENCIAIS \
CALCULO EspAgOs
PADRAO VETORIAIS

ESTRUTURA EM REDE DOS ASSUNTOS DESTE LIVRO

O leitor pode julgar seus estudos deste livro como bem sucedidos
se, ao término da leitura e da solucao dos exercicios propostos, puder
avaliar criticamente a rede ilustrada na imagem acima.

A rede acima representada conta com dez nés, os quais correspon-
dem aos principais assuntos aqui tratados. As flechas sugerem a
influéncia de um né sobre outros. Neste contexto, o n6 ZERMELO-
FRAENKEL € o tinico do qual apenas partem flechas e nenhuma flecha
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chega até ele. Neste sentido, a rede estabelece que ZF ¢é o ponto de
partida para definir os demais noés.

Digamos que alguém levante a seguinte questao:

FEquacao de reta, no plano cartesiano, é dada por
definicao ou teorema?

A resposta depende do contexto em que equacao de reta é apre-
sentada em geometria analitica. Na Secao 77 a equacao de reta é
usada para definir retas quaisquer em um modelo de geometria eu-
clidiana plana conhecido como plano cartesiano. Neste sentido o né
GEOMETRIA ANALITICA da rede acima é construido a partir dos nds
GEOMETRIA EUCLIDIANA e NUMEROS COMPLEXO0S. Porém, no es-
tudo de modelos de espagos vetoriais, a equacao de reta surge como
teorema (Teorema 8.30). Logo, o n6 GEOMETRIA ANALITICA da
rede acima é construido a partir dos nés GEOMETRIA EUCLIDIANA,
NUMEROS COMPLEXOS e ESPACOS VETORIAIS.

Apenas para citar mais um exemplo, o n6 NUMEROS COMPLEXOS
corresponde nao apenas ao estudo dos niimeros complexos, mas tam-
bém a investigacao de diversos conjuntos que os complexos sao ca-
pazes de ‘copiar’, como os reais, os racionais, os irracionais, os inteiros
e os naturais. Neste contexto, as flechas informam que ZF permite
definir corpos, assim como também permite conceituar naturais, in-
teiros, racionais e reais, além dos complexos. Uma vez definidos os
reais, as flechas indicam que ZF permite qualificar espacos métricos.
Uma vez que os nés ESPACOS METRICOS e CORPOS sdo conectados
por uma flecha de duplo sentido, isso mostra que o estudo de espagos
métricos permite uma compreensao mais ampla sobre os proprios
reais (casos particulares de corpos) usados para defini-los.

De forma alguma esta sendo sugerido que a rede acima corresponde
a maneira como matematica deve ser tratada. Trata-se apenas de
uma visao resumida sobre como os assuntos aqui explorados estao
conectados entre si. Por exemplo, se houvesse neste livro alguma dis-
cussao sobre espacgos métricos probabilisticos, haveria na rede acima
uma flecha conectando os nés ESPACOS METRICOS ¢ PROBABILI-
DADES.

Levando em conta o alerta ja feito sobre a linearidade imposta pelo
formato ‘livro’, deve ficar evidente ao leitor o grande desafio que é
a apresentacao desta rede no formato de um livro. Este é um dos
grandes desafios que autores enfrentam. Por consequéncia, quem
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deve pagar o esforco final é evidentemente o leitor. Ou seja, nao é
facil estudar matematica.

SEGAO 6
Signos usados neste livro

esta obra utilizamos alguns signos para destacar certas partes do
texto.

ﬁ&l destaca exercicios recomendados ao leitor.

[I] destaca informagoes que podem ser obtidas consultando outras
fontes.

|¥| destaca enderego eletronico (e-mail).

/’a
‘¥ destaca informagoes historicas.

o< destaca Segao que pode ser ‘cortada’ (ignorada) sem prejuizo
6bvio ao restante da leitura.

destaca que a leitura deve ser interrompida para fins de reflexao.

Também usamos retangulos coloridos para contrastar certos tre-
chos do livro. A meta é facilitar ao leitor a eventual busca por
defini¢oes, exemplos, proposicoes e axiomas. Levando em conta
que nao empregamos qualquer notacao para sinalizar conclusao de
demonstragoes e provas, essas caixas coloridas devem auxiliar na
imediata localizacao dos pontos onde comecam e terminam as argu-
mentacoes que justificam teoremas e proposicoes.

Defini¢oes sao posicionadas em retangulos cinzas.

Exemplos sao posicionados em retangulos azuis.

Proposigoes e teoremas sao posicionados em retangulos verdes.
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Provas e demonstragoes sao posicionadas em retangulos com
outro tom de verde.

Axiomas préprios de ZFC sao posicionados em retangulos amare-
los.
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PARTE 2

Linguagem e légica

Nesta segunda parte qualificamos e desenvolvemos uma linguagem
formal especifica e uma légica tradicionalmente conhecida como [dgi-
ca cldssica. Para facilitar a visao intuitiva dos conceitos aqui explo-
rados, promovemos analogias com nogoes elementares sobre ciéncia
da computacao.

SECAO 7
( Linguagem G

N”s conteudos aqui discutidos sobre linguagens formais e légica sao
uma adaptacdo da famosa obra de Elliott Mendelson [38]. No en-
tanto, no livro citado o autor nao discute sobre a Teoria de Zermelo-
Fraenkel (ZF). Por motivos profissionais e pessoais, Mendelson optou
tratar do sistema de von Neumann-Bernays-Godel (NBG).

Ambas ZF e NBG sao teorias formais amplamente conhecidas, ape-
sar de ZF ser obviamente mais popular. Referéncias interessantes
aos axiomas de ZF sao [28] e [8]. O livro de Thomas Jech [28] nao
¢é adequado a iniciantes, mas é perfeito para quem ja tem familiari-
dade com teorias formais e deseja conhecer com alguma profundidade
teoria de modelos, incluindo universos de von Neumann, conjuntos
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construtiveis, modelos de permutacoes e forcing. Ja a obra de Tim
Button [8] é dirigida a fildsofos da matemadtica, com a vantagem
de tratar também de ZF,, ou seja, a versao de segunda ordem de
Zermelo-Fraenkel.

ZF é uma teoria formal axiomdtica. Toda teoria formal axiomatica
exige uma linguagem formal e uma légica. Nesta Secao tratamos da
linguagem de ZF.

Toda linguagem demanda um vocabuldrio, ou seja, uma colecao de
simbolos. Chamamos a linguagem da teoria ZF de & (letra S na
fonte Fraktur).

O vocabulario de G ¢é formado pelos seguintes simbolos:

o Varidveis: xy, x9, x3, ---. Eventualmente varidveis podem
ser abreviadas por letras latinas mintusculas em italico como
x,Y, 2, T, S, -+ ouaté mesmo letras gregas minusculas como
a (alfa), B (beta), v (gama), § (delta), £ (épsilon), ---,
por uma questao de mera conveniéncia. Outros simbolos
podem ser empregados para designar variaveis, desde que
seja explicitado ser o caso.

e Constantes: c1, co, c3, -+-. Eventualmente constantes po-
dem ser abreviadas por simbolos especiais, conforme a con-
veniéncia. Exemplos que sao explorados ao longo do texto
sdo os simbolos @ (vazio), {@} (unitdrio vazio), {{@}}
(unitario unitario vazio), w (omega), {w} (unitrio omega),
entre muitos outros. Observar que as letras gregas m e w
ocupam uma posicao privilegiada entre as constantes. Sao
as Unicas letras gregas nao usadas aqui para denotar varia-
veis.

e Dois predicados bindrios: = (igualdade) e € (pertinéncia).

e Cinco conectivos logicos: — (negagao), A (conjungao), V
(disjungao), = (condicional), < (bicondicional).

e Dois quantificadores ldgicos: ¥ (universal) e 3 (existencial).

e Dois simbolos auziliares: (, ), chamados de ‘abre parénteses’
e ‘fecha parénteses’, respectivamente.

Os simbolos especiais usados para certas constantes sao conceitu-
ados oportunamente neste documento.
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Vale a pena notar que, diferentemente da lingua portuguesa, a
linguagem formal & emprega um vocabulario com uma infinidade
de simbolos.

Uma sentenca de & é qualquer sequéncia finita de simbolos do
vocabulério de &.

EXEMPLO 2.1. It xyz124Y()c30— € uma sentenga de S; com

efeito, esta € uma sequéncia com oito ocorréncias de simbo-
los de &;

I: x1 = x; € uma sentenca de &; com efeito, esta é uma
sequéncia com trés ocorréncias de simbolos de &;

11: 96— nao € uma sentenca de S; com efeito, o simbolo &
nao estd na lista de simbolos da linguagem .

Intuitivamente falando, pedimos ao leitor para imaginar um teclado
de computador com infinitas teclas, uma para cada simbolo de &.
Uma sentenca qualquer de & pode ser escrita digitando aleatoria-
mente esse teclado, sem atencdo alguma além de digitar apenas as
teclas. No momento em que a digitacao encerrar, teremos entao uma
sentenca de G.

Observar que a linguagem formal & aqui edificada é a linguagem-
objeto, no sentido de ser uma linguagem sobre a qual esta sendo dito
algo a respeito. No entanto, estd sendo empregada uma outra lin-
guagem para falar a respeito de &. Essa outra linguagem é o que
se chama de metalinguagem. Este mesmo paragrafo foi escrito na
metalinguagem usada aqui para discutir sobre a linguagem-objeto
S. Neste contexto, a linguagem-objeto & é uma linguagem formal,
enquanto a metalinguagem usada para tratar de G nao é. Logo, ex-
pressoes até aqui empregadas para descrever &, como ‘vocabulario’,
‘colecao de simbolos’, ‘sequéncia finita de simbolos’, entre outros, sdo
termos metalinguisticos com significados implicitamente assumidos.
A metalinguagem aqui usada nao é formal. Logo, mesmo o estudo
de linguagens formais da matemética exige o emprego de linguagens
que nao sao formais.

Como foi dito na Secao 1, a lingua portuguesa ¢ insuficiente para
fazer matematica, a qual demanda linguagens formais que prescin-
dem de significados. No entanto, sem uma linguagem nao formal
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como portugués, inglés ou francés, nao parece ser possivel compreen-
der algo como G.

O préximo passo para edificar G é estabelecer quais sentencas de
G sao formulas. O papel de férmulas é explicitar uma sintaxe para
S. Com efeito, matematicos nao estao interessados em sentencgas
quaisquer de G, ou seja, sequéncias quaisquer dos simbolos que cons-
tituem o vocabulario de G.

Se fizermos uma analogia entre & e uma linguagem de progra-
macao de computadores, ndo basta conhecermos os simbolos da 1l-
tima, se quisermos efetivamente criar um programa de computador.
E necessario conhecermos a sintaxe da linguagem. Caso contrério,
qualquer tentativa de fazer o programa funcionar fracassara, se hou-
ver algum erro de sintaxe. Ou seja, apenas digitar aleatoriamente
simbolos de uma linguagem de programacao nao produz necessaria-
mente um programa de computador.

Mas, antes de estabelecer a sintaxe de &, é necessario qualificar
o que é um termo de &. Isso porque férmulas devem agir como
‘afirmacoOes a respeito de termos’. Segue abaixo.

Varidveis e constantes sao os unicos termos de S.

Ou seja, os Unicos simbolos de & chamados de termos sao as vari-
aveis e as constantes.

EXEMPLO 2.2. I: x3 é um termo de &, uma vez que x3 €
uma varidvel;

1: V nao é um termo de &; com efeito, o simbolo ¥ nao é
varidvel e nem constante.

I: = nao ¢ um termo de &; com efeito, o simbolo = nao é
varidvel e nem constante.

Os objetos de estudo de ZF sao, neste primeiro momento, os termos
de G, ou seja, variaveis e constantes de &. Na literatura especializa-
da tais termos sao comumente chamados de conjuntos, pelo menos
no contexto da linguagem & que esta sendo construida aqui. Mas
o leitor deve ser advertido. Uma vez que & nao é comprometida
com qualquer contraparte semantica, os termos de G nao devem ser
interpretados como ‘conjuntos’ nas acepgoes usualmente empregadas
na lingua portuguesa. A terminologia conjunto é tdo somente um
nome para os termos de &, livre de significado. Comentario analogo
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vale para os demais simbolos de & (aqueles que nao sao termos, como
Y, =, = e outros).

Retornando a analogia com programas de computador, estes tam-
bém empregam linguagens desprovidas de significado. Por conta
disso, uma mesma linguagem de programacao pode ser concebida
para criar desde jogos eletronicos, para fins de entretenimento, até
softwares que gerenciam estoques de supermercados.

Agora podemos finalmente introduzir a sintaxe de &:

I Se u e v sdo termos de &, entao as sentencas

u="7uv

U E v
sao formulas atomicas de G.

11 Toda formula atomica de & é formula de .

11 Se A e B sao formulas de & e u é uma variavel, entao as
sentengas —(A), (AN B), (AV B), (A= B), (A & B),
Vu(A) e Ju(A) sao férmulas de &.

IV Apenas as sentencas de & que seguem os itens acima sao
féormulas de S.

As férmulas atomicas u = v e u € v se 1éem, respectivamente, ‘u é
igual a v’ (ou, ‘u é idéntico a v”) e ‘u pertence a v’ (ou ‘u é elemento

de v’).
A férmula —(A) se 1é ‘ndo A’ ou ‘a negagao de A’
(AANDB)selé ‘AeB.
(AV B) selé ‘A ouB.
(A= B) selé ‘se A, entao B’ (ou ‘A implica em B’).
(A & B) se 1é ‘A se, e somente se, B’ ou ‘A é equivalente a B’.
Vu(A) se 1é ‘para todo u, A
Ju(A) se 1é ‘existe u tal que A’.

Formulas de & que nado sdo férmulas atomicas sao formulas
moleculares.
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Na férmula molecular Vz(A) dizemos que A é o escopo do
quantificador universal Vx. Além disso, x tem ocorréncia liga-
da em Vz(A). Qualquer ocorréncia de x no escopo de Vz(A)
também ¢é ligada.

Variaveis que nao sao ligadas sao variaveis de ocorréncias livres.

EXEMPLO 2.3. It A férmula Yx(z = y) tem duas ocorrén-
cias ligadas de x e uma ocorréncia livre de y;

1I: a formula Yy(x = y) tem duas ocorréncias ligadas de y e
uma ocorréncia livre de x;

ur: na formula Ye(Yy(x = y)) todas as ocorréncias de x e de
y sao ligadas;

IV: na formula x = y todas as ocorréncias de x e de y sao
livres.

Observar que os simbolos A e B, na definicao de féormulas, sdo
abreviagdes metalinguisticas de formulas de &, uma vez que A e B
nao fazem parte do vocabulario de &.

E usual se referir a formula atémica x = y como equacao. Neste
sentido, toda equacao é tao somente um caso particular de férmula
atomica.

A sintaxe de & deixa claro que toda férmula de & é uma sentenca
de &, mas nem toda sentenca de & é uma férmula de &.

De agora em diante, para fins de abreviagao, férmulas de & e
sentencas de G sao chamadas simplesmente de férmulas e sentencas,
respectivamente.

EXEMPLO 2.4. As seguintes sentencas sao formulas:
I Va(r = x);

1 3z(vy(=(y € 2)));

ur: Va(=(z = x)).

Observar que, nos exemplos acima, estao sendo empregadas as
abreviagoes usuais para variaveis.

Justificando item 11 do EXEMPLO acima: x e y abreviam variaveis;
logo, = e y sdo termos; logo, item I da sintaxe de & garante que
y € x é formula atomica; logo, item 11 da sintaxe de & garante que

PAGINA 26



MATEMATICA PANDEMICA PARTE2 SECAOS

y € x é formula; logo, item 111 da sintaxe de & garante que —(y € x)
é férmula; logo, item 111 da sintaxe de & garante que Yy(—(y € z)) é
férmula; logo, item 111 da sintaxe de & garante que Jx(Vy(—(y € z)))
é férmula.

Todas as ocorréncias de x e de y nos trés itens do EXEMPLO 2.4
sao ligadas.

O leitor deve ter observado que a sintaxe de & é uma definicao
recursiva de férmula, no sentido de que o item 111 pode ser aplicado
quantas vezes forem necessarias para verificar se uma sentenca é
formula. O critério de parada dessa definicao recursiva é garantido
pelo fato de que toda sentenca de & deve ser uma sequéncia finita
de simbolos de &.

EXEMPLO 2.5. As sequintes sentencgas ndao sao formulas:
I. =2 =,

1n: Y(z = x);

ur: (z=y);

v: Jz A Jy(z =vy).

Justificando item 1 do tltimo exemplo: o predicado binario = exige
as ocorréncias de um termo imediatamente a esquerda e um termo
imediatamente a direita de =. Porém, nao ha qualquer ocorréncia
de termo a esquerda de =.

Justificando item 11: apesar de x = z ser férmula, a sentenca
V(2 = x) nao ¢ uma férmula, uma vez que o item 111 da definigao
de férmula exige a ocorréncia de uma variavel imediatamente a di-
reita do quantificador universal V e de uma variavel imediatamente
a direita do quantificador existencial 3.

Justificando item 11: Apesar de x = y ser férmula atomica (e,
portanto, férmula), item 1v da defini¢do de férmula garante que (x =
y) nao é férmula. Com efeito, se A é féormula, entao (A) nao é
formula.

Justificando item 1v: Apesar de z ser uma abreviacdo para uma
variavel, item I1I da definicdo de férmula exige que dx seja seguido
imediatamente a direita pela sentenga (A), onde A é uma férmula;
no entanto nao é o que acontece com a sentenga AJy(z = y); logo,
item 1v da definicao de férmula garante que essa sentenca nao é
formula.
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SECAO 8
( Definindo definicoes

vas na linguagem &. Apesar de tais defini¢oes explicitas abreviativas
serem matematicamente desnecessarias, elas sdo extremamente tteis
para facilitar a escrita e a leitura de abrevia¢des metalinguisticas de
formulas. Um dos talentos exigidos de qualquer matematico é a ca-
pacidade de ler, escrever e usar férmulas, bem como refletir e discutir
sobre elas.

ma pratica comum é o emprego de definicoes explicitas abreviati-

Em [41] Alonzo Church ressalta que definigoes servem ao proposito
de introduzir novas notagoes, por uma questao de mera conveniéncia.
Neste sentido, existem vérios tipos de defini¢goes. Detalhes em [43].
Mas as definicoes mais frequentemente empregadas neste texto sao
as explicitas abreviativas.

Uma definicio explicita abreviativa em & é uma sentenga metalin-
guistica da forma

de finiendum : definiens.

O simbolo : é uma notacao metalinguistica cujo propdsito é sepa-
rar o definiendum (termo a ser definido) do definiens (formula da
linguagem & que qualifica o que o definiendum esta abreviando).

Observar que nao ha qualquer circularidade envolvida na defini¢ao
de defini¢oes explicitas em &. Isso porque definimos na metalin-
guagem o que sao abreviagoes metalinguisticas da linguagem formal
S. Temos, dessa forma, mais um exemplo das virtudes de discrimi-
nacao entre linguagem-objeto e metalinguagem.

Seguem dois exemplos de defini¢goes explicitas que sdo usadas com
frequéncia aqui e no restante da literatura especializada:

z£y:-(z=y)
rgy:(rE€y)
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Ou seja, apesar de x # y nao ser uma féormula de &, é uma abrevia-
¢ao metalinguistica para a férmula —(x = y). Comentario analogo
vale para x € y.

Vale a pena observar que a sequéncia de simbolos = # y tem com-
primento 3, no sentido de que ha trés ocorréncias de simbolos nela.
Em contrapartida, o definiens correspondente tem comprimento 6.
Com efeito, a férmula —(z = y) conta com seis ocorréncias de sim-
bolos, o dobro do definiendum. Comentario analogo vale para a
definicao de = ¢ y. Isso deixa patente a grande vantagem do em-
prego de defini¢oes explicitas abreviativas: economia para a escrita
de férmulas. Desenvolver um tema como calculo diferencial e inte-
gral sem o uso de defini¢oes torna o assunto intelectualmente indi-
gesto, exaustivo e nao produtivo. Justamente por isso muitas outras
defini¢des sao introduzidas ao longo de todo este texto.

E uma pratica comum se referir a abreviacoes metalinguisticas
como formulas, desde que sejam definidas nos moldes acima. Essa
pratica é o que se chama de abuso de linguagem. Apesar de abuso de
linguagem nao ser justificdvel formalmente (uma vez que abreviagoes
metalinguisticas nao fazem parte do vocabulario de &), ela facilita
a discussao sobre aspectos formais da matematica. Matematicos em
geral nao perdem tempo com formalismo. Mas é indispensavel o
rigor. Rigor, neste contexto, significa ‘a capacidade de reescrever
abreviagoes metalinguisticas como féormulas da linguagem &’. For-
malismo significa ‘escrever apenas de acordo com a sintaxe da lin-
guagem formal, sem o emprego de abreviagoes metalinguisticas’.

Eventualmente podemos substituir o simbolo metalinguistico : pelo
simbolo metalinguistico ‘sss’ (abreviagdo para ‘se, e somente se,’).
Logo, as defini¢coes acima para # e ¢ poderiam ter sido escritas
também como

T #ysss (z=y)

x & ysss o(x €y).

Apelando novamente a nossa analogia da linguagem & com uma
linguagem de programacao, defini¢goes explicitas abreviativas fun-
cionam como ‘sub-rotinas’ que ‘chamam’ uma féormula a partir de
um ‘nome’. Ou seja, a ‘sub-rotina’ x # y apenas ‘chama’ a férmula
—(z = y), toda vez que ela ocorre em uma sentenga.
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Muitos abusos de linguagem ocorrem com frequéncia em célculo
diferencial e integral e algebra linear, temas que aqui estudamos.
Por conta disso, nao sao raros os alunos que se sentem confusos, por
conta de tais abusos. Exemplo classico é a afirmacgao de que

lim f(z) = 00
m—mf( ) ’

em certas situagoes envolvendo fungoes reais.

A experiéncia mostra que muitos alunos tratam o simbolo oo como
um termo. Mas este nao ¢ o caso. Discutimos em detalhes sobre o
assunto na Sec¢ao 45. Um maior detalhamento sobre definigbes é
encontrado na Segao 14.

ﬁ‘ Escrever novos exemplos de duas sentencas de & que sao foér-
mulas e de duas sentencas que nao sao formulas. Cada exemplo deve
ser justificado de forma circunstanciada.

SECAO 9
( Légica

l6gica da teoria de conjuntos ZF é definida por aziomas e regras
de inferéncia dedutiva.

Aziomas (também conhecidos como postulados) de ZF sao férmulas
selecionadas para compor a lista de axiomas de ZF. Neste contexto,
‘formulas de &’ e ‘féormulas de ZF’ sao tratados aqui como sinénimos.

Apesar da aparente circularidade no conceito de axioma, o fato é
que um axioma ¢ tado somente uma formula que faz parte da lista de
axiomas de ZF. Obviamente a lista de axiomas de ZF poderia, em
principio, ser dada pela totalidade de férmulas de &. Mas, neste caso,
ZF seria uma teoria formal inutil, conforme o leitor deve perceber
mais adiante. Ou seja, todo axioma de ZF é uma férmula de ZF,
mas nem toda formula de ZF é um axioma de ZF. Apesar disso, o
leitor também percebera que a lista de axiomas de ZF é formada por
uma quantia nao finita de formulas de &.

Uma regra de inferéncia dedutiva (ou arqumento dedutivo) R é
uma relagao

R(F17f2a]:37”' a]:n>
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‘ entre n férmulas Fy, Fo, F3, - -+, F,, de modo que F, é tnica.

Por abuso de linguagem nos referimos a regras de inferéncia dedu-
tiva simplesmente como regras de inferéncia ou argumentos.

Qualquer regra de inferéncia R(F, Fa, F3, -+, F,) se lé ‘F, é con-
sequéncia tmediata de Fy, Fo, ---, Fn_1 via R. No caso particular
em que n = 3, dizemos que R é um silogismo.

Observar que qualquer regra de inferéncia R em ZF é um simbolo
que nao faz parte do vocabulério de ZF. Linguagens nao tém o poder
de promover inferéncias.

A lista de axiomas de ZF é dividida em dois grupos de formulas:

axiomas logicos e axiomas proprios.

Tal lista de axiomas l6gicos e axiomas préprios de ZF é apresentada
a partir de alguns paragrafos abaixo.

Seguindo a analogia com programacao de computadores, os axio-
mas légicos e as regras de inferéncia de ZF operam como um ‘sistema
operacional’, enquanto os axiomas proprios de ZF funcionam como
um software especializado que é executado sob a geréncia do sistema
operacional. Por conta disso, podemos considerar variagoes de ZF
(acrescentando, omitindo ou até alterando axiomas préprios), mas
sempre sob os mesmos principios ditados pelos axiomas logicos e
pelas regras de inferéncia.

A teoria de conjuntos ZF conta com apenas duas regras de infe-
réncia:

Modus Ponens (abreviada como M)
e
Generalizagio (abreviada como G).

Se P e Q sao formulas e z é uma variavel, entao

M(P,(P= Q),Q) e G(P,Vx(P)).

Neste caso Modus Ponens M se 1é como ‘Q é consequéncia ime-
diata de P e de (P = Q). Logo, Modus Ponens é um exemplo de
silogismo, uma vez que é uma regra de inferéncia que envolve trés
ocorréncias de féormulas. Generalizacao G, por sua vez, se 1é como
‘Vx(P) é consequéncia imediata de P’. Logo, Generalizagdo nao é
um silogismo, uma vez que ¢ um argumento que envolve apenas duas
ocorréncias de féormulas.
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Do ponto de vista intuitivo, regras de inferéncia permitem deduzir
novas formulas a partir de féormulas anteriores. No caso de Modus
Ponens, ¢é possivel inferir a nova formula Q a partir das formulas P e
(P = Q). Desta maneira Modus Ponens confere um carater dedutivo
ao conectivo condicional =. Isso justifica a leitura de (P = Q) como
‘se P, entao 9’

A importancia de axiomas e regras de inferéncia na edificacao de
ZF é discutida na préxima Secao. Por enquanto basta dizer que axi-
omas e regras de inferéncia sao indispensaveis para ZF. Isso porque
ZF deve expressar ideias a partir de seus axiomas e permitir inferir
novas ideias nao explicitamente expressas por seus axiomas.

Se A, B e C sao férmulas de &, entao os axiomas logicos de ZF sao
as seguintes formulas:

Ll (A= (B=A));
L2 (A= (B=C)= (A= B)=(A=20)));
L3 (((=B) = (=A)) = (((=B) = A) = B));

L4 Vx(A(z) = A(t)), se t for um termo livre para x em A(x), ou
seja, nenhuma ocorréncia livre de  em A(x) estd no escopo de
quantificador Vy com y ocorrendo em ¢;

L5 (Vz(A = B) = (A = Vz(B))), se x ndo tem ocorréncias livres
em A.

Os axiomas logicos L1 e L2 estabelecem como deve ‘funcionar’ o
conectivo condicional =. Por exemplo, axioma L1 diz, intuitiva-
mente falando, que ‘se temos a férmula A, entdo qualquer féormula
B implica em A’ Axioma L3 estabelece relagoes entre os conectivos
condicional = e negacao —.

Os demais conectivos légicos (conjungao A, disjungao V e bicondi-
cional <) nao tém ocorréncia alguma entre os axiomas logicos de ZF
por conta de um fato muito simples: sao matematicamente desne-
cessarios. Com efeito, poderiamos ter definido tais conectivos como
se segue:

I (AAB)=(A=~(B));
i: (AVB):(—(A) = B);
m: (A< B): (A= B)A(B= A));

sendo A e B formulas.
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Em outras palavras, (A A B) (A e B) equivale a dizer que ‘nao é
o caso de A implicar na negacgao de B’; (A V B) (A ou B) equivale
a dizer que ‘a negacao de A implica em B’; e (A < B) (A se, e
somente se, BB) equivale a dizer que ‘A implica em B, e B implica em
A’

Neste texto escolhemos a incorporagao dos conectivos logicos con-
juncao, disjun¢ao e bicondicional ao vocabuldrio de & por motivos
meramente pedagogicos. Neste contexto, podemos acrescentar aos
axiomas légicos de ZF as seguintes férmulas:

(AANB) < (A= —(B));
(AVB) < (-(A) = B);

A B)s (A= B)AN(B=A).

Eventualmente pares de parénteses podem ser omitidos (se nao
houver risco de ambiguidade na leitura das férmulas) desde que o
rigor seja seguido, conforme discussao anterior sobre a diferenca entre
formalismo e rigor.

Axiomas logicos 14 e L5 estabelecem as ‘relagoes’ entre o quantifi-
cador universal V e o conectivo condicional =.

O quantificador existencial 3 ndo tem ocorréncia alguma entre os
axiomas logicos de ZF porque ele pode ser definido a partir do quan-
tificador universal como se segue:

Jz(A) : ~(Va(=(A))),
sendo A uma férmula.

Logo, analogamente a discussao sobre os conectivos légicos con-
juncao, disjungao e bicondicional, podemos acrescentar como axioma
logico de ZF a seguinte formula:

Jz(A) & ~(Vz(=(A))),
desde que A seja uma férmula.

Uma discussao mais detalhada sobre os axiomas logicos de ZF esta
além dos propositos introdutérios deste documento. Informagoes
complementares, com uma abordagem muito didatica e matemati-
camente rigorosa, podem ser encontradas em [38]. No entanto, na
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proxima Secao ha uma discussao que deve ajudar o leitor a desen-
volver uma visao intuitiva sobre axiomas e, particularmente, axiomas

logicos de ZF.

Finalmente, observar que, entre os axiomas légicos de ZF, nao ha
uma Unica ocorréncia do predicado pertinéncia €. Os axiomas onde
ocorrem tal predicado sdo os axiomas préprios de ZF, os quais sao
discutidos a partir da Secao 18, na Parte 3 deste livro.

SEGAO 10
( O papel de axiomas e regras de inferéncia

Emyxiomas sao casos especiais de formulas. Regras de inferéncia per-
mitem inferir novas formulas a partir de férmulas anteriores, em uma
dada sequéncia finita de férmulas. O principio por tras desses con-
ceitos consiste na seguinte proposta: obter férmulas novas, a partir
de axiomas e regras de inferéncia, chamadas de teoremas. Matemati-
cos sao cagadores de teoremas.

DEFINIGAO 2.1. Uma demonstragdo em ZF é uma sequéncia
finita de formulas
Fi, Fa, -, Fn
de & de modo que cada formula F; dessa sequéncia é um axioma
de ZF ou uma consequéncia imediata de formulas anteriores via
o emprego de uma regra de inferéncia de ZF. Um teorema T de
ZF € a dltima formula de uma demonstragio em ZF. Neste caso

dizemos que Fi, Fo, ...., Fn € uma demonstracao de T (sendo
que F,, € a férmula T ).

PROPOSICAO 2.1. Todo axioma de ZF é teorema de ZF.

ProvA: Seja A um axioma de ZF. Logo, a sequéncia finita
A (formada por uma unica férmula) satisfaz a definigao de
demonstracao em ZF. Como A ¢ a tltima féormula da se-
quéncia A, entdao A é teorema de ZF.
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Observar que a proposicao acima nao ¢ um teorema de ZF, uma
vez que foi formulada na metalinguagem aqui empregada para dis-
cutirmos sobre ZF. Proposi¢oes, no contexto do estudo de teorias
formais, sao conhecidas também como metateoremas.

PROPOSICAO 2.2. Todo teorema em ZF admite infinitas de-
monstracoes.

PROVA: Seja 7 um teorema de ZF. Logo, existe demonstra-
¢ao Fi, Fo, ..., Fp em ZF de modo que F, é a formula
T. Logo, a sequéncia Fi, Fo, ..., Fpn, Fn também é uma
demonstracao de 7. Analogamente, a sequéncia Fi, Fo, ...,
Fny Fn, Fn € uma demonstracao de 7. Podemos repetir
esse procedimento para definir novas demonstragoes de T
quantas vezes quisermos.

Se T é teorema em ZF, denotamos isso como

bzr T
ou
|_ZF T.

Se 7 nao é teorema em ZF, denotamos isso como

Vor T
ou

Vzr T.

Para ilustrarmos um exemplo de demonstragao nao trivial, con-
sidere o seguinte enunciado.

TEOREMA 2.1. Se A € uma formula de ZF, entdo

DEMONSTRAGAO: (A = (A = A) = A)), (A= (A=
A = A) = (A= A= A) = (A= A)), (A=

A= A)=A=A), A= (A= A)), (A= A).
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A demonstracao acima é uma sequéncia de cinco férmulas de ZF,
separadas por virgulas (neste caso a virgula é um simbolo auxiliar
metalinguistico).

A primeira das cinco formulas é o axioma L1, onde a féormula B
de L1 foi substituida pela formula (A = A). A segunda é o axioma
L2, onde B foi substituida por (A = A) e C foi substituida por
A. A terceira férmula da demonstragao é consequéncia imediata das
formulas dos passos 1 e 2 via Modus Ponens. A quarta é novamente o
axioma L1, onde substituimos B por A. Finalmente, o tltimo passo
é consequéncia imediata dos passos 3 e 4 via Modus Ponens.

Do ponto de vista intuitivo, o enunciado acima estabelece que toda
formula de ZF implica nela mesma. Ou seja, se A é uma féormula
de ZF, entao (A = A) é um teorema de ZF, independentemente
de A ser teorema de ZF ou nao. Por exemplo, a sentenca z = y é
uma féormula de ZF. Logo, (x = y = = = y) é um teorema de ZF.
Analogamente, (x # y = = # y) é outro teorema de ZF.

Observar que a féormula (A = A) ndo é um axioma de ZF. No
entanto, é um teorema de ZF, desde que A seja formula. A meta do
matematico, neste contexto, é estabelecer quais formulas de ZF sao
teoremas e quais nao sao.

Neste contexto, uma conjectura em ZF é uma férmula A sobre
a qual acredita-se ser um teorema (ou pelo menos algum grupo de
matematicos cré nisso), ainda que ninguém a tenha demonstrado. A
partir do momento em que uma demonstracao é exibida na qual A
é a ultima férmula da demonstracao, tal férmula deixa de ser uma
conjectura e passa a ser um teorema.

Os fatos colocados acima justificam a afirmacao anterior de que,
uma versao de ZF onde todas as possiveis féormulas sao axiomas,
seria inutil. Se todas as formulas de ZF fossem axiomas, logo, todas
as féormulas seriam teoremas. Logo, nao haveria discriminacao entre
formulas que sao teoremas e aquelas que nao sao. Logo, nao haveria
necessidade alguma de regras de inferéncia. Logo, em particular, ZF
jamais poderia ser aplicada para lidar com problemas do mundo real.
Com efeito, existem fendmenos que ocorrem no mundo real e aqueles
que nao ocorrem. Os fendomenos que ocorrem no mundo real devem
ser, de algum modo, mapeados por teoremas de ZF.

Uma teoria formal como ZF nao é um luxo intelectual. H4 nesta
teoria algo inerentemente pragmatico no que se refere a potenciais
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aplicagoes tanto em matematica quanto em ciéncias nas quais a ma-
tematica se mostra relevante.

O fato de que nem todas as formulas de ZF sdo teoremas torna essa
teoria um objeto de estudo matematico e filosofico. Por exemplo,
se, em algum sentido, for possivel enunciar um conceito de verdade
(ver Segoes 15 e 111), é possivel provar a existéncia de férmulas
verdadeiras de ZF que nao sao teoremas?

O estudo mais detalhado dos axiomas légicos de ZF demanda um
esforco que vai muito além dos propésitos deste livro, como ja foi
dito acima. Por conta disso, interessa apenas saber que, se P, O e
R forem férmulas quaisquer (teoremas ou nao), entao as seguintes
formulas sao teoremas de ZF:

(PANQ)=P.
(PAQ)= Q.
P=P.
P=(PVQ).
Q= (PVQ).
-—=P < P. Principio da Dupla Negagdo.
(P= Q)& (—mQ=-P).
PV —P. Principio do Terceiro Excluido.
(PA Q)< (QAP). Conjungao ¢ comutativa.
(PV Q)< (QVP). Disjuncao é comutativa.
(P Q)s (P < —0Q).
(PeQ)e (P=Q) A (Q=TP).
.((PVQ)VR)< (PV(QVR)). Disjungao é associativa.
(
(

2 e = e od s 09 9 =

e S = S
O

(PAQ)AR) <= (PA(QAR)). Conjungao é associativa.
PA(QVR)) < (PAQ)V (P ATR)). Distributividade da
conjunc¢ao em relagao a disjuncao.
. (PV(QAR)) < ((PVQ)A(PVR)). Distributividade da
disjungao em relagao a conjuncao.

. (PVQ)e (=P A-Q).

—
=

—
[=p}

1

\]
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Obviamente ha uma infinidade de outros teoremas, além desses.
O que escrevemos aqui ¢ apenas para fins de ilustracao e futura
referéncia em trechos que ocorrem adiante neste texto.

A férmula (-Q = —P) no item 7 acima é chamada de contrapo-
sitiva de (P = Q). Por conta do Principio da Dupla Negagao, a
féormula (P = Q) também é a contrapositiva de (-Q = —P).

EXEMPLO 2.6. I (=(z #y) & x = y) é o Teorema 6 da
lista acima, onde a formula P é x = y; logo, por Generali-
zac¢ao,

Va(-(z # y) &z =y)
¢ teorema de ZF. Aplicando Generalizacao novamente,
Vy(Vz(=(z #y) &z =1y))
¢ mais um teorema de ZF;

I: (x =yVa #y) éo Teorema 8 da lista acima, onde a

formula P é x = y; logo, por Generalizacao,
Va(r =y Vaz #y)

¢ outro teorema de ZF.

A igualdade = deve satisfazer a duas condigoes, no sentido de serem
formulas que sao teoremas:

I Vz(r = z);

n: ¢ =y = (Px,z) = P(x,y)), onde P(z,y) ¢ uma férmula
obtida a partir de P(z,x) por substituicdo de pelo menos
uma ocorréncia de z por y (desde que y seja livre para = em
P(x,x), ou seja, nenhuma ocorréncia livre de x em P(z, )
estd no escopo de quantificador Vz com z ocorrendo em ).

O teorema I sobre igualdade é chamado de reflezividade da igual-
dade. Ja o teorema I1 é conhecido como substitutividade da iqualdade.
O importante aqui é perceber que qualquer termo ¢ s6 pode ser igual
a ele mesmo. Quando se escreve x = y, essa formula atomica apenas
diz que o mesmo termo z ¢ chamado também de y.

A partir da reflexividade da igualdade e da substitutividade da
igualdade é possivel provar que a igualdade é simétrica e transitiva.
Ou seja,

VaVy(z =y = y = x)
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e
VaVyVz((z =y ANy =2) =z = 2)

sao teoremas de ZF. Demonstragoes desses dois tltimos resultados

para situagoes muito mais amplas do que aquelas aqui colocadas

podem ser encontradas em [38].

Aqui cabe um esclarecimento. Como ja definido, equagoes sao for-
mulas atomicas
T =y.
Solugoes de uma equagao, se existirem, sao todos os termos = e y
tais que a equagao x = y ¢é teorema. Por conta disso, a reflexividade
da igualdade garante que todo termo x é solugdo da equagao

75 = %,
Mas, obviamente, estamos interessado em outras equacoes, bem

como na determinagao das suas solugoes, conforme se vé adiante, no
restante da leitura.

SECAO 11
( Esquemas de teoremas

N leitor mais critico deve ter observado algo de ‘errado’ no Teo-
rema 2.1. Se Teorema 2.1 é de fato um teorema de ZF, entao por que
o emprego da sentencga metalinguistica “Se A é uma férmula de ZF,
entao...”? Isso ocorre porque, rigorosamente falando, Teorema 2.1 é
um esquema de teoremas. Um teorema de fato de ZF é o seguinte:

TEOREMA 2.2. (x =y =2 =y).

Uma possivel demonstragao do teorema acima é feita exatamente
como na demonstracao do Teorema 2.1, substituindo a férmula A
por x = y. No entanto, x = y nao ¢ a unica possivel féormula de
ZF. O que foi feito na ‘demonstracao’ do Teorema 2.1 foi uma in-
finidade de demonstragoes, uma para cada possivel formula A de ZF.
Apresentamos a seguir uma pequena lista com alguns deles:

Fzr (z=y=>2=y),
Fzr (z #y=a #vy),
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FZF(xEy:xEy%
Fzr((=y N2 #y) = (x=y ANz #y)).

Uma vez que (x =y = x = y) é teorema de ZF, é possivel aplicar
Generalizagao para obter o novo teorema

Ve(zx =y =2 =y).

Aplicando Generaliza¢ao mais uma vez se obtém o novo teorema

YyVz(x =y =z = y).

SECAO 12
( Metateorema da Deducao
SUMARIO
N INDICE
W=xXlesta Secao é qualificado, no contexto de ZF, o conceito de pre- REDE

missa, o qual é sindonimo de hipdtese. Para uma definicao aplicavel
a uma vasta gama de teorias formais, ver [38].

DEFINICAO 2.2. Seja I' um conjunto (na acep¢ao da metalin-
guagem aqui empregada) de formulas de ZF. Dizemos que uma
férmula T € consequéncia de I' em ZF sss (abreviagio para ‘se,
e somente se’) existe sequéncia finita de formulas

F17-F27"'7~Fn

tal que F,, € T e cada passo da sequéncia é um azioma de ZF
ou uma formula de I' ou consequéncia imediata de formulas an-
teriores via o emprego de uma regra de inferéncia de ZF.

I' é chamado de conjunto de premissas. Cada formula de " é
chamada de premissa ou hipotese. Denotamos isso por

PbzeT.

A visao intuitiva da definicdo acima é desenvolvida melhor a partir
dos metateoremas que seguem abaixo.

PROPOSICAO 2.3. Sejam I' e A conjuntos quaisquer de for-
mulas de ZF e T uma formula de ZF. Se I' Fzp T entao

FTUAFZT.
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ﬁ' A prova da proposicao acima é imediata, bastando aplicar a
Definicao 2.2. Fica como sugestao de exercicio para o leitor. Obvia-
mente a reciproca da Proposi¢ao 2.3 (se TUA Fzp T entao I' Fyzp T))
nao é uma proposicao. Consegue encontrar contra-exemplo para a
reciproca da Proposicao 2.37

O que Proposicao 2.3 estabelece é o seguinte: se uma féormula 7 é
consequéncia de um conjunto de premissas, entao nao faz diferenca
alguma acrescentar novas premissas; 7 continuara sendo consequén-
cia do novo conjunto de hipoteses. Esse tipo de resultado ajuda a
desenvolver intuicoes sobre o papel de premissas. Matematicos sem-
pre estao interessados na ‘menor quantia’ possivel de hipoteses nao
triviais para provar que uma féormula é consequéncia de tais hipdte-
ses.

Consequéncia imediata da Proposicao 2.3 é a seguinte.

PROPOSICAO 2.4. Se T ¢€ teorema de ZF e T' é um conjunto
de formulas, entdo I' Fzp T .

Ou seja, qualquer teorema ¢é consequéncia de qualquer conjunto
de hipdteses. Novamente a reciproca nao é uma proposicao. O fato
de uma formula ser consequéncia de um conjunto de premissas nao
implica necessariamente que tal férmula é teorema. No entanto, se
existe demonstracao para I' Fzrp T tal que ndo ocorra uma tunica
formula de I', entao T é teorema de ZF.

PROPOSIGAO 2.5 (DEDUGAO). Sejam T' um conjunto de for-
mulas de ZF e H e T formulas de ZF. Entao

FU{H} For T sssTbEzp H=T.

Essa tltima proposicao é o célebre Metateorema da Dedugdo, de-
vido ao francés Jacques Herbrand (1930). Ele garante que, se H é
uma hipotese de um conjunto IT de premissas e 7 é consequéncia de
tal conjunto II de hipoteses, entdo ‘H = T é consequéncia de um
conjunto de premissas que tem todas as hipoteses de II, exceto H.
Obviamente, IT =T U {H}.

Sua demonstragao foge do escopo da proposta deste documento.
Mas o resultado em si é de grande importancia, uma vez que o Meta-
teorema da Deducao justifica a pratica das demonstracoes condi-
cionais, aquelas nas quais sao assumidas hipoteses I' para derivar um
resultado 7. Em particular, {H} Fzr T é equivalente a Fzp H = T .
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JZs ) Se H = T é uma formula de ZF, entao 7 = H é chamada
de reciproca de H = T. O fato de H = T ser teorema de ZF nao
implica que sua reciproca é teorema. Consegue justificar isso?

Escrevemos ¥y T para dizer que T nao é teorema de ZF e I' Fzp T

para dizer que 7 nao é consequéncia do conjunto de premissas I' em
ZF.

EXEMPLO 2.7. ©: {A} bzr B = A, sendo A e B formulas
de ZF; a prova deste resultado € feita a partir do axioma
logico L1 e do Metateorema da Deducao 2.5;

1 £ {A} Fzr A; conseque justificar este resultado?

Quando o conjunto de hipdéteses conta com uma unica férmula,
podemos omitir o emprego de chaves. Logo, item IT acima pode ser
reescrito como

A l_ZF A.

Em outras palavras, estd escrito acima que, se A é uma hipdtese,
entao A é consequéncia dela mesma.

PROPOSICAO 2.6. Se T ¢é teorema de ZF e H é uma formula,
entao

|_ZF,H =T.

ﬁe‘ A prova pode ser feita a partir do Metateorema da Deducao e
da Proposicao 2.4. Recomendamos ao leitor que faca como exercicio.

SEGAO 13
( Principio da Explosao

T

pesar do Principio da Explosao ser usado na discussao
sobre o Paradoxo de Russell na Se¢do 22, ndo ha prejuizo 6bvio ao
ignorar esta discussao.

Se considerarmos apenas axiomas L1, 1.2 e L3 da Segao 9 (ou seja,
ZF sem os axiomas préprios e sem os logicos L4 e L5), o Metateo-
rema de Kalmar [38] garante como resultado secundério que, se uma
férmula F é teorema, entao =(F) ndo é teorema. Ou seja, os demais
axiomas logicos L4 e L5 devem ser consistentes com este resultado.

PAGINA 42

SUMARIO

INDICE
REDE



MATEMATICA PANDEMICA PARTE2 SECAO013

Em particular, sabendo que o Principio do Terceiro Excluido
PV =P
é teorema, entao a negagao
—(P Vv —P)
nao ¢é teorema.

No entanto, de acordo com as férmulas 6 e 17 da Secao 10, a
formula

~(PV —P) & (=P A P)

é teorema. Isso implica que =P A P nao ¢é teorema.

ﬁ' Por outro lado, se P e Q sao férmulas de ZF, logo, (PA—P) =
Q é teorema de ZF (consegue provar?).

A férmula (P A =P) é uma contradicao ‘P e nao P’, no sentido de
que =(P A =P) é teorema. Logo, de acordo com o Metateorema da
Dedugao,

Equivalentemente isso pode ser escrito como

{P,=P} bzr Q.

Este é o Principio da Fxplosao: a partir de um conjunto I' de hi-
poteses cuja conjuncao é uma contradicao, qualquer férmula Q de
ZF é consequéncia de I'.

Em outras palavras, contradi¢gdes permitem inferir qualquer for-
mula. Se, em particular, os axiomas proprios de ZF produzirem
algum teorema 7T tal que —(7) também é teorema, entdao todas as
formulas de ZF sao teoremas. Até hoje nao se sabe se esse fenomeno
altamente inconveniente ocorre ou nao em ZF.

Matematicos também operam sob o comando de crengas pessoais.
A sensacao dominante é que muito provavelmente ZF é consistente.
Com efeito, até hoje nao foi encontrada qualquer inconsisténcia.
Mas, claro, essa fé nao é cega. Se alguém conseguir exibir uma
inconsisténcia em ZF, a teoria devera ser reescrita.

O Principio da Explosao motivou a edificagdo de outras logicas
chamadas de paraconsistentes [9], nas quais tal principio nao vale.
Logo, logicas paraconsistentes nao sao equivalentes a logica cléassica,
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apesar de poderem ser percebidas como uma extensao da mesma.
Detalhes na referéncia citada.

SEGAO 14
( Ainda sobre definicoes

2y

smavgora que conhecemos um pouco a respeito de linguagem e
logica, podemos detalhar mais a respeito de defini¢oes, dando con-
tinuidade a Secao 8.

Defini¢oes explicitas abreviativas devem ser:
e Elimindveis e

o Conservativas.

O critério de eliminabilidade estabelece que, em qualquer defini¢ao

explicita abreviativa, podemos substituir o definendum pelo definiens.

Por exemplo, considere a definicado do simbolo metalingistico #, in-
troduzido na Secgao 8. Ao escrevermos x # y, podemos substituir tal
abreviacao pela férmula correspondente na linguagem &, a saber,
~(z =y).

O critério de eliminabilidade refor¢a a economia de notagao na
pratica matematica, como ja discutido. Uma vez que ZF é uma teoria
de fundamentacao para assuntos como calculo diferencial e integral,
conceitos sofisticados, como integral de Riemann (Segao 58), podem
ser introduzidos com consideravel economia de notagao gragas a uma
estratégica lista de defini¢oes abreviativas. Escrever os conceitos de
limite, derivada e integral, sem o emprego de tais definigoes dadas
anteriormente (na medida em que este texto evolui), é obviamente
possivel (usando tnica e exclusivamente os simbolos do vocabulario
da linguagem & de ZF); mas nao é um recurso amigavel para fins de
escrita e leitura de mateméatica. Ou seja, a pratica matematica deve
levar com consideracao limitacoes cognitivas humanas.

O segundo critério estabelece que toda definicao explicita abrevia-
tiva deve ser conservativa, ou seja, nao deve permitir a formulagao
de novos teoremas que nao poderiam ser obtidos sem a defini¢ao.
Por exemplo, digamos que alguém proponha o que se segue, como
definicdo para o simbolo metalinguistico H: dadas as férmulas A, B
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e C, entao
(ABB) < C: (AAB)=C.

Claramente o critério de eliminabilidade é satisfeito para quaisquer
ocorréncias de (AHB) < C. Mesmo nos casos em que ha ocorréncia
apenas de A H B, podemos substituir A H B por qualquer formula C
(por conta da bicondicional <). No entanto, de acordo com a Secao
10, as férmulas (AAB) = Ae (AAB) = B sao teoremas. Logo, (AHB
B) < Ae (AHB) < B sao teoremas. Portanto, A < B é teorema.
Se B for a féormula —.A, isso implica em uma contradicao A < —A,
a qual é um novo teorema, no sentido de que, antes da suposta
definicao de H, a féormula A < —A nado era teorema. Portanto,
apesar da estrutura

definiendum : definens,

isso nao é uma defini¢do explicita abreviativa para o simbolo H.

Resumidamente, defini¢oes explicitas abreviativas devem apenas
abreviar formulas, desde que nao sejam equivalentes a novos postu-
lados de ZF, uma vez que apenas novos postulados podem ser res-
ponsaveis por novos teoremas. No caso acima, a suposta definicao
para o simbolo H introduz a férmula

(ABB)<C)< (AAB)=C)

como novo postulado a légica de ZF, o qual é inconsistente com os
demais postulados l6gicos. Mais detalhes podem ser encontrados em

[43].

SEGAO 15
( Verdade

\ essa altura o leitor ja deve ter observado que, em momento
algum, foram qualificados os conceitos de verdade e falsidade. O
estudo de ZF pode ser promovido sem jamais mencionar algo como
verdade ou falsidade. O que interessa em ZF é se uma dada féormula
¢ teorema ou nao. No entanto, é perfeitamente possivel (e extrema-
mente util) qualificar a afirmacao ‘a formula A é verdadeira’. Uma
discussao sobre este problema e sua relevancia é colocada na Secao
111.
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SEGAO 16

Resumo da épera

. que sabemos até aqui pode ser resumido da seguinte maneira.

e A partir do vocabulario de & sao definidas sentencas, as quais
sao apenas sequéncias finitas de simbolos do vocabulario de &.

e Entre as sentencas de & sao selecionadas aquelas que sao for-
mulas. Isso é feito gracas a uma sintaxe.

e Entre as formulas de & sao selecionadas aquelas que sao os
axiomas de ZF. Com efeito, ZF nao é definida apenas por uma
linguagem, mas por uma logica também.

e Entre as formulas de & sao selecionados os teoremas de ZF.
Teoremas sao obtidos a partir de axiomas e/ou regras de infe-
réncia. Teoremas cujas respectivas demonstragoes nao deman-
dam o emprego de qualquer regra de inferéncia sao chamados
de triviais. Logo, todo axioma de ZF é um teorema trivial,
conforme Proposicao 2.1. Teoremas, cujas possiveis demonstra-
¢oes sempre empregam pelo menos uma regra de inferéncia, sao
chamados de nao triviais.

e Matematicos que trabalham com ZF estao interessados priori-
tariamente nos teoremas nao triviais de ZF.

Com relacdo ao ultimo item acima, notar que ha também interesse
no estudo dos préprios axiomas de ZF, pelo menos de um ponto de
vista metalinguistico. Ver Secao 111.

Como foi dito anteriormente, matematicos estao mais interessados
em rigor do que formalismo. Neste contexto, as demonstracgoes re-
alizadas na pratica matematica nao seguem ipsis litteris a Defini¢ao
2.1. No lugar disso, demonstragoes tipicas de ZF (aquelas que sdo co-
mumente encontradas na literatura especializada) sdo simplesmente
sequéncias finitas de afirmagoes, as quais podem ser formalmente
transcritas nos moldes da Defini¢ao 2.1.

Obviamente, nao ha procedimento efetivo para decidir se uma
demonstracao, nesta acepcao mais relaxada, é rigorosa ou nao. Jus-
tamente por conta disso que erros humanos sao muito comuns entre
matematicos. Dai a necessidade de troca de ideias entre pares, como

PAGINA 46

SUMARIO

INDICE
REDE



MATEMATICA PANDEMICA PARTE2 SECAO017

salientado na Secao 3. Ao longo de todo o restante deste texto ado-
tamos a pratica matematica comum de que demonstracoes devem
ser rigorosas, mas nao necessariamente formais.

SEGAO 17
( Notas historicas

o\
P

==\ linguagem & aqui empregada é um caso particular de Cdlculo
Predicativo de Primeira Ordem [38], o qual atingiu um considerével
amadurecimento nas maos de Gottlob Frege [22]. No entanto, ha
outras linguagens formais com expressividade muito maior, como os
Cdlculos de Ordem Superior. Um exemplo bem conhecido é a teoria
ZF em sua versdo de segunda ordem [8] (conhecida como ZF5), a qual
conta com uma linguagem diferente da linguagem & aqui discutida.

DAviD HILBERT EM 1912
Fonte: Wikipedia.

A clara distingao entre calculos de primeira ordem e de ordem su-
perior somente tomou forma na segunda década do século 20, gracas
principalmente a David Hilbert e colaboradores. Para uma ampla
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visao histérica do nascimento de logica e fundamentos nos moldes
do que hoje se entende sobre o tema, ver o extraordinario livro de

Jean van Heijenoort [22].
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PARTE 3

O que faz a pertinéncia

Nesta terceira parte a énfase é sobre os axiomas proprios de ZF,
bem como os requisitos para a fundamentacao de certos ramos da
matematica que encontram ampla aplicabilidade.

SECAO 18
( O primeiro axioma proprio de ZF

N/s axiomas proprios de ZF se referem explicitamente ao predicado
binario €, no sentido de como ele se relaciona com conectivos logicos,
quantificadores 16gicos e a igualdade. Segue nesta, e nas proximas
Secoes, a lista de todos os postulados proprios de ZF.

Cada axioma proprio de ZF tem um nome:

Ezxtensionalidade,

Vazio,

e Par,

Poténcia,

Uniao,

Separagdo,
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e Infinito,

o Regularidade e

o Substituicdo.

Uma variacao de ZF é discutida mais adiante, chamada de ZFC.
Ela conta com os mesmos axiomas de ZF e um postulado a mais
chamado de FEscolha.

Segue o primeiro postulado proprio de ZF.

ZF1 - EXTENSIONALIDADE:
VaVyVz((z ez & 2z €y) = 2 =y).

Os termos de ZF sao chamados de conjuntos. A origem histérica
do termo conjunto deriva da interpretacao pretendida de que ZF
deve capturar pelo menos parte das ideias originais de Georg Cantor,
autor de um corpo do conhecimento chamado Mengenlehre (teoria
de conjuntos, em tradugao livre do alemao).

O Axioma da Extensionalidade de ZF afirma o seguinte: se x e y
sao conjuntos que compartilham os mesmos elementos z, entdao x é
idéntico a y.

De um ponto de vista intuitivo, o Axioma da Extensionalidade
estabelece que um conjunto x é identificado tinica e exclusivamente
pelos conjuntos z tais que z € x, ou seja, por seus elementos. A
reciproca do Axioma da Extensionalidade é teorema, como se percebe
a seguir.

TEOREMA 3.1. VaVyVz(z =y = (z €z & z € y)).

DEMONSTRAGAO: Sabemos que
ZeErT=zET

¢ teorema (cuja demonstragao pode ser exibida usando ape-
nas os axiomas légicos de ZF e Modus Ponens, de maneira
analoga ao Teorema 2.1).

Logo,
ZzETS zZETX
é consequéncia de qualquer premissa (Proposi¢ao 2.4), em
particular, x = y.
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Portanto,
r=y=(2€x o 2€x)

¢ teorema (Proposigao 2.6). Mas, de acordo com a substi-
tutividade da igualdade, podemos substituir qualquer ocor-
réncia livre de x por y na féormula z € v & 2z € z, de modo
que a nova férmula é teorema. Logo,

r=y=(z2€x z€y)
é teorema.
Aplicando Generalizacao, temos
Vz(z=y= (€2 & 2z€y)).
Aplicando novamente temos
VyVz(ze=y= (z €x & 2z €9)).

Aplicando Generalizacdo mais uma vez temos
VeVyVz(z =y = (z € x & z € y)).

Isso conclui a prova.

Ou seja, o Axioma da Extensionalidade, em parceria com o Teo-
rema 3.1, estabelece que a férmula x = y é equivalente a afirmar
que x e y compartilham os mesmos elementos. Essa é uma infor-
macao de extraordinaria importancia sobre o predicado binario de
pertinéncia €. Tal predicado é necessario e suficiente para identificar
um conjunto.

@ Se o leitor se interessar por uma compreensao mais aprofun-
dada sobre o Axioma da Extensionalidade, no artigo [1] ha uma
proposicao que prova o seguinte resultado:

|7XZF7 {Extensionalidade, Infinito} Extensionalidade.

Por um lado, ZF — { Extensionalidade, Infinito} é uma teoria formal
com os mesmos postulados de ZF, exceto o Axioma da Extensiona-
lidade e o Axioma do Infinito (este ultimo é discutido na Segao 23).
Por outro, a proposicao acima simplesmente diz que o Axioma da
Extensionalidade nao é teorema em uma teoria que conta com todos
os axiomas de ZF, exceto Extensionalidade e Infinito. Tal resultado
é de enorme importancia. Com efeito, isso significa que apenas o
predicado de igualdade = nao é o bastante para identificar conjuntos.
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Logo, aprendemos uma valiosa li¢ao:

O Azioma da Eztensionalidade desempenha papel
indispensavel para a identificacao de conjuntos.

SEGAO 19
( Quantificador 3!

s=\ntes de prosseguirmos com os demais postulados de ZF, ¢ 1til a
introducao de uma nova abreviacao metalinguistica.

Seja A uma férmula de ZF. Logo,

Az(A(z)) : JaVy(Ay) & y = ).

A abreviagao Jlz(A(x)) se 1é ‘existe um tnico z tal que A(x). A
ideia intuitiva é simples: existe um x tal que A(z) e, para qualquer
y tal que A(y), temos que y = .

@ Existem outras formas para definir o quantificador 3!. Mas o
conceito dado acima basta para nossos propositos.

SEGAO 20
( Existem Conjuntos?

. Axioma da Extensionalidade ndo garante a existéncia de con-
juntos. Apenas garante que, se existirem conjuntos, sabemos como
identifica-los a partir da pertinéncia €. O primeiro postulado a
garantir que pelo menos um conjunto existe € o que se segue.

ZF2 - VAzIO:

Vy(y & ).

Observar atentamente o quantificador existencial acima, bem como
a maneira como ele opera em ‘parceria’ com o quantificador univer-
sal. Este postulado garante a existéncia de um conjunto x tal que
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nenhum conjunto y pertence a ele. O préximo teorema ilustra como
os postulados de ZF trabalham em ‘parceria’ uns com os outros.

TEOREMA 3.2. O conjunto x do Axioma do Vazio é unico.

DEMONSTRAGAO: O Axioma da Extensionalidade pode ser
reescrito como

VaVyVz((z € x & 2 € y) = x =y).

Ver Teoremas 7 e 12 da lista de 17 teoremas da Segao 10,
para saber como provar essa ultima férmula.

Ou seja, a férmula acima é teorema de ZF.

Seja x o conjunto cuja existéncia é garantida pelo Axioma do
Vazio, i.e., para todo z temos que z € x. Supor que existe
outro conjunto y (ou seja, y # x) que também satisfaz o
Axioma do Vazio. Logo, para todo z temos z &€ y. Isso
significa que
Vz(z €z &z & y).

Mas, de acordo com o Axioma da Extensionalidade (na
forma como estd reescrito acima), isso implica em y = x

(L)-

O simbolo L usado ao final da demonstracao acima (conhecido
como falsum) é o que se chama de contradi¢io (neste caso, a con-
tradi¢ao sinalizada por 1 é y # x Ay = x). Uma vez que PV =P é
teorema para qualquer férmula P, se =P garante uma contradigao,
entao P deve ser teorema. Uma vez que a negagao da tese acima
produz uma contradicao, entao deve valer a tese como teorema. A
tese em questao pode ser escrita formalmente como se segue:

Nz(Vy(y & x)).

Caso o leitor nao saiba, a expressao ‘i.e’ (usada na ltima prova)
abrevia ‘id est’ que, em latim, se traduz como ‘isto é’.

ﬁl Um exercicio interessante é escrever formalmente o Teorema
3.2 usando apenas os quantificadores V e 4, de acordo com a Se¢ao
19. Obviamente, o que legitima tal demonstracao é a hipdtese de
que ZF é consistente (ou seja, a hipétese de que nao existe formula
A tal que ambas A e =4 sao teoremas de ZF), algo que até hoje nao
se sabe se é o caso.
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Como ja dito anteriormente, o teorema P V =P é conhecido como
Principio do Terceiro Fxcluido. Este legitima as demonstracoes re-
ductio ad absurdum (redu¢do ao absurdo, em tradugao livre do la-
tim): se a negacao de uma tese (a qual é tdo somente uma férmula)
implica em contradicao, entao a tese é teorema.

Notar também que a férmula
VaVyVz((z € x < 2 € y) = x =y),

a qual é equivalente ao Axioma da Extensionalidade, viabiliza outra
visao intuitiva a respeito da identificagdo de conjuntos. Assim como
conjuntos sao identificados por seus elementos, equivalentemente con-
juntos sao também identificados pelos termos que ndo sdo seus ele-
mentos.

Uma vez que acabamos de provar que conjunto vazio é tinico, este
¢ uma constante de ZF. Por conta disso é usual a adocao de um
simbolo especial para tal constante: @. Ou seja,

Yy(y € 9).

Aqui cabe uma oportuna observacao de carater historico, filoséfico,
matematico e didatico, em relagao a técnica empregada para provar
Teorema 3.2.

A experiéncia em sala de aula revela que muitos alunos encon-
tram dificuldade para compreender e aceitar a técnica de demons-
tragao por reducao ao absurdo. Pois bem, isso nao é exclusividade de
alunos. Alguns matematicos, justamente por conta de suas experi-
éncias profissionais, também criticam esse método de demonstracao.

No inicio do século 20, Luitzen Egbertus Jan Brouwer nao aceitava
demonstragoes por reducao ao absurdo. Uma vez que ela é susten-
tada pelo Principio do Terceiro Excluido, na visao de Brouwer a
formula P V =P s6 pode ser teorema se existir uma demonstracao
para P ou uma demonstracao para =P, de modo que qualquer de-
monstragao de uma nao pode depender do ‘fracasso’ de outra, por
conta de uma contradicao. Provar que a negacao —P de uma tese P
implica em uma contradi¢do, nao garante que P é teorema, segundo
a postura filoséfica de Brouwer. Com efeito, se a negacao de uma tese
implica em uma contradi¢ao, apenas foi provado que tal negacao da
tese implica em uma contradicao, nada além disso. Por conta dessa
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visao, este conhecido matematico holandés rejeitava a logica classica
usada hoje para edificar ZF (entre muitas outras teorias).

Em oposicao a légica classica, Brouwer introduziu a Logica Intui-
citonista, na qual o Principio do Terceiro Excluido nao é teorema.

E] Hoje em dia existem diversos sistemas formais que empregam
légica intuicionista, incluindo uma versdo intuicionista de ZF [5].
Essa tltima referéncia é um livro nao publicado de John Bell, mas
gratuitamente disponivel em pdf na internet. Até onde sabemos, nao
ha livros publicados sobre o tema.

@ Outro exemplo de teoria fundamentada em logica intuicionista
é a Analise Infinitesimal Suave. Esta ultima permite desenvolver
uma forma de calculo diferencial e integral na qual todas as fungoes
sao continuas, algo que nao ocorre no Calculo Diferencial e Integral
Padrao (ver Defini¢ao 5.23). Outrossim, demonstragoes por redugao
absurdo nao sao aplicaveis em analise infinitesimal suave. Se o leitor
estiver interessado, no livro de John Bell [4] h4 uma excelente e
sucinta exposicao sobre o tema, onde derivadas e integrais podem ser
definidas sem a necessidade de limites. No cédlculo padrao derivadas
e integrais sao casos especiais de limites.

No entanto, a motivacao de Brouwer era meramente filosofica,
apesar de hoje encontrar grande repercussao em matematica e até
mesmo em fisica tedrica. Neste livro adotamos logica classica.

Em légica classica o Principio do Terceiro Excluido é teorema.
Portanto, demonstragoes por reducao ao absurdo podem ser empre-
gadas para a obtencgao de teoremas. Essas informagoes devem ajudar
o leitor a perceber que existem muitas formas para desenvolver ma-
tematica. Neste livro apenas tangenciamos uma dessas formas, a
qual é a mais usual.

Se um aluno encontra dificuldade para aceitar a técnica de reducao
ao absurdo para a demonstracao de certos teoremas, basta que este
mesmo aluno tenha consciéncia de que o Principio do Terceiro Ex-
cluido é tao somente uma consequéncia dos axiomas logicos de ZF.
Logo, qualquer objecao dessa natureza é de carater filosofico, nao
matematico.

Garantir a existéncia de um tnico conjunto em ZF, a saber, o vazio,
¢ insuficiente para a pratica matematica. Logo, precisamos de mais
postulados.

PAGINA 55



MATEMATICA PANDEMICA PARTE3 SECAO020

ZF3 - PAR:
VaVydVt(t € z < (t=x Vit =y)).

O Axioma do Par garante a existéncia de outros conjuntos z (chama-
dos de pares) além de @ (observar o quantificador existencial 3z).

O Axioma do Par diz o seguinte: dados x e y, existe z cujos elemen-
tos sao x ou y. Por exemplo, uma vez que é garantida a existéncia
do conjunto vazio &, o Axioma do Par garante a existéncia de um z
tal que t € z se, e somente se, t = &Vt =& (aqui os termos x e y
do Axioma do Par assumem os valores & e &). Neste caso o Axioma
da Extensionalidade garante que z # @, uma vez que @ € 2z mas
oda.

Neste momento se mostra til a introducao de simbolos auxiliares
metalinguisticos novos: { e } (chamados de chaves).

Se z é um par com elementos x e y, denotamos isso por

z={z,y},
desde que x # y.
Se xr = y, escrevemos
z={z}
ou

z={y}.

O Axioma da Extensionalidade garante que {z,y} = {y,z}. Tam-
bém garante (na forma de teorema) que, dados x e y, o par z = {x,y}
(ou z = {z}) é inico. Se o par z conta com um unico elemento, ele
¢ chamado de singleton ou unitdrio.

EXEMPLO 3.1. Sejam x = @ e y = &. Logo, z = {@}. Neste
caso z € um singleton.

EXEMPLO 3.2. Sejamx =& ey = {D}. Logo, z = {2,{2}}.
Com efeito, a existéncia de & é garantida pelo Azioma do Vazio,
enquanto a existéncia de {S} € garantida pela aplica¢io do A-
xioma do Par no EXEMPLO anterior. Observar que, de acordo
com o Azioma de Extensionalidade, {@,{@}} = {{2},2}.
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O emprego de chaves { e } como novos simbolos auxiliares motiva
uma notacao alternativa para o conjunto vazio, a saber, {}. Ape-
sar desta ser uma notacao bastante comum na literatura, ela nao é
empregada aqui.

TEOREMA 3.3. Se x € um conjunto unitdario e r =y, entdo y
€ unitdrio.

DEMONSTRAGAO: Se z ¢ unitdrio, Ja(z = {a}). Supor que
y nao ¢ unitario. Logo, existe pelo menos um elemento ¢
em y tal que t # a. Logo, t € z. Logo, o Axioma da
Extensionalidade garante que = # y. L

O Axioma do Par garante a existéncia de uma infinidade de con-
juntos. Basta aplica-lo repetidas vezes a partir do conjunto vazio.
No entanto, cada um dos conjuntos obtidos a partir de Par e Vazio
conta com, no maximo, dois elementos. Para fins de fundamentagao
da pratica matematica isso é muito pouco. Dai a necessidade de mais
postulados! Mas, antes de proseguirmos com novos axiomas, segue
uma definicdo muito 1til: o conceito de par ordenado.

DEFINIGAO 3.1 (KURATOWSKI).

(a,0) - {{a},{a,b}}.

Na definicao abreviativa acima nao esta sendo introduzida qual-
quer abreviacao metalinguistica para uma férmula de ZF, mas uma
abrevia¢ao metalinguistica para um termo denotado por (a,b). Ob-
viamente tal manobra pode ser adaptada para a seguinte forma:

t=(a,b) t = {{a}, {a,b}}

ou

t=(a,b):FxTy(r etANyethacxzNa€yAbey),

sendo t obtido por repetidas aplicagoes do Axioma do Par.

Observar que (a, b) é um conjunto, uma vez que a e b sao conjuntos.
O termo (a,b) é chamado de par ordenado. Esse nome se justifica
pelo préximo teorema.

TEOREMA 3.4. (a,b) = (¢, d) se, e somente se, a =c e b=d.
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DEMONSTRACAO: Uma vez que o teorema é dado por uma
bicondicional, a demonstracao é dividida em duas partes.
A conjuncao do final de ambas as partes é exatamente o
teorema.

Parte <=. De acordo com a definicao de Kuratowski,

(CL, b) = {{a}’ {a7 b}}
(c,d) = {{c},{c,d}}.
= d,

Sea=ceb o Axioma da Extensionalidade garante
que (a,b) = (¢, d).
Parte =. Essa segunda parte da demonstracao deve ser
dividida em duas possiveis situacoes:

I: ocasoem que a = b e

II: 0 caso em que a # b.

Se a = b, temos que

(avb) = (a7a) = {{CL}}
Logo, o par ordenado (a,b) é unitario. Mas Teorema 3.3
garante que (¢, d) é unitario. Logo, (¢,d) = {{c}}, sendo ¢ =
d. Logo, {{a}} = {{c}}. O Axioma da Extensionalidade
garante que a = c¢. Neste caso b = d é consequéncia da

transitividade da igualdade. ﬁ' O restante da demonstra-
¢ao fica a cargo do leitor interessado.

EXEMPLO 3.3. O par ordenado (&,{@}) é diferente de ({2}, @)

Com efeito,
(2,{2}) = {{2},{2,{2}}}
({2}, 2) = {{{z}}. {2, {a}}}.

Apesar de ambos os conjuntos compartilharem um elemento em
comum, a saber, {&,{D}}, o termo {D} pertence ao primeiro
par ordenado mas nao ao sequndo. Logo, o Axioma da Exten-
sionalidade garante que (@,{@}) # ({2}, 9).

A definicdo de par ordenado, introduzida por Kazimierz Kura-
towski, motiva nova nomenclatura. Qualquer par obtido pelo A-
xioma do Par é chamado de par nao ordenado. Isso porque, por
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exemplo,

{2.{2}} = {{2}, 2},
(2, {2}) # ({2}, 2).

Neste contexto, pares ordenados sao casos particulares de pares
nao ordenados. O que permite estabelecer relevancia na ‘ordenacao’
de um par ordenado é o fato de ZF ser uma teoria com igualdade.
Essa foi a ideia genial de Kuratowski!

apesar de

E‘ A definicao de par ordenado nao foi uma conquista facil em
logica-matematica. Outras propostas, muito mais complicadas, an-
tecederam a ideia de Kuratowski. Detalhes em [48].

SEgAO 21
( Poténcia, uniao arbitraria e uniao finitaria

N&/s axiomas do Vazio e do Par nao garantem a existéncia de con-
juntos suficientes para a pratica matemaéatica. Logo, precisamos de
novos postulados. Mas, antes disso, as seguintes defini¢cdes sao uteis.

DEFINIGAO 3.2. Sejam x ey conjuntos. Logo,

Lax Cy:Vi(t € x =t € y); lemos x C y como ‘v é
subconjunto de y’ ou ‘r estd contido em y’;

I: x Cy:x CyAx#y; lemosx Cy como ‘x ésubconjunto
préprio de y’;

ez Zy:=(z Cy);

wv: x ¢ y:—(x Cy).

Ou seja, x é subconjunto de y sss todo elemento ¢ de x é elemento
de y. Além disso, x é subconjunto proprio de y sss x é subconjunto
de y e x é diferente de y.

ExemMPLO 3.4. © {@} C {2, {2}};

i: {o} c {o,{9}};
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u: {@,{o}} Z {o};

v: {9} C {9},

v: {@} Z {2}

TEOREMA 3.5. Todo conjunto é subconjunto de si mesmo.

DEMONSTRACAO: Formalmente, o teorema estabelece que
Ve(zx C ).

De acordo com a Defini¢ao 3.2, devemos provar que
VaVi(t € v =t € x).

Mas t € © = t € x é teorema em ZF (de acordo com
Teorema 2.1). Logo, aplicando Generalizacao duas vezes,
temos VaVt(t € x =t € x).

Em particular, foi provado acima que @ C &. Notar também que,
apesar de nao termos ainda a nossa disposi¢ao outros conjuntos, além
de vazio e pares, o ultimo teorema diz o seguinte: quaisquer outros
postulados que garantam a existéncia de novos conjuntos devem ser
tais que todo conjunto é subconjunto de si mesmo.

No entanto, o préximo teorema mostra que vazio nao ¢ subconjunto
apenas dele mesmo.

TEOREMA 3.6. O conjunto vazio € subconjunto de qualquer
conjunto.

DEMONSTRAQAO: Formalmente, o teorema estabelece que
Vr(o C x).

Supor que V(@& C z). Logo, dz(& Z z). Logo, existe ¢
talquet e oAt € x. L.

Mais uma vez reducao ao absurdo foi usada como técnica de de-
monstragao, uma vez que empregamos aqui a logica classica. A ideia
intuitiva da prova acima é a seguinte. Supor que a tese nao é teo-
rema, ou seja, nao é teorema a afirmagao de que o conjunto vazio
¢ subconjunto de todo e qualquer conjunto. Isso é equivalente a
afirmar que existe pelo menos um conjunto x tal que @ nao é sub-
conjunto de x. Mas isso, de acordo com a definicao de subconjunto,
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é equivalente a afirmar que existe pelo menos um ¢ que pertence a &
de modo que t nao pertence a x. Nao obstante, & é um conjunto que
nao admite elemento algum. Logo, a negacao da tese garante uma
contradigao (a existéncia de um ¢ tal que ¢ € &, sendo que nenhum
t pertence a vazio). Logo, o Principio do Terceiro Excluido (um dos
teoremas de ZF) garante que a tese é necessariamente teorema.

Uma confusao frequente entre aprendizes de matematica reside na
diferenca entre € e C. O ultimo teorema é uma 6tima oportunidade
para evitar tal desconforto desnecesséario. Basta observar que @ ¢ O,
uma vez que termo algum pertence a vazio. No entanto, @ C &,
uma vez que vazio é subconjunto de qualquer conjunto, incluindo,
obviamente, o proprio vazio. Ambas as férmulas

OEdT e @CO

sao teoremas de ZF. Isso implica que as formulas @ € 9 e @ € O
nao sao teoremas de ZF (se ZF for consistente, claro).

Agora podemos finalmente introduzir o Axioma da Poténcia.

ZF4 - POTENCIA:
VedyVi(t e y <t C x).

O conjunto y acima é chamado de poténcia de x. Se x é um con-
junto qualquer, sua poténcia y (cuja existéncia é garantida por ZF4)
¢é o conjunto cujos elementos sao todos os subconjuntos ¢ de .

ﬁl O Axioma da Extensionalidade garante que a poténcia y de
qualquer conjunto x é Unica (mais um teorema que sugerimos ao
leitor demonstrar). Por conta disso, usualmente a poténcia y de x é
denotada por

y = p(z).

Em particular, se ¢ é uma constante de ZF, entao p(c) também é
uma constante de ZF.

EXEMPLO 3.5. I: Se x = O, entdo p(z) = {@};
11: se x = {@}, entao p(z) ={@,{}};

({2, {2}}) = {2, {2}, {{2}}, {2, {2}}}.
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O 1ltimo EXEMPLO ilustra o fato de que ZF admite uma infinidade
de constantes, a saber, @, p(@), p(p(2)) e assim por diante.

Observar que, se = tem n elementos, entdao p(z) tem 2" elementos
(um simples problema de analise combinatoéria). No item III acima,
o conjunto {&, {2} } tem dois elementos, enquanto p({&,{2}}) tem
22 elementos, ou seja, 4.

E] Aqui cabe mais uma observacao. Essa conta 2", para o niimero
de elementos da poténcia de um conjunto com n elementos, esta
sendo feita aqui no contexto da metalinguagem usada para falarmos
sobre a linguagem-objeto & empregada para edificar ZF. No entanto,
é possivel qualificar com precisao o que é o ‘numero’ de elementos
de um conjunto. Isso se faz a partir da nogao de cardinalidade de
um conjunto. No entanto, este é outro assunto que escapa de nossos
propésitos para um texto meramente introdutoério. Para detalhes
sobre cardinalidade de um conjunto, ver [28]. Para um estudo muito
mais avancado sobre o tema, ver [30].

Gracas aos quatro primeiros axiomas de ZF, podemos garantir
agora a existéncia de uma nova infinidade de conjuntos, incluindo
aqueles que contam com 2" elementos (1, 2, 4, 8, 16, ...). Para
efeitos praticos, isso significa que o Axioma da Poténcia garante a
existéncia de conjuntos tais que os demais postulados anteriores nao
conseguem garantir. O item 111 do EXEMPLO 3.5 exibe um conjunto
cuja existéncia nao pode ser garantida apenas a partir dos axiomas
que antecedem ZF4.

O préximo é o Axioma da Unido.
ZF5 - UNIAO:
VedyVz(z € y & Jw(z € w Aw € x)).

Chamamos y de uniao arbitraria dos termos w que pertencem a x
e denotamos isso como
Yy = U w.

weT

Em outras palavras, dado um conjunto z, os elementos de y (cuja
existéncia é garantida por ZF5) sdo os termos z que pertencem a w,
para cada w que pertence a x. Novamente o Axioma da Extensionali-
dade garante que, para cada z, a uniao arbitraria y = U,c, w € tnica.
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EXEMPLO 3.6. Sejo x = {2, {0}, {{2}},.{9,{2}}}. Logo,
Uw={2{2}}.

weT

z@] E obviamente interessante que o leitor crie seus préprios e-
xemplos.

Se x = {r, s}, denotamos abreviadamente J,, w como r U s.
Neste caso, a uniao arbitraria é chamada de uniao finitdria.

TEOREMA 3.7. Se z € o par {r, s}, entdo
Vi(terUs<e (terVvtes)).

1@1 A prova deste ultimo fica a cargo do leitor interessado.

No ensino basico o teorema acima é comumente apresentado como
definicdo para uniao, da seguinte maneira:

rUs ¢é o conjunto dos ¢ tais que ¢ pertence a r ou s.

Mas, para os propositos da matematica a unido finitaria é insufi-
ciente. Exemplos ilustrativos sao apresentados oportunamente.

TEOREMA 3.8. Unido finitdria tem elemento neutro, € asso-
ciativa e é comutativa.

Formalmente, o teorema acima estabelece que
Ve(z U@ = x),
ou seja, I é o elemento neutro mencionado,

VaVyVz(z U (yU z) = (x Uy) U 2)

VaVy(z Uy =y Ux),
respectivamente.

ﬁ' As demonstracoes desses resultados ficam a cargo do leitor
interessado. Se o Teorema 3.7 for provado, a demonstragao deste 1l-
timo se torna praticamente imediata a partir da lista de 17 teoremas
da Secao 10.
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SECAO 22
( Separacao

\Wonsidere as seguintes formulas (observar o emprego do plural!),
conhecidas historicamente como Esquema da Compreensdo. Se P(y)
¢ uma férmula cujas ocorréncias de y sao livres, entao

Vy(y € x < P(y)).

Nos primordios da teoria de conjuntos, antes do trabalho de Ernst
Zermelo (um dos criadores de ZF), o Esquema da Compreensao era
empregado para definir um conjunto x por um predicado monéadico
P(y) (ou seja, uma férmula com ocorréncias livres de y). Para cada
formula P temos um axioma. Dai o nome Esquema da Compreensao!

Ou seja, abreviadamente, o conjunto z, cuja existéncia era garan-
tida por uma férmula P que seus elementos y devem satisfazer, era
denotado como

r={y| Py}

(1é-se ‘o conjunto x dos elementos y tais que P(y)’). Neste sentido,
em particular, o conjunto x de todos os conjuntos pode ser definido
como z = {y | y = y}. Com efeito, todo conjunto y é idéntico a
si mesmo. Afirmar que y é um conjunto, neste contexto, equivale a
afirmar y € x. Como caso especial, temos que z € z.

No entanto, apliquemos o Esquema da Compreensao para definir
um outro conjunto x da seguinte maneira:

r={y|y gy}

Neste caso, o predicado monadico P(y) é y € y. Se x € x, entdao x
deve satisfazer a formula em questao. Logo, x € x. Se x € x, entao
x deve pertencer a x, uma vez que satisfaz a féormula em questao.
Logo, x € x. Resumidamente, temos que, neste caso, t € v e r & x.

Este é o célebre Paradozo de Russell (1901), o qual mostra que
o Esquema da Compreensao ¢ inconsistente com os demais postu-
lados de ZF (uma vez que © € z Ax ¢ x). Logo, o Principio da
Explosao (Secao 13) garante que, em uma teoria formal com os a-
xiomas ZF1~ZF5 + Esquema da Compreensao, qualquer formula é
teorema. Tal resultado é obviamente indesejavel.

PAGINA 64

SUMARIO

INDICE
REDE



MATEMATICA PANDEMICA PARTE3 SECAO022

Para evitar essa antinomia, uma possivel solucao é a adogao do
Esquema de Separacao de Zermelo, como se segue.

ZF6r - SEPARAGAO: Se F(y) é uma férmula onde ndo ha ocor-
réncias livres de z, entao:

VzdaVy(ly e v <y € 2z A F(y)).

O conjunto z do postulado acima (cuja existéncia é garantida pelo
Esquema de Separagao) é usualmente denotado por

r={y€z|F(y}

Neste contexto, a existéncia de um conjunto x, cujos elementos sao
termos y tais que F(y), depende da existéncia de um conjunto z
tal que os termos y pertencem a z. Comumente z é chamado de
conjunto universo, o qual pode ser qualquer conjunto cuja existéncia
¢é garantida pelos axiomas de ZF.

Novamente o Axioma da Extensionalidade garante que o conjunto
{y € z| F(y)} é tinico, desde que seja dado o conjunto z, bem como
a férmula F. Ademais, se F é equivalente a uma férmula G (ou seja,
F < G), entao

{yez| Fly)r={tez][G)}

O Esquema de Separagao permite, entre outras coisas, definir a
diferenca entre conjuntos.

DEFINICAO 3.3. Dados os conjuntos x e y, a diferenca entre
x ey € dada por

r—y={tex|idy}

ExeEmpLO 3.7. Sejam x = {@, {2}, {{9}},{9,{2}}} ey =
Uwes W, ou seja, y = {2,{@}}. Logo,
z—y={{{a}}.{2,{g}}}
Com efeito, os elementos de x — y sao aqueles que pertencem a
x mas ndo a y. Analogamente, y — x = &; isso porque y C x.

O EXEMPLO acima deixa claro que diferenca entre conjuntos é nao
comutativa. Em outras palavras, nao é teorema a férmula

T—y=9y— .
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E‘ Importante destacar que a terminologia ‘Esquema da Com-

preensao’ admite outras acepgoes, além daquela colocada nesta Secao.

Em ZF; (ZF de segunda ordem), por exemplo, hd um esquema de
axiomas conhecido pelo mesmo nome, mas que nao tem relacao al-
guma com o que foi discutido acima.

MORAL DA HISTORIA: Para definir um conjunto z cujos elemen-
tos y devem satisfazer a uma férmula F é necessario qualificar um
conjunto universo z tal que cada y de x pertence a z. Caso con-
trario, a teoria de conjuntos em tela seria inconsistente. Ou seja, no
contexto de ZF6£, z C z. E claro que se, em particular, o conjunto
universo z for vazio, para qualquer féormula F teremos x = @.

ﬁl Mostrar por que a adogao do Esquema de Separacao no lugar
do Esquema de Compreensao evita o Paradoxo de Russell.

[B Procurar na literatura por outras solucoes que evitam o Para-
doxo de Russell sem o emprego do Esquema de Separacao.

SEQAO 23
( Usando uniao finitaria

W=xlesta Secao sao dados os primeiros passos para edificar os niimeros
naturais a partir dos axiomas de ZF'.

DEFINIGAO 3.4. S(z) : x U{x}. Lemos S(x) como ‘sucessor
de z

Em outras palavras, t pertence ao sucessor de z ssst € x ou t = x.

ExEmMPLO 3.8. . S(@)=0U{g}={2};

1: S(S(2)) = S{e}) ={otu{{e}} ={2,{a}};

m: S(5(5(2))) = S({@.{e}}) = {o,{a}tu{{e.{a}}} =
{@.{2}.{2,{z}}}.

Observar que @ tem zero elementos, S(&) tem somente um ele-

mento, S(S(&)) tem dois elementos e assim por diante. P N
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disso, nao existe x tal que S(x) = @ (consegue provar por redugio
ao absurdo?).

O sucessor S(x) de um conjunto x tem, além de todos os elementos
de x, o préprio x como elemento. Ou seja, para qualquer x temos
que x C S(x). Esse conceito é essencial para que sejamos capazes
de finalmente definir nimeros naturais no ambito de ZF. Mas, uma
coisa € definir nimero natural; outra é definir o conjunto de todos os
numeros naturais. Para que essa distingao essencial seja percebida,
introduzimos a seguir o Axioma do Infinito.

ZF7 - INFINITO:
dzx(@ ez AVy(y € z = S(y) € x)).

O Axioma do Infinito garante a existéncia de pelo menos um con-
junto x que satisfaz a conjuncao das seguintes férmulas:

e J pertence a z;

e se y pertence a x, entao o sucessor de y também pertence a x.

Isso produz algo como um ‘efeito domind’, no seguinte sentido:
uma vez que & pertence a x, e & pertencer a x implica que o sucessor
de @ pertence a x, entdo o sucessor de @ também pertence a x; uma
vez que o sucessor de @ pertence a x, e o sucessor de & pertencer
a x implica que o sucessor do sucessor de @ pertence a x, entdao o
sucessor do sucessor de @ também pertence a x; e assim por diante.
Ou seja, Modus Ponens estd sendo usado indefinidamente.

Obviamente o emprego de chaves para denotar sucessor de vazio,
sucessor do sucessor de vazio, sucessor do sucessor do sucessor de
vazio (e assim por diante) se mostra extremamente inconveniente,
além de esteticamente repulsivo. Para contornar tal dificuldade é de
interesse o emprego de abreviacoes metalinguisticas que facilitem a
vida do matemaético.

Considere um alfabeto D cujos simbolos sao 0,1,2,3,4,5,6,7,8 e
9, ordenados por ordem lexicogrdfica de acordo com o sistema deci-
mal usual. Tal ordem lexicografica (andloga a ordem alfabética de
dicionarios) é definida da seguinte maneira:

I: 0 é menor do que 1, 1 é menor do que 2, 2 é menor do que 3, 3
¢ menor do que 4, 4 é menor do que 5, 5 é menor do que 6, 6 é
menor do que 7, 7 é menor do que 8, 8 é menor do que 9;
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I1: os dez simbolos do sistema decimal usual podem ser concate-
nados para formar sequéncias finitas como, por exemplo, 1234;

III: se uma sequéncia finita de simbolos de D conta com mais de
um simbolo, entao o primeiro é sempre diferente de 0;

IV: se X1Xg - Ty € Y1Y2 - - - Yn SA0 sequéncias de n simbolos de D
em cada uma, entao xixs---x, ¢ menor do que Y1y - - Y, SSS
(i) 1 é menor do que y; ou (ii) 1 = y; e x5 é menor do que ys,
ou (ili) 1 = y1, T2 = Yo € x3 é menor do que y3, e assim por
diante, até o caso em que x1 = Y1, To = Y2, "+, Tpn1 = Yn_1 €
T, € menor do que y,;

Vi 8e X1Xa - Ty € Y1Y2 - * * Yn SA0 sequéncias de m e de n simbolos
de D, respectivamente, tal que m é menor do que n, entao,
T1%y - - Ty € menor do que y1ys -+ - Yp-

Cada simbolo de D é chamado de digito.

EXEMPLO 3.9. 1234 é menor do que 1244; com efeito, os dois
primeiros digitos sao respectivamente iguais em cada wma, mas
o terceiro digito da primeira é menor do que o terceiro digito da
sequnda.

Logo, podemos adotar as seguintes abreviacoes:

0:ig; 1:5(@); 2:9(S(2)); 3:8(5(5(2)))
e assim por diante.

Em outras palavras, se n denota um termo definido a partir de D e
n+1 é o termo seguinte pela ordem lexicografica, entdao n+1 = S(n),
onde 0 = @. Ou seja,

0:; 1:5(0); 2:5(5(0)); 3:5(5(5(0)))
e assim por diante.

Essa codificacao a partir do alfabeto D permite dispensar o em-
prego de chaves, além de se identificar com praticas comuns de no-
tagdo para nimeros naturais.

Agora fica mais facil definir e exemplificar adi¢cao e multiplicagao
entre certos conjuntos que pertencem ao x do Axioma do Infinito.

Observar também que

Ve(x € S(x)).
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Uma das consequéncias disso é que, em particular, 0, 1 e 2 sao os
tnicos elementos de 3. Analogamente, 5 = {0,1,2,3,4}.

Agora podemos finalmente definir certas operagoes.

DEFINICAO DE ADICAO:

I +(m,0) =m;
1: +(m,S(n)) = S(+(m,n)).

Lé-se +(m,n) como ‘adi¢ao de m com n’ ou ‘adi¢io entre m e n’.

ExEmpPLO 3.10.
+(2,3) = 5(+(2,2)) = S(5(+(2,1))) = S(S(5(+(2,0)))) =
S(5(5(2))) = S(S(3)) = S(4) =5.

Foi provado no EXEMPLO acima que a adigdo entre 2 e 3 é 5.

N

A notacao mais usual para adicao + segue abaixo.

m+n: + (m,n).

Se m +n = p, dizemos que p é a soma das parcelas m e n.

DEFINIGAO 3.5. Qualquer termo x, cuja existéncia é garan-
tida pelo Axioma do Infinito ZF6, é chamado de conjunto in-
dutivo. Usando o FEsquema de Separacio é possivel definir o
conjunto w dos nimeros naturais:

w={t € z|Yw(w € indutivo =t € w)},

sendo z um conjunto indutivo.

Ou seja, w é o conjunto cujos elementos sdo &, S(@), S(S(2)) e
assim por diante, denotados abreviadamente por 0, 1, 2 etc. Esse
conjunto w é chamado de conjunto dos numeros naturais. Cada
elemento de w é um numero natural.

A razao para definir w a partir do Axioma do Infinito e do Esquema
de Separacao é a seguinte: o Axioma do Infinito é consistente com a
existéncia de conjuntos indutivos diferentes de w.

Por exemplo, considere o conjunto indutivo z cujos elementos sao
os numeros naturais e, além deles, os conjuntos

{21}, S({{e1}), S(S({{2}})
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e assim por diante.

Claramente existem termos pertencentes a x que nao sao numeros
naturais, a saber, {{@}}, S({{@}}), S(S({{@}})) etc. Analoga-
mente, podem existir muitos outros conjuntos indutivos diferentes de
w. No entanto, a definicdo de conjunto indutivo dada acima garante
que, se x é indutivo, entdao w C x. Dessa maneira, o emprego do
Esquema de Separacao na Definicdo 3.5 garante a definicao do con-
junto w cujos elementos sao aqueles que ocorrem obrigatoriamente
em todos os conjuntos indutivos. Tais elementos sao exatamente os
numeros naturais. O Axioma da Extensionalidade permite provar
que w € unico. Logo, w é uma constante de ZF.

O Axioma da Extensionalidade permite provar a unicidade do con-
junto vazio, da poténcia de um conjunto qualquer, da uniao arbitraria
sobre um conjunto qualquer, de um par qualquer, mas nao de conjun-
tos indutivos. Dail a necessidade das consideragoes feitas no ultimo
paragrafo!

z@] Notar também que a definicdo de adicao dada acima viola
o critério de eliminabilidade introduzido na Secao 14, se aplicar-
mos essa adi¢ao sobre termos pertencentes a um conjunto indutivo
x diferente de w. Portanto, o que foi introduzido como adi¢ao é uma
definicao explicita abreviativa somente para os termos pertencentes
a w. Consegue provar isso?

Adicao entre naturais permite definir o que é um natural m menor
ou igual a um natural n.

DEFINICAO 3.6. Sejam a e b naturais. Logo,

a<b:Ie(cewAb=a+c).

Lemos a < b como ‘a é menor ou igual a b’

ExeEmMpLO 3.11. 1. 2 < 5. Com efeito, 5 =2+ 3;
1: 2 <2. Com efeito, 2 =2+ 0.

Por abuso de notacao, ¢ usual escrever m < n < p como abreviagao
param <nAn < p.

Considere a seguinte formula:

Nzx(@exAVyly € x = S(y) € x)).
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Chamemos a férmula acima de ZFE7TMALUCO.

ﬁ' Uma teoria que tivesse todos os axiomas de ZF e, além disso, a
formula ZF7MALUCO, seria inconsistente, no sentido de que haveria
alguma férmula F nessa nova teoria tal que ambas F e —F seriam
teoremas. Consegue provar isso?

ﬁ' Para dificultar um pouco mais, considere uma teoria que
tivesse todos os axiomas de ZF, mas com ZF7MALUCO substituindo
ZF7. Consegue provar que essa teoria também seria inconsistente?

DEFINIGAO DE MULTIPLICACAO:

I -(0,n) =0;
i: -(S(m),n) = -(m,n) + n.

Lé-se -(m,n) como ‘a multiplicacao de m com n’ ou ‘a multiplicagio
entre m e n’. Obviamente, levando em consideracao comentarios
anteriores, devemos assumir que m e n sao naturais, i.e., elementos
de w.

ExEmMPLO 3.12.
{8, 7) = (0,7 < B = (1L, 7) - 2) - 2 =
((-(0,2) +2) +2) +2=(0+2) +2) +2 =
(2+2)+2=4+2=6.

Foi provado, no EXEMPLO acima, que a multiplicacao entre 3 e
2 ¢ 6. A notagao mais usual para a multiplicacdo - entre ntimeros
naturais é a que segue abaixo.

mn : - (m,n).

No entanto, é também usual denotar a multiplicacao acima por
m-n. Se mn = p, dizemos que p é o produto dos fatores m e n.

Existem propriedades algébricas de estratégica importancia para
as operacoes de adicao + e multiplicacdo - em w. Discutimos sobre
isso na Secao 29.

Jia ] Observar que nao existe = tal que S(x) = w. Em outras
palavras, w nao é sucessor de conjunto algum.

O Esquema de Separacgao, em parceria com os postulados Unido e
Poténcia, permite definir um conceito 1til para a matematica:
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DEFINIGAO 3.7.

z X y:{(a,b) € p(p(xUy))|acxAbey}.

O termo x X y se 1é ‘produto cartesiano de x por y’. Observar que,
no emprego do Esquema da Separacao acima, o conjunto universo é

plp(z Uy)).
EXEMPLO 3.13. Sejam x ={0,3,1} ey = {1,2}. Logo,
Uy ={0,1,2,3)}.

Portanto,
plzUy) = {2,{0},{1},{2},{3},{0,1},{0,2},{0,3},{1, 2},
{1,3},{2,3},{0,1,2},{0,1,3},{0,2,3},{1,2,3},z U y}.

O termo p(p(xUy)) conta com 65.536 elementos. Entre eles,
temos 0s sequintes:

{{03,{0, 13}, {{0}, {0, 2} }, {{1}}, {{1}, {1, 2}}, {{3}, {1, 3}}
e {{3},{2,3}}.

Mas estes sio exatamente os pares ordenados (0,1), (0,2),
(1,1), (1,2), (3,1) e (3,2), respectivamente. Logo,

z xy={(0,1),(0,2),(1,1),(1,2),(3,1),(3,2)}.

ExXEMPLO 3.14. Sejam x ={0,3,1} ey = {1,2}. Logo,
yxz={(1,0),(1,1),(1,3),(2,0),(2,1),(2,3)}.
Observar que x X y # y X x, pelo menos neste exemplo.

Logo, produto cartesiano é ndao comutativo.

ExeEmMpPLO 3.15. Sejam x ={0,3,1} ey = {1,2}. Logo,
(x xy)xx#zXx(yxx).
Com efeito, ((0,1),2) € (x xy) Xz, mas ((0,1),2) € z x (y x x).

No ultimo EXEMPLO acima fica claro que produto cartesiano é nao
associativo. Logo, o emprego de parénteses é necessario, no caso de
produtos cartesianos envolvendo trés ou mais conjuntos.
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E‘ O numero de maneiras de parentesar o produto cartesiano
Tog X X1 X Tg X+ X Ty,
entre n + 1 ocorréncias de termos, é o Numero de Catalan [51]

(2n)!
(n+1)n!’

n

Se o leitor nao recorda o que é o fatorial n! de um niimero natural
n, aqui vai.

DEFINIGAO 3.8. 10l =1;
I (n+ 1) =(n+1)n.

EXEMPLO 3.16. 5!, de acordo com o item 11 da definicao de
fatorial, é igual a 5(4!). Aplicando novamente o item 11, para cal-
cular 4!, temos que 5! = 5(4(3!)). Aplicando de novo, até chegar-
mos a 0! (este € o critério de parada), temos 5! = 5(4(3(2!))) =
5(4(3(2(1!)))) = 5(4(3(2(1(0!))))) = 120, uma vez que item 1 diz
que 0! = 1.

EXEMPLO 3.17. SOBRE NUMERO DE CATALAN. Sabemos que
2(3))!
SN cC))
(3+ 1)!3!
Logo, Cs = 5. Logo, € possivel parentesar
Tog X L1 X g X T3

de cinco maneiras distintas, cada uma produzindo um produto
cartesiano diferente dos demais (se todos os conjuntos envolvidos
sao diferentes de & ).

As cinco maneiras mencionadas no ultimo EXEMPLO sdo as seguin-
tes:

I ((wo X 1) X T2) X T3;

I (2o X 1) X (T2 X 3);
I 2o X ((z1 X x9) X x3);
IV: (1 X (21 X T2)) X 3;

Vi zg X (21 X (T2 X 23)).
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No entanto, ¢ uma pratica comum introduzir a seguinte definicao,
a qual é aplicada frequentemente em matematica e contorna a difi-
culdade de lidar com a nao associatividade de produto cartesiano:

DEFINIGAO 3.9. Seja x um conjunto. Logo,
2?2 =x xz (lé-se ‘T 2°);
i " =z x 2" (lé-se ‘Tn+1);

onde n é um niumero natural diferente de 0.

A definicao acima evita qualquer ambiguidade no calculo de, por
exemplo,

T =T XT XTI

(lé-se ‘x 3").
Neste caso,

P =rx2r’=zx(zxz1).

Os elementos de 2™ (1é-se ‘x n’) sdo chamados de n-uplas ordenadas

<a17a27 e 7an)7

onde cada a; (1 < i < n) é elemento de x. Em particular, cada
3-upla ordenada (também chamada de tripla ordenada) de x3 é o
termo

(a1, az,a3) = (ay, (a2, a3)),

onde a1, as e ag sdo elementos de x. Isso significa que a Defini¢ao 3.9
permite generalizar a definicao de Kuratowski para par ordenado.
Uma n-upla ordenada (aq,as, - ,a,) é tdo somente elemento de x™
para algum conjunto z tal que cada a; (onde 1 < i < n) pertence a x.
Em outras palavras, toda n-upla ordenada é um caso particular de
par ordenado. Uma vez que todo par ordenado é um caso particular
de par nao ordenado, entao toda m-upla ordenada é um par nao
ordenado.

A nao comutatividade de produto cartesiano permite introduzir os
conceitos de relagao e funcao, como vemos nas Segoes 25 e 29.

ﬁl Exibir conjunto x diferente de w e diferente de @ de modo que x
nao seja sucessor de conjunto algum. Dica: pelo menos um exemplo
ja foi apresentado nesta Secao!
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SECAO 24
( Substituicdao, Regularidade e Escolha

/- objetivo desta Sec¢do é encerrar os axiomas proprios de ZF.

Os axiomas de Substituicao e de Regularidade de ZF nao sao
necessarios para provar os resultados de interesse para aqueles que es-
tao focados em temas do cotidiano da maioria dos matematicos, como
calculo diferencial e integral, andlise matematica, espacos métricos,
equagodes diferenciais, algebra linear, analise funcional, topologia, al-
gebra, probabilidades, teoria dos niimeros, geometria diferencial, teo-
ria de reticulados, matematica fuzzy, geometria euclidiana, geome-
trias nao euclidianas, geometria absoluta, geometria projetiva, entre
outros temas. Isso ocorre apesar de todas essas areas poderem ser
fundamentadas com os axiomas até aqui apresentados. Ou seja, os
resultados mais populares de tais areas do conhecimento podem ser
escritos como teoremas de ZF', bastando os axiomas ZF1~ZF7. Logo,
o leitor nao é prejudicado se ignorar esta Segao.

No entanto, se o leitor estiver interessado em questoes ligadas
aos fundamentos da matemdtica (como epistemologia e metodologia
da matemaética), esses postulados desempenham papel estratégico e
necessario.

ZF8r - SUBSTITUIGAO: Seja F(x,y) uma féormula onde todas
as ocorréncias de x e y sao livres; logo,

VaIlyF(x,y) = Vz3wVt(t € w < Is(s € z A F(s,t))).

Substituigdo (o qual ndo pode ser confundido com a substitutivi-
dade da igualdade) é um esquema de axiomas. Com efeito, hd um
axioma para cada férmula F, desde que F satisfaga as condigoes
sintaticas acima impostas.

O Esquema da Substitui¢io (como também é conhecido) é aplicavel
somente a formulas F(x,y) tais que, para qualquer conjunto x existe
um tnico y tal que F(z,7). E exatamente isso que estd escrito antes
da primeira ocorréncia da condicional = em ZF8z. Exemplos de
féormulas F(x,y) desse tipo sdo os seguintes:

Iy =ux;
1y = p(z);
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HI: ¥y = Uper W;

v: y = S(z);

Vi y = p(x) U S(a);

Vi (2= =y = {2} A #£2 =y = {{2})

entre uma infinidade de outros. Neste caso, o termo y é chamado de
imagem de z pela férmula F.

Exemplo de férmula F(z,y) que ndo atende as exigéncias do Es-
quema de Substituicao: y C z. Com efeito, um mesmo conjunto
x pode admitir mais de um subconjunto y (basta que x seja dife-
rente de @). Outro exemplo de férmula F(z,y) que ndo atende as
exigéncias do Esquema de Substituicao: y # x.

O Esquema da Substituicao estabelece o seguinte, desde que a for-
mula F(z,y) atenda as exigéncias ja mencionadas: dado um conjunto
z, existe um conjunto w tal que, cada elemento ¢t de w é imagem de
um termo s pertencente a z pela féormula F(s,t). Em particular, se
o conjunto z é {@} e a férmula F(z,y) é aquela do exemplo vI dado
acima, entdo w = {{@}}.

Ou seja, o Esquema da Substituicao permite garantir a existéncia
de conjuntos w a partir de conjuntos z e férmulas. E um papel
semelhante ao do Esquema de Separacao. No entanto, no caso de
Substituicao, o conjunto w nao é necessariamente subconjunto de z.

Na Secao 111 é provado que, gracas ao Esquema da Substituicao, o
Axioma do Par é desnecessario em ZF. Tradicionalmente, o Axioma
do Par é mantido por motivos didaticos.

@ Foi mencionado anteriormente que & e w sao exemplos de
conjuntos que nao sao sucessores de qualquer outro conjunto. Pois
bem. Ha uma generalizacao dos niimeros naturais que permite con-
ceituar ordinais, no sentido de que todo natural é um ordinal. Mas
em ZF existem outros ordinais além dos elementos de w. O préprio
w é um ordinal, bem como o sucessor de w, o sucessor do sucessor de
w e assim por diante. Usando o Esquema de Substituicao é possivel
provar a existéncia de outros ordinais A tais que A nao é sucessor
de conjunto algum. Esse resultado permite provar diversos teoremas
com impacto profundo até mesmo em ramos como teoria da medida
e, consequentemente, em andlise matematica [52]. Mas este é um
assunto que vai muito além da proposta deste livro.
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O préximo postulado desempenha um papel radicalmente diferente
dos demais. Para facilitar a sua leitura, introduzimos nova abrevia-
¢ao metalinguistica.

DEFINIGAO 3.10. zNy={re€azUy|rexAr €y}, sendox
ey conjuntos.

Ou seja, £ Ny é o conjunto dos termos que pertencem a ambos x
ey.
O simbolo N é chamado de intersecao finitaria ou, simplesmente,

intersegdo. Lé-se x Ny como ‘x intersecao y’ ou ‘intersecao de x com
y’. Para o conceito de intersegcdo arbitrdria, ver Defini¢ao 9.3.

EXEMPLO 3.18.  1: Sejam x = {2,3} ey = {3,4}; portanto,
Ny = {3}
1: sejam x = {2,3} e z = {4,5}; logo, tNz = @.

Se x e y sao conjuntos tais que z Ny = @, dizemos que = e y sao
disjuntos. Item 11 do EXEMPLO acima ilustra um caso de conjuntos
disjuntos.

TEOREMA 3.9. Sejam x, y e z conjuntos. Logo
LxzNy=yNz;

I zN(yNz)=(xNy) Nz

I: zNQ =J;
v:zN(yUz)=(zNy)U(zNz).

ﬁl A demonstragao é recomendada como exercicio ao leitor.

Agora podemos enunciar o préximo postulado préprio de ZF.

ZF9 - REGULARIDADE: Va(z # @ = Jy(ly € x Ax Ny = @)).

Também conhecido como Axioma da Boa Fundagdo, o Axioma da
Regularidade garante que qualquer conjunto x nao vazio admite pelo
menos um elemento y que nao compartilha qualquer elemento em
comum com z. O objetivo deste axioma nao é garantir a existéncia
de conjuntos, mas proibir a existéncia de termos x onde ocorram
cadeias infinitas de pertinéncia como

reycreycx--.
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O mesmo postulado também impede a existéncia de conjuntos que
pertencam a si mesmos.

Gracas ao Axioma da Regularidade é possivel introduzir uma de-
finigdo alternativa para par ordenado (diferente daquela devida a
Kuratowski):

(a,b) ={a,{a,b}}.

Dessa maneira, um par de chaves se mostra desnecessario. Por-
tanto, a definicdo de par ordenado devida a Kuratowski pode ser
usada tanto em ZF quanto em variagoes de ZF que abrem mao do
Axioma de Regularidade.

Uma das vantagens mais significativas do Axioma da Regularidade
é o fato de que ele permite definir o conceito de rank de um conjunto.
No entanto, novamente este é um tema que vai além dos propédsitos
desta pequena obra.

Finalmente, os axiomas préprios ZF1~ZF9 encerram todos os pos-
tulados proprios de ZF.

Uma variacdo de ZF, conhecida como ZFC (a letra C se refere a
palavra ‘Choice’ em inglés, a qual se traduz como ‘Escolha’) acres-
centa o seguinte postulado.

ZF10 - ESCOLHA:
Ve(VyVz((yexNze€xNy#2) = yY#STNyNz=0)) =
YVz(z € x = Jw(y Nz = {w}))).

O Azioma da Escolha afirma o seguinte: dado um conjunto = cujos
elementos sao conjuntos nao vazios e sem quaisquer elementos em
comum, entao existe um conjunto escolha y tal que cada elemento
de y é um, e apenas um, elemento de cada elemento de x.

Bertrand Russell introduziu uma analogia para facilitar a com-
preensao do Axioma da Escolha: considere uma gaveta com uma
quantia infinita de pares de meias, de modo que cada par de meias
é facilmente discernivel de todos os demais; neste caso o Axioma da
Escolha permite definir uma nova gaveta que tera uma, e apenas
uma, meia de cada par da primeira gaveta.

Russell fez a analogia com pares do meias por conta de um fato
simples: o pé esquerdo ¢ indiscernivel do pé direito em qualquer
par de meias. Isso significa que nao é possivel estabelecer qualquer
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critério para a escolha de uma meia de cada par (algo bem diferente
de uma gaveta de sapatos). Logo, é isso o que o Axioma da Escolha
faz! Ele permite escolher elementos quaisquer de conjuntos dados
sem estabelecer qualquer critério. Apenas escolhe, como em um ato
de inquestionavel livre arbitrio.

O Axioma da Escolha, introduzido por Ernst Zermelo em 1904,
provocou enorme debate entre matematicos do inicio do século pas-
sado. Parte das criticas era sustentada pelo carater nao construtivo
deste postulado, no sentido de o mesmo nao estabelecer critérios de
escolha. Parte das criticas ocorria por conta de resultados contra-
intuitivos que eram consequéncias do Axioma da Escolha, como o
Teorema de Banach-Tarski. Hoje se sabe que tal postulado ape-
nas permite desenvolver novas formas de matematica. Atualmente
ele exerce enorme impacto sobre a matematica, como os seguintes
resultados:

I: Todo conjunto admite uma boa ordem. Relacdes de boa ordem
sobre um conjunto x sao relagoes de ordem total < (ver Secao
25) tais que qualquer subconjunto de x admite um menor ele-
mento relativamente a <.

11: O Principio de Partigdo (PP) é teorema de ZFC. PP é uma
formula envolvendo fungoes. Detalhes na Segao 112.

11: O Teorema de Tychonov, o qual é aplicado no estudo de topolo-
gia geral.

1v: Todo espago vetorial nao trivial admite base (ver Segao 96), o
qual é um resultado de analise funcional.

entre centenas de outros. No entanto, a maioria desses resultados
esta fora do escopo dos interesses deste texto.

Em 1938 Kurt Godel provou que, se ZF for consistente, entao ZFC
é consistente. Em 1963 Paul Cohen provou que

2 r Escolha

t/zr —(Escolha),

ou seja, nem o Axioma da Escolha ou a sua negagdo sdo teoremas
em ZF. A revolucionaria técnica criada por Cohen para garantir tal
resultado rendeu a ele a inica Medalha Fields destinada a uma con-
tribuicao em logica. Detalhes na Secao 111.
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H& na literatura muitas outras variagoes de ZF, além de ZFC,
sendo que algumas delas contam com impacto significativo sobre a
pratica matematica.

SECAO 25
( Relacoes

<:ara que sejamos capazes de introduzir nimeros inteiros, racionais,
reais e complexos, precisamos qualificar o que sao relagoes.

DEFINIGAO 3.11.

r € uma relagdo : IxIy(r C x X y).

Lemos ‘r é uma relagdo com dominio x e co-dominio y’ ou, sim-
plesmente, ‘r é uma relagdo de x em y’. A notagdo usual é

rixr—y.

Lembrar que produto cartesiano é uma operagao nao comutativa,
conforme EXEMPLO 3.14.

Esse fato permite a discriminagdo entre dominio e co-dominio de
uma relagao r, uma vez que toda relagao é subconjunto de um pro-
duto cartesiano. Alguns autores se referem ao co-dominio de uma
relacdo como contradominio.

EXEMPLO 3.19. Sejam x = {1,2} ey = {2,3}. Sdo exemplos
de relagoes de x em y os sequintes conjuntos:

I: &; com efeito, vazio é subconjunto de qualquer conjunto, de
acordo com o Teorema 3.6; logo,

g.x—Yy
¢ relagcdo para quaisquer x € y;

I: xXy; com efeito, todo conjunto é subconjunto de si mesmo,
de acordo com o Teorema 3.5;

ut: {(1,2)}; com efeito, todo elemento de {(1,2)} pertence a
{2,3} x {2,3};
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v: {(1,2),(1,3)};
v: {(1,2),(2,2)};
vi: {(1,3),(2,2)}.
ﬁl Para os conjuntos x e y aqui sugeridos, hda 16 pos-

stveis relacoes de x em y. Listamos aqui apenas seis delas.
Cabe ao leitor listar outros exemplos.

DEFINICAO 3.12. Uma relacao r em = € qualquer subconjunto
de x X .

Ou seja, uma relagdo em x é uma relagdo cujo dominio é idéntico
ao seu co-dominio. Em particular, a relagao

r={(a,b) € p(p(r)) |a € xNbExNa=Db}

é a diagonal do conjunto x.

ExXEMPLO 3.20. A diagonal de w é o conjunto

d={(m,n) Ewxw|m=n}.

DEFINICAO 3.13. Uma relagio v em x é:
I: reflexiva sss Va(a € x = (a,a) €7);

II: simétrica sss VaVb((a,b) € r = (b,a) € r);
1I: transitiva sss VaVbVe(((a,b) € rA(b,c) € r) = (a,c) € 1).

ExEmpLO 3.21. I Ql A diagonal de qualquer conjunto é

uma relagdo reflexiva, simétrica e transitiva; conseque provar
iss0?

II: IQ] Seja r uma relacao em w tal que
(a,b) € r sssa+b=2n,

para algum n € w; logo, v € reflexiva, simétrica e transi-
tiva. Consegue provar isso? Observar que, neste caso, r é
o conjunto

{(070)7(0’ 2)?(074)7"' 7(171)7(173)’(175)7"' )
(Q’O)a(272)7(274) }

?
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Se r é uma relacdo em x, entao

arb: (a,b) € r.

A notacgado introduzida acima é muito comum em matematica,
como ilustrado no préximo paragrafo.

Sejam a e b elementos de w. Logo, < é uma relacao em w tal que

a<b:3ec(cewAb=a+c).

E interessante contrastar essa tltima definicdo com a Defini¢do 3.6.
Isso porque < é o conjunto

{(07 0)7 (0’ 1)7 (07 2)7 T (17 1)7 (17 2)a (17 3)7 T
(2,2),(2,3),(2,4),--- }.
EXEMPLO 3.22. ©: 2 < 2, ou seja, (2,2) €<. Com efeito,
=2+40.
I: 2 <5, ou seja, (2,5) €<. Com efeito, 5 =2+ 3;

. £ =(5 < 2), ou seja, (5,2) <. Com efeito, nao eziste
natural ¢ tal que 2 = 5+c. Cabe ao leitor provar este ultimo
resultado por reducao ao absurdo.

A relacdo < em w é reflexiva e transitiva, apesar de ndo ser simé-
trica. No entanto, a diagonal d de w é subconjunto préprio de <,
i.e.,

dc<.

Isso significa que uma relacao simétrica pode estar contida em uma
relagdo nao simétrica.

Sejam a e b elementos de w. Logo,
a<b:a<bAa#b.
Observar que
<={(0,1),(0,2),(0,3),---,(1,2),(1,3),(1,4),- - -,
(2,3),(2,4),(2,5),--- }.

A relacdo < em w é transitiva, mas nao reflexiva e nem simétrica.
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EXEMPLO 3.23. I =(2 < 2); com efeito, apesar de 2 < 2,
2 = 2. Este resultado prova a nao reflexividade de < em w.

I: 2 < 5; com efeito, 2 <5 e 2 #5.

Relagoes encontram ampla aplicabilidade em matematica. Entre
elas, estao as célebres relacoes de equivaléncia:

DEFINICAO 3.14. Uma relagao r em x é de equivaléncia sss r
¢ reflexiva, simétrica e transitiva.

Se r é uma relacdo de equivaléncia em z, lemos arb como ‘a é
equivalente a b relativamente a r’, ou simplesmente, ‘a é equivalente
a b’, se nao houver risco de confusao.

EXEMPLO 3.24. 1. A diagonal de qualquer conjunto x € uma
relacdo de equivaléncia, logo, se a pertence a x, entao apenas
a € equivalente a a em relacao a diagonal de x;

II: seja r uma relagio em w tal que (a,b) € r sss a+b = 2n,
para algum n € w; logo, v é uma relagao de equivaléncia;
além disso, o natural 2 € equivalente a 0, 2, 4, 6 etc., en-
quanto o natural 3 é equivalente a 1, 3, 5, etc., relativamente
ar.

ﬁl Prove todas as afirmagoes dos dois tltimos EXEMPLOS.

SECAO 26
( Classes de Equivaléncia e Particoes

N primeiro exemplo de aplicagao de relagoes de equivaléncia é dado
na Secao 30. Mas, antes disso, sdo necessarias mais informagoes.

DEFINICAO 3.15. Seja ~ uma relagdo de equivaléncia em x.
Logo,
[al| ={tex|t~a}

Chamamos [a] de classe de equivaléncia de x relativamente a ~
(ou apenas classe de equivaléncia, se ndo houver risco de con-
fusdo). Qualquer elemento b € [a] é chamado de representante
da classe de equivaléncia [a].
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Observar que estd sendo usado o Esquema de Separacao para
definir a classe de equivaléncia [a] de z relativamente a ~.

EXEMPLO 3.25. Sejar a relagio de equivaléncia em w definida
por
(a,b) € r sssa+b=2n,
para algum n € w. Logo,

[0] ={0,2,4,6,---}

1] ={1,3,5,7,--- }.
Observar que
[0] = [2] = [4] = [2n],
para qualquer natural n, enquanto
[1] =[3] =[5] = [2n + 1],
para qualquer natural n.

A classe de equivaléncia [0] € chamada de conjunto dos natu-
rais pares, enquanto [1] € o conjunto dos naturais impares.

O leitor deve observar que, no EXEMPLO acima, o conjunto w
dos nimeros naturais conta com apenas duas classes de equivaléncia
relativamente a 7: [0] e [1]. Ademais,

EXEMPLO 3.26. Como caso particular do EXEMPLO 3.24, a
diagonal d de w é uma relagdo de equivaléncia em w. Logo, para
qualquer natural n, temos

[n] = {n}.

Neste caso, cada classe de equivaléncia é um singleton.

No EXEMPLO acima o conjunto w dos nimeros naturais conta com
uma infinidade de classes de equivaléncia relativamente a diagonal.
Além disso, se m # n, entao

[m]Nn] =2.
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De maneira analoga ao caso anterior, temos

U[n] = w.
new
Nos dois ultimos EXEMPLOS mostramos classes de equivaléncia
distintas que sao disjuntas, bem como o fato de que a uniao arbitraria
de todas elas é o proprio conjunto w. Tal fendmeno é onipresente em
relagoes de equivaléncia, como mostramos adiante.

Para o conceito de particio de um conjunto, dado a seguir, é empre-
gada a Defini¢ao 3.10. Partigoes sao essenciais para compreendermos
classes de equivaléncia.

DEFINIGAO 3.16. Seja x um conjunto. Dizemos que p € uma
particao de x sss

LYi(tep=(t#IANtCx));
I: ViVs((repAsep)=(r=sVrnNs=9));e

UL Ugep t = .

Ou seja, uma particdo p de um conjunto x é um conjunto de sub-
conjuntos de z (i.e., p C p(x)) tal que

I: cada elemento de p é nao vazio;

11: dois elementos distintos de p tém interse¢do vazia, ou seja, sao
disjuntos; e

III: a uniao arbitraria de todos os elementos de p é igual a x.

EXEMPLO 3.27.  1: Seja r uma relagdo em w tal que
(a,b) € r sssa+b=2n,
para algum n € w. Logo,
p={[0], 1]}

¢ uma particao de w, conforme EXEMPLO 3.25. Afinal,

pCpw), [0]#@, 1] #2, [0]N[1] =2 e[0]U[1] = w.
11: Seja d a diagonal de w. Logo,

p={y € p(w) | y € unitdrio}

¢ uma particio de w (ver EXEMPLO 3.26). Com efeito,

p C p(w), uma vez que p € o conjunto de todos os singletons
{n}, onde n é um natural. Observar que cada elemento de
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p € uma classe de equivaléncia [n] relativamente a diagonal
d de w. Além disso, cada singleton [n] = {n} € diferente de
3; se [m] # [n], entdo [m] N [n] = F; e Ujpepln] = w.

Nos dois tltimos EXEMPLOS partigoes foram definidas como con-
juntos de classes de equivaléncia. Isso nao é uma mera coincidéncia,
como se percebe nos proximos dois teoremas.

TEOREMA 3.10. Seja ~ uma relagdo de equivaléncia em x.
Logo,
p={yep(@)|3Ir(rezry=T[]}
¢ uma particio de x, onde [r]={t €z |t ~r}.

DEMONSTRACAO: A definicao de classe de equivaléncia ga-
rante que cada uma delas é subconjunto nao vazio de x, o
que satisfaz item I da Definicdo 3.16. A reflexividade de ~
garante que Upep[r] = o (item 111 da Definicdo 3.16). Se
z € [r]N[s], entdo r ~ z e s ~ z. Logo, pela transitividade e
pela simetria de ~, temos r ~ s, o que implica em [r] = [s]
(item 11 da Definigao 3.16).

TEOREMA 3.11. Toda particdo p de qualquer conjunto x define
uma relagdo de equivaléncia.

DEMONSTRAGAO: Basta definir ~ como se segue:
r ~ s sss ambos 7 e s pertencem ao mesmo ¥,
sendo y € p. Reflexividade é imediata. Se r € y e s € v,
entdao s € y e r € y. Logo, temos simetria. Finalmente,
sercyescyescyetecy entaor cyetecy
(transitividade).

Se x é um conjunto e ~ é uma relacao de equivaléncia em z,
entao a particao

z/~={y € plx) | Ir(rezny =[]}
¢ também conhecida como o quociente de x por ~.

Por abuso de notagao, é usual escrever x/~ = {[r] | r € x} (de
forma alguma isso significa que esté sendo usado o Esquema de Com-
preensao, uma vez que esta é apenas uma notagao abusiva, mas muito
frequente na literatura). Ou seja, o quociente de um conjunto por
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uma relacao de equivaléncia é apenas uma particao induzida pela
relacdo de equivaléncia. O que legitima tal definicdo é o Teorema
3.10. O que garante a unicidade de x/~, para cada x, é o Axioma
de Extensionalidade.

DEFINIGAO 3.17. Uma relacao r em x € de ordem parcial sss
r € reflexiva, transitiva e antissimétrica, sendo que antissimetria
se traduz formalmente pela formula

Vavb(((a,b) € r ANa #b) = (b,a) €r).

ExEmpPLO 3.28. I /@l A diagonal de um conjunto x é tam-
bém conhecida como igualdade em x (a qual ndo pode ser
confundida com o predicado bindrio = do alfabeto da lin-
guagem de ZF). A igualdade em qualquer conjunto x é uma
relacdo de equivaléncia e uma relacao de ordem parcial.

I1: ﬁl A relacao < em w € de ordem parcial.

DEFINICAO 3.18. Uma relacao de ordem parcial r em um con-
junto x é de ordem total sss

Vavb((a € x Ab € z) = ((a,b) € rV (b,a) €T)).

EXEMPLO 3.29. 1. A relagio < em w € de ordem total; com
efeito, para quaisquer naturais m en temos m <n oun <
m;

1: A relagio < em w nao € de ordem total; com efeito —(2 <
2).

SEGAO 27
( Resumo da épera

. que vimos nesta Parte pode ser resumido da seguinte maneira.

e Os axiomas proprios de ZF servem a dois propositos: garan-
tir a existéncia de certos conjuntos e descrever propriedades do
predicado de pertinéncia €.
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e Entre os axiomas reguladores (aqueles que apenas descrevem
propriedades de €) estdo o Axioma da Extensionalidade e o
Axioma da Regularidade. O primeiro estabelece critérios para
a identificacdo de conjuntos. O segundo proibe cadeias infini-
tas de pertinéncia. Entre os axiomas ezistenciais (aqueles que
garantem a existéncia de conjuntos) estao todos os demais.

e O ponto de partida para a existéncia de uma hierarquia de con-
juntos é o Axioma do Vazio. A partir deste, os Axiomas Par,
Poténcia, Unido, Separagao, Substituicao e Infinito permitem
construir uma infinidade de outros conjuntos. O Axioma da Es-
colha desempenha papel de destaque neste processo, por conta
de seu carater nao construtivo.

e Uma vez definida tal hierarquia de conjuntos, é possivel dar
0s primeiros passos para uma fundamentacao de niimeros na-
turais, incluindo as operagoes de adi¢ao e multiplicacao entre
naturais. Mas ainda falta examinar as propriedades algébricas
de tais operagoes, algo que é feito na préxima parte.

e A linguagem de ZF permite qualificar relagoes. Relagoes de
equivaléncia particionam conjuntos, e parti¢coes induzem relacoes
de equivaléncia.

e A meta é fundamentar vastas por¢oes da matematica. Isso jus-
tifica a formulacao de ZF, do ponto de vista social.

SECAO 28
( Notas historicas

{ )
\ B

P ara encerrar essa breve introducdo a ZFC, vale mencionar que
os axiomas dessa teoria sao devidos a Ernst Zermelo, com excegao
de Substituicao e Regularidade. O Esquema de Substituicao foi uma
contribuicdo de Abraham Fraenkel, enquanto o Axioma de Regulari-
dade foi proposto por Thoralf Skolem e John von Neumann. Fraenkel
colaborou também com as primeiras discussoes sobre a independén-
cia do Axioma da Escolha.

Uma férmula F € independente dos axiomas de ZF se, e somente
se, I/zr F. Fraenkel estudou uma variacao de ZF, conhecida como
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ZFU (alguns autores se referem a essa teoria como ZFA), na qual
ele esbogou as primeiras ideias para provar que t/zpy AE, onde AE
denota o Axioma da Escolha em ZFU [16].

ERNST ZERMELO, NO INfCIO DO SECULO 20
Fonte: Wikipedia.

7" N
\«Qf‘
A
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PARTE 4

Nimeros naturais, inteiros e
racionais

Nao ha, em matematica, o conceito de nimero. Mas ha niimeros
naturais, nimeros inteiros e nimeros racionais, os quais sao qualifi-
cados nesta quarta parte.

SEGAO 29
( Aritmética

\Wertas relagoes sao de especial interesse, além daquelas ja discu-
tidas. Sao as fungoes.

DEFINIGAO 4.1. Seja
rir—y
uma relagdo.

Neste caso sao explicitados dominio x e co-dominio y de r.
Dizemos que r é uma funcao de x em y sss para todo a perten-
cente a x existe apenas um b pertencente a y tal que (a,b) € .

Funcoes sao casos especiais de relagoes e, portanto, conjuntos.
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EXEMPLO 4.1. Ser = {(1,2),(2,3),(3,4), (4,5), (5,6), (6,7)},
r € uma relagdo? E uma funcao?

Se existem x e y tais que r C x X y, entdo r é uma relacao

r:x — y. Logo, r é uma relacio com dominio e co-dominio
{1,3}? Nao! Com efeito, r  {1,3} x {1,3}.

O mesmo conjunto r € uma relacao com dominio e co-dominio
dados pelo conjunto {1,2,3,4,5,6,7}7 Sim! Com efeito,

r C{1,2,3,4,5,6,7} x {1,2,3,4,5,6,7}.

E wma fungio com dominio e co-dominio dados por
{1,2,3,4,5,6,7}7
Nao! Com efeito, apesar de r ser subconjunto de
{1,2,3,4,5,6,7} x {1,2,3,4,5,6,7},

o termo 7 pertence ao dominio de r mas ndao existe termo b
pertencente ao co-dominio de r tal que (7,b) pertenca a r.

O mesmo conjunto r é uma fungao com dominio {1,2,3,4,5,6}
e co-dominio {1,2,3,4,5,6,7,8,9}? Sim! Com efeito,

rC{1,2,3,4,5,6} x {1,2,3,4,5,6,7,8,9}

e, além disso, cada elemento a do dominio {1,2,3,4,5,6} cor-

responde a um e apenas um b pertencente a {1,2,3,4,5,6,7,8,9}
tal que (a,b) € .

Ser :x — y é uma fungdo e (a,b) € r, dizemos que ‘b é a imagem
de a pela funcao r’. Neste caso é usual a notagao r(a) = b.

Como ja vimos, se
ror—y
é uma relagdo e (a,b) € r, podemos escrever arb.

Mas, apesar de toda funcao ser um caso particular de relagdo, no
caso em que 7 é uma funcao, no lugar de arb escreve-se b = r(a).

Um conceito muito usual é o que se segue.

Se r : x — y é uma funcdo, dizemos que s : z — y é uma
restricao de r sss z C z e, para todo a pertencente a z, temos

s(a) = r(a).
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Em outras palavras, uma funcao s ¢é restricao de uma funcgao r sss
s C r. Em particular, toda funcao é restricao de si mesma. Revisi-
tamos este conceito de maneira mais circunstanciada na Defini¢ao
4.12.

A operacao adigao + entre niimeros naturais, introduzida na Sec¢ao
23, pode ser definida como uma funcao

+:iwXw—w

tal que +(m,n) = m + n (observar que +(m,n) é uma notagao
abreviada para +((m,n)), ou seja, a imagem de (m,n) pela fungao
+). Analogamente, a operagao multiplicacao - entre niimeros natu-
rais introduzida na mesma Secao pode ser definida como uma funcgao

WX W W
tal que -(m,n) = mn.
Vale observar também que, por exemplo, a fungao
d:wx {2} > w,

tal que ®(m,2) = m + 2, é uma restrigio de +. Intuitivamente
falando, essa nova func¢ao adiciona a cada natural m o niimero natural
2.

Lembrando que, por definigao, m+0 = m, e m+S(n) = S(m+n),
provamos a seguir alguns teoremas importantes.

TEOREMA 4.1. 0+0 = 0.

DEMONSTRACAO: De acordo com a definicao de adicao, m +
0=m. Sem =0, entdo 0+ 0 = 0.

TEOREMA 4.2. Se m é um numero natural, entao 0+m = m.

DEMONSTRACAO: Usamos aqui uma técnica de demonstracao
conhecida como indugdo infinita, a qual permite empregar
Modus Ponens para obter uma infinidade de teoremas. Para
isso é necessario dividir a demonstracao em duas etapas. Na
primeira devemos provar que

0+ S(0) = S(0),

lembrando que S(0) = 1 (observar que jé foi provado acima
que 0+ 0 = 0). Na segunda etapa devemos demonstrar que
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a formula
0+ S(n)=.S5(n)
implica na féormula

0+ S(S(n)) = S(S(n)).

Dessa maneira cria-se um ‘efeito domind’ no seguinte sen-
tido: Se 0 +1 = 1 é teorema (de acordo com a primeira
etapa) e a féormula 0 + 1 = 1 implica na férmula 0 4+ 2 = 2
(de acordo com a segunda etapa), entdao 0+2 = 2 é teorema.
Mas, se a formula 0 + 2 = 2 implica na férmula 0 + 3 = 3
(novamente usando a segunda etapa), entdao 0 + 3 = 3 é
teorema, e assim por diante.

Ou seja, Modus Ponens ¢é aplicada ao longo de todos os
numeros naturais, produzindo uma infinidade de teoremas
(um para cada natural m).

Agora podemos finalmente iniciar a prova.

ETAPA 1: 04 5(0) = S(0+0), de acordo com a defini¢ao
de adi¢ao. Mas 0+0 = 0, de acordo com o Teorema 4.1.
Logo, S(0 + 0) = S(0), de acordo com a substitutivi-
dade da igualdade. Logo, a transitividade da igualdade
garante que 0 4+ S(0) = 5S(0).

ETAPA 2: Supor que 0+ S(n) = S(n). De acordo com a
definigao de adigao, 0 + S(S(n)) = S(0+ S(n)). Mas,
como assumimos por hipétese que 0 + S(n) = S(n),
entdo 0 + S(S(n)) = S(S(n)). Logo, para qualquer
natural m temos 0 +m = m.

Em particular, 0 + 5 = 5, como foi anunciado na Secao 3.

Levando em conta que na célebre obra Principia Mathematica (de
Bertrand Russell e Alfred North Whitehead) foram consumidas mais
de 360 paginas para provar que 1 4+ 1 = 2, parece que estamos com
uma certa vantagem aqui. A demonstracao de Russell e Whitehead
nao é feita no contexto de ZF. A teoria formal explorada neste grande
classico da literatura é a teoria de tipos, a qual emprega uma lin-
guagem e uma légica diferentes daquelas de ZF.

TEOREMA 4.3. Se m e n sao numeros naturais, entdo

m-+n=n-+m.
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ﬁ' A prova fica como exercicio para o leitor, a qual também
pode ser feita por inducgao infinita. Este tltimo teorema garante a
comutatividade da adi¢do entre nimeros naturais.

TEOREMA 4.4. Se m, n e p sdo niumeros naturais, entao

(m+n)+p=m+ (n+p).

z@] A prova fica como exercicio para o leitor, a qual também
pode ser feita por inducao infinita. Este tltimo teorema garante a
associatividade da adicao entre niimeros naturais.

Observar que a associatividade da adicdo entre naturais é uma
propriedade facilitadora para fazer contas envolvendo adi¢do. Com
efeito, levando em conta que + é uma operagao bindria (é aplicavel
sobre duas ocorréncias de termos), como calcular m +n + p ou m +
n + p + g, entre outras possibilidades? De acordo com o Teorema
4.4, nao importa se calculamos

m+ (n+(p+q))
(m+n)+(p+q),

sempre é obtida exatamente a mesma soma. Ou seja, a associa-
tividade da adig¢ao entre naturais dispensa o emprego de parénteses
para operar com trés ou mais nimeros naturais, ainda que + seja
uma operacao binaria.

O proximo teorema se refere a multiplicacdo entre naturais.

TEOREMA 4.5. Se m, n e p sdo numeros naturais, entao

Om =0,
1m = m,
mn = nm,

(mn)p = m(np)

m(n + p) = mn + mp.

IQ] A demonstragao fica como exercicio para o leitor.

Por conta do tltimo teorema, uma convengao comum ¢é a seguinte:

mn + p = (mn) + p.
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Ou seja, diante de uma notagao abusiva caracterizada por falta de
ocorréncias de pares de parénteses, deve-se priorizar a multiplicagao
sobre a adicao.

Outra convencgao usual é a seguinte, para qualquer natural m # 0:

I md=1;

1: m"t = m - m", onde n é um natural.

EXEMPLO 4.2. 5* = 5-53, de acordo com item 11; logo, 5* =
5-5-52, de acordo com o mesmo item; logo, 5* =5-5-5 5%,
novamente de acordo com item 11; finalmente, 5* =5-5-5-5-5°,
que € iqual a 625, uma vez que item 1 garante que 5° = 1. Nesta
demonstragao tiramos proveito do fato da multiplicacao entre na-
turais ser associativa.

MORAL DA HISTORIA: A adigdo + entre niimeros naturais é co-
mutativa, associativa e admite elemento neutro (0). A multiplicagdo
- entre nimeros naturais é comutativa, associativa e admite elemento
neutro (1). Também temos como teorema a distributividade da mul-
tiplicagdo em relagao a adigdo, ou seja, m(n + p) = mn + mp. Tais
propriedades algébricas de adi¢ao e multiplicacdo entre niimeros na-
turais permitem qualificar o que é aritmética.

Aritmética ¢ o estudo da tripla ordenada (w, +, -).

A tripla ordenada (w, +,-) permite definir ntimeros primos e com-
postos, bem como todos os resultados conhecidos na literatura sobre
o tema. Por exemplo, diversos sistemas de criptografia sao definidos
a partir de (w, +, -), eventualmente exigindo outras ferramentas. Um
conjunto como (w, +, -) é capaz de garantir as bases para a seguranca
em transacgoes bancdrias realizadas no mundo todo [32].

DEFINIGAO 4.2. Um nidmero natural n € primo sss

n#0An#1AVpYe((p EwAqg EWADP #nAqF#n)=n#pq).
Sen #0An#1, dizemos que n é composto sss n ndo € primo.

EXEMPLO 4.3. 1: 5 € primo; afinal, nao hd fatoracio pq =
5, onde ambos p e q sdo naturais diferentes de 5;

11: 6 é composto, uma vez que 6 = 2(3).
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A titulo de curiosidade, a soma dos quadrados dos sete primeiros
primos é 666. Com efeito,

22 432 452+ 72+ 1124+ 132 + 172 = 666.

Além disso, a soma dos primeiros 36 naturais diferentes de 0 é 666.

Isso se escreve usualmente como
36
> k=142+3+---+35+ 36 = 666.
k=1

Um dos resultados mais conhecidos e tuteis da aritmética é o Teo-
rema Binomial para Naturais, como se segue.

TEOREMA 4.6. Sejam a, b e n naturais, onde n # 0. Logo,
(a + b)n _ Z (n> akbn—k’
o \F
onde
(1 ek
Z a”b
%)

€ a adicao dos termos (Z)akb"_k, com k variando de 0 an, e

n n!
(k) T kn—k)

onde n — k é um natural p tal que n = p + k (observar que k é
inevitavelmente menor ou igual a n).

DEMONSTRAQAO: Demonstramos esse importante resultado
por inducao infinita, de maneira andloga a prova do Teo-
rema 4.2.

PRIMEIRA ETAPA: Provar que (a+b)" = Y7, (Z) akpnr
é teorema para n = 1. Ou seja, devemos provar que
1
1
(a+b)'=%" ( )akbl_k.
o \K
Por um lado, (a + b)! = a + b. Por outro,

Zl: 1 akbl—k: 1 aObl—O+ 1 (Ilbl_l
o \k 0 1 i
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Mas o ultimo termo ¢ igual a
1! 071-0 1! 1
—— %'+ ————alb'
0!(1 —0)! (1 -1)!
o qual é idéntico a b+ a. Como adi¢ao entre naturais é
comutativa, isso encerra a PRIMEIRA ETAPA.

SEGUNDA ETAPA: Devemos provar que

(a+b)" = Zn: (Z) a" o F

k=0
implica em

(a+ b>n+1 _ g:l (n Z 1) akpntl—k
k=0

Observar que cada parcela do somatério que antecede
a condicional acima, envolvendo o fator a/bt!, é tal que
j+1=mn. Mas (a+b)"" = (a+0b)(a+b)" Logo,
(a+b)"™ =a(a +b)" + b(a + b)". Portanto,

(a+b)"'=ad (Z) AN (Z) akbn k.
k=0 k=0

Ou seja, agora cada parcela da adicao dos somatorios
do lado direito da igualdade acima, envolvendo fatores
a’bl, é tal que j + 1 =n+ 1. Logo,

(a+b)" = g:l (n —l: 1) aFpr ik,
k=0

ﬁ' Se o leitor ndo se convenceu da ultima parte da demonstragao
acima, observar que

0+ (2) =05

cuja demonstracao pode ser um interessante exercicio.

Se o leitor nao se convenceu com a definicado de somatdrio
n
> 2
k=0

introduzida no ultimo teorema, essa pode ser escrita como se segue:
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I:
1
Z 2 = 2p + 21;
k=0
II:
n+1 n
Z 2p = sz + Zn+1.
k=0 k=0

Apesar do Teorema Binomial para Naturais ser um resultado da
aritmética, ele pode ser estendido de modo a repercutir em &areas
como calculo diferencial e integral, conforme vemos na Se¢ao 49. Esse
é um dos aspectos mais marcantes da matematica: o surpreendente
alcance dos resultados mais relevantes.

SECAO 30
( Inteiros

¥=x[esta Secao iniciamos as primeiras aplicacoes de relacoes de equi-
valéncia.

Eventualmente relagdes podem ser definidas sobre relagoes, como
se faz a seguir. Afinal, toda relagdo é um conjunto.

DEFINIGAO 4.3. Sejam (m,n) e (p,q) elementos da relagao
WX w

em w. Logo,
(m,n) ~(p,q) :m+q=n+p.
(m,n) # (p,@) : =((m,n) ~ (p, 9)).
ExeEmpLO 4.4. 1: (5,2) ~ (7,4); isso porque 5+ 4 =2+ 7;
1i: (7,4) ~ (32,29); com efeito, 7+ 29 = 4 + 32;
ut: (5,2) ~ (32,29);
v: (5,2) % (2,5); com efeito, 5+ 5 # 2+ 2.

Notar que w X w é uma relacao em w, e ~ é uma relacao em w X w.
Neste momento é importante nao confundir uma relacao em w x w
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com qualquer subconjunto de w*. Com efeito,
w=wx (wx (wxw)),
de acordo com Definic¢ao 3.9.
Porém, ~ é subconjunto préprio de

(WX w) X (w X w).

Logo, ~ nao é subconjunto de w?.

TEOREMA 4.7. A relacio ~ em w X w da Definicio 4.3 € de
equivaléncia.

z@' A demonstragao deste ultimo resultado fica a cargo do leitor.
Resumidamente, tanto reflexividade quanto simetria de ~ sdo conse-
quéncias da comutatividade da adigdo + entre naturais. Com relacao
a transitividade de ~, essa pode ser facilmente provada se o leitor
enunciar e demonstrar um teorema de cancelamento de termos para
a adicao de naturais. Tal teorema de cancelamento diz o seguinte:
dados m, n e p naturais, entao

m+n=m-+p<<n=p.

Uma vez que toda relacdo de equivaléncia define uma particao
(Teorema 3.10), ha aqui a oportunidade para introduzir ntmeros
inteiros. As classes de equivaléncia de w x w relativamente a ~ sao
denotadas como se segue.

DEFINIGAO 4.4.
+n = [(n,0)] = {(a,b) € w x w | (a,b) ~ (n,0)}
—n=[(0,n)] = {(a,b) € w x w | (a,b) ~ (0,n) An # 0}

A classe de equivaléncia +n se 1é ‘inteiro positivo n’. A classe de
equivaléncia —n se 1é ‘inteiro negativo n’.

EXEMPLO 4.5. : O inteiro positivo zero é 0 = [(0,0)] =
{(070),(171)7(2,2),(3,3)» ‘)

I1: o inteiro positivo um é +1 = [(1,0)] =
{(1,0),(2,1),3,2),(4,3),- - };

I1: o inteiro negativo um é —1 = [(0,1)] =

{(0,1),(1,2),(2,3),(3,4),- - };
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IV: o inteiro positivo dois é +2 = [(2,0)] =
{(27 0)’ (37 1)7 (47 2)7 (5’ 3)7 U };
V: o inteiro negativo dois é —2 = [(0,2)] =

{(07 2)’ (173)7 (274)v (3’ 5)? e }

Um ntumero inteiro é uma classe de equivaléncia de pares ordenados
de nimeros naturais relativamente a ~. Um inteiro positivo (ver sinal
+) tem como representante um par ordenado (m,n) onde m > n
(isso equivale a afirmar que n < m). Um inteiro negativo (ver sinal
—) tem como representante um par ordenado (m,n) onde m < n.
Um inteiro estritamente positivo é um inteiro positivo diferente de
0. Eventualmente podemos omitir o sinal + entre inteiros positivos.

O emprego das notagdes +n e —n serve ao proposito de enfatizar
que nenhum inteiro é natural e nenhum natural é inteiro. Por exem-
plo, o natural 0 é o conjunto vazio, enquanto o inteiro positivo zero
é o conjunto 0 = [(0,0)] = {(0,0),(1,1),(2,2),(3,3),---}. Logo, de
acordo com o Axioma da Extensionalidade, 0 # 0.

Para definirmos operacgoes de adi¢ao e multiplicacao entre inteiros,
basta, portanto, definirmos operagoes sobre representantes quaisquer
de inteiros. Essa é a enorme vantagem do emprego de classes de
equivaléncia! Para operar entre inteiros nao ha necessidade alguma
de definir operagoes entre classes de equivaléncia. Definir operacoes
entre representantes de classes de equivaléncia induz operacoes entre
as proprias classes de equivaléncia.

DEFINIGAO 4.5. Se (m,n) e (p,q) sao representantes quais-
quer de inteiros, entao

(m,n) + (p,q) = (m+p,n+q)

(m,n) - (p,q) = (mp + ng,mq + np).

Se
(m,n) + (p,q) = (1, 3),
dizemos que (r, s) é a soma das parcelas (m,n) e (p,q). Se
<m7n) ) (p7 Q) - (Tv 5)7
dizemos que (7,s) é o produto dos fatores (m,n) e (p,q). O
mesmo se diz sobre os respectivos inteiros com representantes
(m,n), (p,q) e (r,s).

PAcINA 101



MATEMATICA PANDEMICA PARTE4 SECAO 30

Em outras palavras, em virtude do que foi dito acima, se x e y sao
inteiros, positivos ou negativos, entdo z +y = z sss (m,n) e (p,q)
forem representantes de x e y, respectivamente, e (m,n) + (p, q) for
representante de z. Situacao andloga ocorre com a multiplicacdo
entre inteiros.

EXEMPLO 4.6. Como calcular 4 + —2¢

Basta escolhermos representantes quaisquer dos inteiros 4 e
—2 e aplicarmos a Definicio 4.5.

Por exemplo, um dos representantes de +4 é (5,1), e um dos
representantes de —2 é (16, 18). Logo,

(5,1) + (16,18) = (5 + 16,1 + 18) = (21, 19).

Mas (21,19) é representante de +2. Com efeito, (21,19) ~ (2,0)
(ver Definicao 4.4), uma vez que 21 +0 = 19 + 2.

Logo, 4 + =2 = 2.

ExeEmMPLO 4.7. Como calcular 4 - —2? Basta usar a mesma
estratégia do EXEMPLO anterior. Ou seja,

(4,0) - (1,3) = (4.1 40.3,4.3+0.1) = (440,12 4 0) = (4, 12).

Mas (4,12) ¢é representante de —8, uma vez que (4,12) ~ (0,8)
e (0,8) € representante de —8, de acordo com a Defini¢ao 4.4.

Importante observar que a operacao de adi¢ao entre naturais ¢ uma
funcao
+iwXw—w,

enquanto a adi¢do entre inteiros é uma funcgao
+: (wxw)/ ~) X (wxw)/ ~) = ((wxw)/~)

induzida pela Defini¢ao 4.5. Logo, sao fungoes diferentes. Mais do
que isso, nenhuma é restricao da outra.

Do ponto de vista formal isso significa que tais fungoes deveriam
ser denotadas por simbolos diferentes. Mas, como ja foi dito an-
teriormente, matematicos estao mais interessados em rigor do que
formalismo. Do ponto de vista do rigor, naturalmente se sabe que
adicao entre naturais é uma funcao e adi¢do entre inteiros é outra.
Comentario analogo vale para a multiplicagdo entre naturais e a mul-
tiplicacao entre inteiros.
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TEOREMA 4.8. 0 ¢ neutro aditivo.

DEMONSTRAGAO: Seja (m,n) um representante de um inteiro
qualquer. Uma vez que todo representante de zero inteiro
é um par ordenado (p,p), onde p é natural, entdo basta
aplicar a Definicao 4.5. Logo,

(m,n) + (p,p) = (M +p,n+p).
Mas (m,n) ~ (m + p,n + p), uma vez que
m+n+p=n+m-+p,

gracas a comutatividade e a associatividade da adicao entre
naturais. Logo,

(m +p,n+p)

(m,n)
sao representantes do mesmo inteiro.

Demonstracao analoga para o caso da adi¢ao entre zero
inteiro e um inteiro qualquer. Logo, 0 é neutro aditivo.

Em outras palavras, no teorema acima foi provado que, se +n ou
—n sao inteiros, entao

+n + 0= +n,

7n+Q: —_n,

0+4n=+n
(§

0+ —n=—n.

Para evitar notacao sobrecarregada, eventualmente podemos nos
referir a inteiros simplesmente por letras latinas minusculas em italico,
i.e., sem a barra embaixo. Ou seja, foi provado acima que, para qual-
quer inteiro p,

p+0=0+p=p
(observar que a tltima notagdo é uma abreviagdo metalinguistica
equivalente a afirmar que p+0=pA0+p=p).

TEOREMA 4.9. Todo inteiro admite simétrico aditivo. Ou seja,
sep € um inteiro, entdo existe inteiro q tal que, tanto p+q quanto
q + p resulta no neutro aditivo Q.
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DEMONSTRAGAO: Seja (m,n) um representante qualquer de
um inteiro p. Se (n,m) é representante de um inteiro g,
entao

(m,n) + (n,m) = (m+n,n+m).
Uma vez que adi¢ao entre naturais é comutativa,

(m+n,n+m)=(m+n,m+n).

Logo, este ultimo par ordenado é representante de 0, o qual
¢ neutro aditivo. Portanto, todo inteiro p (com represen-
tante (m,n)) admite simétrico aditivo ¢ (com representante

(n,m)).

ﬁ' Observar que 0 é o Unico inteiro cujo simétrico aditivo é ele
mesmo. Consegue provar isso?

E uma prética comum denotar o simétrico aditivo de um inteiro p
por —p. Neste texto a mesma notagao é empregada. Mas é preciso
cuidado: nao confundir o sinal —, usado na defini¢ao de inteiros, com
simétrico aditivo —p de p. Isso porque, eventualmente, —p pode ser
um inteiro estritamente positivo.

O 1ltimo teorema ¢ de importancia vital para compreender a dife-
rencga entre naturais e inteiros. Todo inteiro admite simétrico aditivo.
No entanto, 0 é o tinico natural que admite simétrico aditivo rela-
tivamente a adicao entre naturais. Por exemplo, ndo existe natural
n tal que n + 2 ou 2 + n seja igual a 0 (o neutro aditivo entre os
naturais).

Para uma defini¢ao precisa do conceito de simétrico relativamente a
uma operagcao bindria qualquer (nao apenas adi¢ao ou multiplicacao),
ver Secao 68.

Gragas a existéncia de simétrico aditivo entre inteiros, é possivel
definir uma nova operacao a partir da adi¢do entre inteiros. A sub-
tracao

pP—q
entre inteiros é a adicao

ou seja, a adicao do inteiro p com o simétrico aditivo de g. Obvia-
mente nao é possivel definir conceito equivalente entre naturais.
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TEOREMA 4.10. FEuxiste neutro multiplicativo entre os inteiros.

DEMONSTRAGAO: Seja (m,n) um representante de um inteiro
qualquer. Logo,
(m,n)-(1,0) = (m.1+n.0,m.0+n.1) =
(m+0,0+n)=(m,n).
Demonstragao analoga para o caso de (1,0)-(m,n). Logo, 1
1,0) é

¢ neutro multiplicativo, uma vez que (1,0) é representante
de 1.

z@' Recomendamos ao leitor provar este tltimo teorema usando
outro representante para o inteiro 1.

TEOREMA 4.11. O neutro aditivo entre os inteiros é absorvente
multiplicativo. Ou seja, se p € um inteiro, entao p-0=0-p = 0.

DEMONSTRAGAO: Seja (m,n) um representante de um inteiro
qualquer. Um representante do neutro aditivo entre os in-
teiros é (0,0). Logo,

(m,n) - (0,0) = (m(0) +n(0), m(0) + n(0)).

Mas este tltimo é o par ordenado (0,0), uma vez que a mul-
tiplicagao entre naturais garante trivialmente que o natural
0 é absorvente multiplicativo. Demonstracao analoga para
0-p=0. Logo, 0 é absorvente multiplicativo.

Obviamente, a demonstragdao acima poderia ser feita a partir de
qualquer outro representante de 0. Optamos pelo par ordenado (0, 0)
para destacar que o préprio natural 0 é absorvente multiplicativo
entre os naturais.

Outros teoremas podem ser demonstrados:

I: a adicao entre inteiros ¢ comutativa e associativa;

11: a multiplicacao entre inteiros ¢ comutativa e associativa;

III: se p, ¢ e r sdo inteiros, entdo p(q + ) = pq + pr.

MORAL DA HISTORIA: Todas as propriedades algébricas da adicao
e da multiplicacdo entre naturais ocorrem também para a adigao e

multiplicagao entre inteiros. No entanto, os inteiros contam com
uma propriedade algébrica nao replicada entre os naturais, a saber,
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a existéncia de simétricos aditivos. Esta é a relevante diferenca entre
naturais e inteiros!

TEOREMA 4.12. A multiplica¢ao entre um inteiro estritamente
positivo e um inteiro negativo é um inteiro negativo.

DEMONSTRAQAO: Um representante de um inteiro estritamen-
te positivo +m qualquer é o par ordenado (m,0), onde
m # 0.

Um representante de um inteiro negativo qualquer —gq ¢é
o par ordenado (0,¢), onde ¢ # 0. Logo, a multiplicacao
entre eles é simplesmente

(m,0) - (0,q) = (m(0) + 0(g), mq + 0(0)) = (0, mq).

Mas este ultimo é representante de um inteiro negativo.

As demais regras de sinais (tao propagadas no ensino médio, mas
sem justificativa alguma!) podem ser demonstradas de maneira ana-
loga:

I negativo multiplicado por estritamente positivo é negativo,
11 negativo multiplicado por negativo ¢é estritamente positivo,

11 positivo multiplicado por positivo é positivo.

ﬁ&l Recomendamos ao leitor que prove esses ultimos trés teore-
mas.

Apesar de nenhum natural ser inteiro, como ja foi discutido acima,
ainda é possivel copiar os naturais entre os inteiros. Para tanto,
basta observar os seguintes teoremas:

e A adigao entre inteiros positivos é fechada nos inteiros positivos,
ou seja, se p e ¢ sao inteiros positivos, entao p + ¢ é um inteiro
positivo.

e A multiplicacdo entre inteiros positivos é fechada nos inteiros
positivos, ou seja, se p e ¢ sao inteiros positivos, entao p-q ¢ um
inteiro positivo.

e A adicdo entre inteiros positivos é comutativa, associativa e ad-
mite neutro aditivo.

e A multiplicacao entre inteiros positivos é comutativa, associa-
tiva e admite neutro multiplicativo.
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e Entre os inteiros positivos temos como teorema a distributivi-
dade da multiplicacao.

e Nao ¢ teorema a seguinte afirmacao: ‘para todo inteiro positivo
existe simétrico aditivo que seja inteiro positivo. Com efeito,
basta provar que o simétrico aditivo de qualquer inteiro estrita-
mente positivo é um inteiro negativo.

Ou seja, os inteiros positivos contam com as mesmas propriedades
algébricas dos naturais, no que se refere as respectivas operagoes de
adicao e multiplicacgao.

Vale a pena notar que, em momento algum, foram definidas ope-
ragoes de adi¢ao ou multiplicacao entre um natural e um inteiro, ou
entre um inteiro e um natural. Nao ha necessidade disso justamente
porque os inteiros positivos podem replicar os naturais.

Apesar de alguns autores afirmarem irresponsavelmente que todo
nimero natural é inteiro, o que se mostra aqui é que os inteiros
positivos copiam os naturais. Nada além disso. Mais detalhes na
Secao 41.

Observar também que, entre os inteiros, nao é teorema a seguinte
afirmagao: ‘todo inteiro admite simétrico multiplicativo’. Se existis-
se, o simétrico multiplicativo de um inteiro p, deveria ser um inteiro
q tal que pg = 1, sendo 1 o neutro multiplicativo entre os inteiros.
Obviamente o neutro multiplicativo dos inteiros admite ele mesmo
como simétrico multiplicativo. Analogamente, o simétrico aditivo do
neutro multiplicativo (ou seja, —1) também admite como simétrico
multiplicativo ele mesmo, uma vez que —1- —1 = 1. Mas nenhum
outro inteiro conta com essa propriedade algébrica.

Considere, para fins de ilustragao, o inteiro 2. Supor que ele admite
simétrico multiplicativo com representante (p, q). Logo,

(2,0) - (p,q) = (2p + 0¢,2q + Op) = (2p, 2q).

Para que o resultado (2p,2q) seja representante do neutro multi-
plicativo é necessario que

(2p,29) = (n+ 1,n)

para pelo menos algum n natural. No entanto, ambos 2p e 2¢, in-
dependentemente dos valores de p e ¢, sao naturais pares. Logo, ¢é
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necessario que ambos n e n + 1 sejam pares. Mas, se n é par, en-
tao n + 1 é impar. Se n é impar, entdao n + 1 é par. Isso é uma
contradicao!

O fato de nao haver simétrico multiplicativo para todo e qualquer
inteiro serve como motivagao para a definicdo dos niumeros racionais.
A proposta é a seguinte:

Como definir um conjunto x e duas operagoes (+ e -),
fechadas em x, de modo que este novo conjunto x consiga
copiar os inteiros e os naturais e ainda admitir a existén-
cia de simétrico multiplicativo para todos os termos perten-
centes a x?

Este problema é resolvido na préxima Secao.

Entre os inteiros é possivel definir relagoes de ordem total > (maior
ou igual) e < (menor ou igual) como se segue:

DEFINICAO 4.6. Sejam r e s inteiros. Logo,
e >0 :r éinteiro positivo;
er>s:r+(—s)>0;

er<s:s>r.

Além disso,

r<ssssr<sAr#s;e

r>SSSST>SAT#S.

EXEMPLO 4.8. 5 > 2. Com efeito, 5+ —2 = 3; Uma vez que
3 é um inteiro positivo, entao 5+ —2 > 0. Uma vez que 5 # 2,
entdo 5 > 2.

Para encerrar essa discussao, o conjunto dos nuimeros inteiros ¢é
denotado por Z. Em outras palavras,

Z=(wxXw)/ ~.

Estudar os nimeros inteiros significa estudar o conjunto
(Z,+,-).
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SECAO 31
( Racionais

avssim como os inteiros foram definidos a partir dos naturais, os
racionais sao definidos a partir dos inteiros, novamente usando classes
de equivaléncia.

DEFINIGAO 4.7. Sejam (a,b) e (c,d) elementos de
Zx (- {0})
Logo,
(a,b) =~ (¢,d) : ad = be.
(@b) % (d) | ~((@b) ~ (& d).

Observar que ad é uma multiplicagdo entre inteiros. O mesmo vale
para bc.

Por abuso de notacao, de agora em diante omitimos a barra __ sob
cada inteiro. Dessa maneira, para evitar confusdo, sempre qualifi-
camos se n denota um inteiro ou um natural. Nesta Secao, quaisquer
pares ordenados (m,n) sdo tais que ambos m e n sdo inteiros.

EXEMPLO 4.9. 1: (1,2) =~ (2,4); com efeito, 1(4) = 2(2);
1: (2,4) = (3,6); com efeito, 2(6) = 4(3);

ur: (1,2) ~ (3,6);

v: (1,2) % (2,1); com efeito, 1(1) # 2(2).

E claro que poderiamos ter escrito, por exemplo, 1-4 ou 2 -2 no
lugar de 1(4) e 2(2), respectivamente. Mas é uma boa ideia o leitor
se habituar com diferentes possiveis notagoes. O que realmente esta
em jogo aqui sao os conceitos envolvidos e como lidar com eles.

TEOREMA 4.13. A relagio ~ em Z — {0} (ver Definicio 4.7)
¢ de equivaléncia.

,@l A prova, muito simples, fica a cargo do leitor. Com relacao
ao termo Z — {0}, ver a definicdo de diferenga entre conjuntos ao
final da Segdo 22 (a qual nada tem a ver com diferenca entre inteiros,
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introduzida na Secao 30). O termo Z—{0} ¢é simplesmente o conjunto
de todos os inteiros diferentes de 0.

DEFINIGAO 4.8. Um nimero racional € o termo

[0, D] = {(a,0) € Z x (Z = {0}) | (a,b) = (0,1)}

ou qualquer classe de equivaléncia

[(m,n)] = {(a,) € (Z = {0}) x (Z = {0}) | (a,0) = (m,n)}
pertencente a (Z — {0})/ ~.

Oportunamente é provado adiante que o racional [(0,1)] é neutro
aditivo relativamente a operacao de adicao a ser definida abaixo. O
conjunto [(0,1)] obviamente ndo é uma classe de equivaléncia per-
tencente a (Z — {0})/ ~. A razao para tal manobra é a seguinte:
mantemos neste texto a pratica usual de nao definir divisao por zero,
onde ‘zero’ é como se 1é o racional [(0,1)]. Uma vez que a definigdo
de divisao depende da existéncia de simétricos multiplicativos (assim
como a definicdo de subtragao entre inteiros depende da existéncia
de simétricos aditivos), dessa maneira garantimos que divisdo por
zero nao € definida.

No entanto, é perfeitamente possivel definir racionais (ou até mesmo
ndmeros reais e nimeros complexos) de maneira a permitir divisao
por zero. Detalhes podem ser encontrados em [53].

O racional [(0,1)] é denotado por
0

=
Os demais racionais [(m,n)] sdo denotados por

m

-

Se " é um racional, chamamos m de numerador e n de denomi-
nador. Logo, a Definicdo 4.8 nao permite a existéncia de racionais
com denominador 0. Uma vez que racionais sao conjuntos de pares
ordenados, o que permite discriminar numerador de denominador em
um racional é a definicdo de par ordenado de Kuratowski.

Para fins de notagao, supor que [(m,n)] seja um racional tal que
ambos m e n sao inteiros estritamente positivos ou ambos negativos.
Neste caso, 7 dispensa qualquer sinal dos inteiros m e n. Se m ¢ um

PAGINA 110



MATEMATICA PANDEMICA PARTE4 SECAO031

inteiro negativo e n é um inteiro estritamente positivo, basta nova-
mente escrever 7*, mas explicitando o sinal negativo de m. Porém,
se m é um inteiro estritamente positivo e n é um inteiro negativo,
observar que (—m,—n) também pertence a [(m,n)]. Com efeito,
(m,n) ~ (—m,—n), uma vez que m(—n) = n(—m). Neste caso, fica
mais conveniente representar o racional [(m, n)] com o sinal negativo
de —m (lembrar que —m é um inteiro negativo se m é um inteiro
estritamente positivo). Essa convengao se mostra consistente com
resultados colocados adiante.

ExEMPLO 4.10.
1

5 = [(1.2]={(e,0) € Zx (Z—{0}) | (a,0) = (1,2)}

=102 = {(@B) € Zx (Z~ {0}) | (a,8) ~ (1,-2)}.

2= (2D = {(@h) €Zx (Z~{0)) | (a,5) ~ (6,3)}

11
75 = [(-11,-23)] -
{(a,b) € Z x (Z — {0}) | (a,b) =~ (—22,—46)}.

Apesar do racional zero 2 ndo ser uma classe de equivaléncia per-
1

tencente a (Z — {0})/ ~, fica facil perceber que a interse¢do entre 9
e qualquer classe de equivaléncia de (Z —{0})/ & é o conjunto vazio.
Logo, nao ha risco de confusdo (no sentido de confundir o racional
0 0

7 com os demais). Os elementos de 7 também sdo chamados de

representantes de % Isso por conta do fato de que

(1) =[(0, )] = [(0,=1)] = [(0,2)] = [(0, =2)] = - -- = [(0, n)],

para qualquer n inteiro diferente de 0.

Uma vez que racionais sao definidos a partir de classes de equiva-
léncia, basta usar representantes para definir operagoes de adi¢ao +
e multiplicacao -, de maneira andloga aquilo que foi feito na Se¢ao
anterior.

DEFINIGAO 4.9. Sejam m, n, p e q inteiros. Logo,
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(m,n) + (p,q) = (mq + np, nq)

(m,n) - (p,q) = (mp,nq).

Se (m,n)+(p,q) = (r, s), dizemos que (r, s) é a soma das parcelas
(m,n) e (p,q). Se (m,n) - (p,q) = (r,s), dizemos que (r,s) é o
produto dos fatores (m,n) e (p,q). O mesmo se diz sobre os
respectivos racionais com representantes (m,n), (p,q) e (r, s).

ExempLO 4.11. 1 Como calcular

1, -2,
3 * 5
Basta escolher representantes quaisquer de cada racional en-
volvido e usar a Definicao 4.9. O par ordenado (3,9) é um
dos representantes de % O par ordenado (2,—5) é um dos

representantes do racional ’?2 Logo,
(—15 + 18, —45) = (3, —45).
Mas (3,—45) € representante do racional 1—51 Com efeito,
3(15) = —45(—1). Logo,
1 H -2 -1
35 15
11: Como calcular
1 =2
= —7
3 5
Basta usar a mesma estratégia do item acima:
(3,9).(2,—5) = (3.2,9.(—5)) = (6, —45).
Mas (6,—45) é representante de
-2
15"

IQ] De agora em diante, por abuso de notagao, todo racional ¥
¢ denotado simplesmente por n. Essa notagao é conveniente, uma
vez que racionais § copiam os inteiros (consegue provar isso?). Se n
for um inteiro positivo, esses mesmos racionais copiam os naturais
(consegue provar isso?).
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TEOREMA 4.14. Adigdo + entre racionais é comutativa e as-
sociativa.

DEMONSTRAGAO: Sejam (m,n) e (p, q) representantes quais-
quer de racionais. Logo,
(m7 n) + (p7 q) = (mq + np, nQ>'
Mas
(mq + np,ng) = (pn + qm, qn),
uma vez que adi¢do e multiplicacao entre inteiros sao comu-
tativas. No entanto,

(pn +gm, qn) = (p,q) + (m,n),
de acordo com a Definicdo 4.9. Logo, a transitividade da
igualdade garante que

(m,n) + (p,q) = (p,q) + (m,n).

Isso prova a comutatividade da adi¢ao entre racionais. ﬁﬁl
A demonstracao da associatividade fica como exercicio para
o leitor.

TEOREMA 4.15. Multiplica¢do - entre racionais é comutativa
e assoctativa.

ﬁl A prova fica como exercicio para o leitor.

TEOREMA 4.16. O racional 0 € neutro aditivo e absorvente
multiplicativo. O racional 1 € neutro multiplicativo.

DEMONSTRAGAO: Seja (m,n) um representante de um racio-
nal qualquer. Entao,
I:
(m,n) 4+ (0,1) = (m(1) + n(0),n(1)).
Mas
(m(1) +n(0),n(1)) = (m,n).
Isso prova que o racional 0 (com representante escolhido
(0,1)) é neutro aditivo.

11: Além disso,

(m,n) - (0,1) = (m(0), n(1)).
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Mas

(m(0),n(1)) = (0,n).
Uma vez que (0,n) é representante do racional 0, isso
prova que o mesmo ¢ absorvente multiplicativo.

111: Outrossim,

(m,n) - (1,1) = (m(1), n(1)).
Mas
(m(1),n(1)) = (m,n).
Isso prova que o racional 1 (com representante escolhido
(1,1)) é neutro multiplicativo.

ﬁl As operagoes + e - entre racionais contam com as mesmas
propriedades algébricas de adi¢do e multiplicagdo entre inteiros (in-
cluindo distributividade, a qual, naturalmente, precisa ser demons-
trada pelo leitor).

Porém, entre os racionais ha uma propriedade algébrica nova:

TEOREMA 4.17. Todo racional diferente de 0 admite simétrico
multiplicativo.

DEMONSTRAGAO: Seja (a,b) um representante de um racional
diferente de 0, ou seja, a é diferente do inteiro 0 (lembrar que
b jamais é o inteiro 0, de acordo com a definicdo de niimero
racional). Logo, (a,b) - (b,a) = (ab,ba). Mas (ab,ba) é
representante do racional 1, uma vez que a multiplicacao
entre inteiros é comutativa. Logo, (b,a) é representante
do simétrico multiplicativo do racional com representante

(a,b).

ExeEmpPLO 4.12. I % € simétrico multiplicativo de 2, assim
como 2 € simétrico multiplicativo de %;

I1: _73 ¢ simétrico multiplicativo de %8;

II: o simétrico multiplicativo do simétrico multiplicativo do
racional v € o proprio r, desde que v seja diferente do ra-
citonal 0;

IV: o simétrico aditivo do neutro multiplicativo entre os racio-
nais é —1.
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1@5 Usualmente o simétrico multiplicativo de um racional r di-
ferente de 0 é denotado por r~!. Analogamente aquilo que é feito
entre inteiros, o simétrico aditivo de um racional r é denotado por
—r (naturalmente, o leitor precisa saber provar que todo racional
admite simétrico aditivo). Logo, a subtragdo entre racionais é
definida de maneira andloga a subtracao entre inteiros.

Por conta do tltimo teorema é possivel definir uma nova operagao
binaria entre os racionais, a partir da multiplicacao entre racionais.

Se r e s sao racionais, a divisao entre r e s é
r/s=r(s),

desde que s # 0.

Podemos também nos referir a /s como a divisao de r por s.

EXEMPLO 4.13. A divisao entre 5 e 3 € o racional g

Entre os racionais é possivel definir uma relagao de ordem total <.

r < 0 : qualquer representante (a,b) de r é tal que a e b nao
compartilham o mesmo sinal. Caso contrario, dizemos que r > 0.

r<s:r—s<0,sendor—s=r+(—s), onde —s é o simétrico
aditivo de s.

r<sir<sVr=s.

ﬁl Cabe ao leitor provar que < é uma relacao de ordem total
entre os racionais.

O conjunto dos racionais é denotado por Q.

SECAO 32
( Bijetividade e composicao de funcoes

SUMARIO

INDICE

“Nlesta Secdo apresentamos conceitos estratégicos sobre funcoes.
Uma vez que fungoes sdo essenciais para a pratica matematica, ha a
necessidade de conhecé-las melhor.

REDE
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Se o leitor esta se perguntando por que nao estamos tratando sobre
reais nesta Secao, por enquanto a mensagem ¢ a seguinte: paciéncia.
Nao ha caminho facil para os nimeros reais. Mas vamos chegar 14!

TEOREMA 4.18. Seja d a diagonal de um conjunto x. Logo d
€ uma fungdo d : x — x.

DEMONSTRAQAO: Se d é a diagonal de z, entao todo elemento
de d é um par ordenado (a, a), onde a € x. Logo, d C x X z.
Isso prova que d é uma relagao em x. Além disso, para todo
a pertencente a x, existe um unico b pertencente a x tal
que (a,b) pertence a d; tal b é simplesmente a. Em outras
palavras, d satisfaz a definicao de funcdo d : * — x, onde
d(a) = a para todo a pertencente a x.

O teorema acima motiva o conceito de funcao identidade.

DEFINIGAO 4.10. Se x € um conjunto ndo vazio, entao a fun-
¢ao identidade em x € a diagonal de x. Ela é denotada por 1.
Ou seja,

I,:x—=x
€ uma funcdo tal que

I.(a) =a
para todo a pertencente a .

DEFINICAO 4.11. Seja f : a — b uma funcao. Dizemos que f
¢ injetora (ou injetiva) sss

VaVy((z € any €aNx #y) = f(x) # f(y))

Em outras palavras, elementos distintos do dominio de uma funcgao
injetora correspondem a imagens distintas. Equivalentemente,

f@)=fly) =z =y,

no caso em que f é injetora.

ExXEmMPLO 4.14. 1. Seja f: Q — Q uma fungdo tal que
f(x) = 3z;
se x # y, entdo 3z # 3y; logo, f(z) # f(y); logo, f €

imjetora;
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1: seja g : Q — Q uma funcao tal que
g(z) = 2%
g(—1) = g(1); logo, g nao € injetora;

I: toda fungdo identidade é injetora.

DEFINIGAO 4.12. Seja
frx—uy
uma fungdo qualquer.

Uma funcdao
g:z—y
¢ restricao de f ao dominio z sss z Cx e g C f.

Na Secao 29 foi introduzido o conceito de restricio de uma funcao.
A tnica novidade aqui é a mencao explicita ao dominio da restricao.
E uma pratica comum nao mencionar o dominio da restricao se o
contexto ja deixa essa questao clara.

EXEMPLO 4.15. Como visto no item 11 do EXEMPLO 4.14, se
g:Q — Q ¢ uma funcao tal que
g(x) = 2%,
entdo g nao € injetora.
No entanto, g admite uma infinidade de restricoes injetoras.
Uma delas, por exemplo, é a funcao

h:{zxeQ|z>0}—>Q
dada por h(x) = x*. Neste caso, h C g e h é injetora.

ﬁh Recomendamos que o leitor crie outros exemplos de res-
tricoes injetoras de g. Fxemplos interessantes podem envolver
dominios que incluam tanto racionais positivos quanto racionais
neqativos.

DEFINIGAO 4.13. Seja
fra—0
uma fungdo. Dizemos que f € sobrejetora (ou sobrejetiva) sss
Vz(z € b= Jz(x € a A f(z) = 2)).
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Em outras palavras, f é uma funcao sobrejetora sss todo elemento
do co-dominio de f é imagem de um termo do dominio de f.

EXEMPLO 4.16. 1: Seja f: Q — Q uma fungdo tal que
f(x) = 3;

para todo z pertencente ao co-dominio QQ existe x perten-

cente ao dominio Q tal que f(x) = z; basta fazer x = z%:

3
1 1
r(53)=3(z) ==
logo, f € sobrejetora;

1: seja g : Q — Q uma funcao tal que

g(z) = 2%
ndo existe x pertencente a Q tal que g(x) = —1, uma vez
que ndo existe racional x tal que *> = —1; logo, g ndo é

sobrejetora;

1I: toda funcgdo identidade € sobrejetora.

DEFINIGAO 4.14. Sejam f :a — b e g : b — c fungoes. A
composicao de g com f € a fungcdo go f :a — ¢ tal que

(go f)(x) = g(f(x))

para todo x pertencente a a.

EXEMPLO 4.17. Sejam f: Q — Q e g: Q — Q tais que
flz) =2z e glx)=x+2.
Logo, go f : Q — Q € dada por
(g0 f)z) = g(f(z)) = 9(2x) = (22) +2 = 2z + 2,
enquanto fog:Q — Q ¢é dada por
(fog)z) = flg(z)) = flz+2) =2(z+2) =22+ 4.

Esse exemplo deixza claro que composicao € uma operacao bindria
nao comutativa. Com efeito, o Azioma da Fxtensionalidade

garante que fog#go f

Importante notar que o fato de existir a composicao f o g nao
implica necessariamente que existe a composicao go f. Por exemplo,
sejam g :x — y e f:y — z fungoes tais que x £ y, y # z e x # 2.
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Neste caso, existe f o g, mas nao g o f, uma vez que o dominio de
f coincide com o co-dominio de g, mas o dominio de g nao coincide
com o co-dominio de f.

Outra questao importante é que composicao o nao ¢ uma funcgao

o:bxbh—b,

onde h é o conjunto de todas as fungdes e o( f, g) = fog. Isso porque
o Esquema de Separacao nao permite definir o conjunto f de todas
as fungoes. Com efeito, func¢oes sdo casos particulares de relagoes,
as quais sao casos particulares de conjuntos. Uma vez que nao hé o
conjunto de todos os conjuntos em ZF, logo nao é possivel escolher
um conjunto universo que permita definir h através do Esquema de
Separacao.

E] Nao obstante, alguns autores se referem a composi¢ao o como
uma ‘funcdo’ com dominio h X h e co-dominio h. Este é um abuso
de linguagem, no contexto de ZF. Em certas teorias de conjuntos
como NBG, é possivel qualificar h como uma classe propria e, entao,
garantir que o também é uma classe prépria. Isso porque, diferente-
mente de ZF e ZFC, em NBG nem todos os termos sdo conjuntos.
Em NBG todos os termos sao classes. Entre as classes ha aquelas
que sao conjuntos, enquanto as classes que nao sao conjuntos sao
chamadas de classes proprias. Mas este é um assunto que extrapola
os objetivos deste livro.

TEOREMA 4.19. Composicdo é uma operacao associativa, i.e.,

(fog)oh=fo(goh),
se todas as composicoes envolvidas existirem.

ﬁl A demonstragao é imediata.

DEFINIGAO 4.15. Uma func¢io f : a — b admite inversa sss
ezriste g : b — a tal que

gof:]la

f °0g = ]Iba
sendo 1, e 1, as fungoes identidade sobre a e b, respectivamente
(ver Teorema 4.18 e o pardgrafo que seque a sua demonstra¢do).
Denota-se a inversa g de f, quando existe, por f=1.
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Néao confundir f~!(z) com (f(z))~'. O primeiro caso se refere
a imagem de z pela funcao inversa de f. O segundo se refere ao
simétrico multiplicativo da imagem de x por f, pelo menos no caso
em que f(x) é um racional diferente do neutro aditivo.

EXEMPLO 4.18. Seja f: Q — Q tal que

f(z) = 3.
Logo, f~1:Q — Q ¢ tal que
f () = xil))

Com efeito,
(™o (@) = (@) = 7(80) = 3e5 =,
ou seja, f~1 o f =1Tg; além disso,
(Fo (@) = F(F7@) = £ (a3) =3 (a3) = =,

ou seja, fo f~1 =1Ig.

Observar que a definicao de funcao inversa nao oferece qualquer
procedimento efetivo para a determinaciao de f~!, caso esta exista.
Em outras palavras, a definicdo em si ndo ‘ensina como calcular f=1".
Apenas ‘ensina’ como verificar se uma dada ¢ é inversa de f.

A defini¢ao de fungdo inversa garante que, se (x,y) € f, entdo
(y,z) € f~1. Esse fato é importante para o préximo teorema, o qual
estabelece que a inversa da inversa de uma funcao, quando existe, é
a prépria funcao.

TEOREMA 4.20. Se f admite inversa f~!, entdo (f~1)~1 = f.

DEMONSTRAGAO: Seja f :a — b uma fungdo com inversa
fl:b—a.

Se f(x) = y para algum x € a, entdo (z,y) € f. Logo,
(y,z) € f~'. Logo, (z,y) € (f71)~'. A partir da mesma
estratégia, se (z,y) € (f~')7!, entao (y,z) € f~'(z,y).
Logo, (z,y) € f. Ou seja, o Axioma da Extensionalidade
garante que f = (f~1)7L
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DEFINIGAO 4.16. f : a — b € bijetora (ou bijetiva) sss f é
injetora e sobrejetora.

A defini¢do de bijetividade (também chamada de bijecio) dada
acima é necessaria por pelo menos dois motivos:

I: injetividade e sobrejetividade sdo propriedades independentes
uma da outra; isso porque podem existir fungoes sobrejetoras
injetoras, funcdes sobrejetoras ndo injetoras, fungdes injetoras
nao sobrejetoras e fungoes que ndo sao nem injetoras e nem
sobrejetoras;

I1: ha uma estreita relacao entre fungoes bijetoras e aquelas que
admitem inversa, como se percebe no proximo teorema.

TEOREMA 4.21. Uma funcao f : a — b admite inversa sss f
¢ bijetora.

DEMONSTRACAO: Uma vez que este teorema envolve uma bi-
condicional, a prova é dividida em duas partes. Isso porque
bicondicional ¢ uma conjuncao de duas condicionais.

Parte =. Se f : a — b admite inversa f~! : b — a, é
necessario provar que f é sobrejetora e injetora. Seja y € b,
de modo que f~!(y) = . Entao

f@)=f(f7'w) = (fo f ) =Ly =y
Logo, f é sobrejetora. Agora, sejam x; e xo elementos do
dominio a de f, tais que f(x1) = f(x2). Se a férmula
f(z1) = f(x2) implicar na férmula z; = x9, provamos a
injetividade de f. Sejam y = f(z1) e x = f~!(y). Logo,
Ty = la(z2) = (ffl o f)(w2) = fﬁl(f(%)) =
@) = fy) ==

No entanto,

2y =To(z1) = (f o f)(@1) = FH(f (1) = fHy) = .
Logo, a transitividade da igualdade garante que x; = 5.
Isso conclui a prova da primeira parte.

Parte <=. Se f : a — b é bijetiva, precisamos apenas provar
que ela admite inversa. Seja r : b — a uma relagdo definida
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da seguinte maneira: uma vez que f ¢é sobrejetora, para
qualquer y pertencente a b existe x pertencente a a tal que
f(z) = y; logo, basta fazer r(y) = z; uma vez que f é
injetora, tal x é tinico; logo, r é uma funcao; além disso,

for=1,

ro f=1I,.

Ou seja, r = f~ 1.

Em outras palavras, bijetividade e inversibilidade sao conceitos
equivalentes. Fungoes que admitem inversa sao também conhecidas
COMO NVersivers.

TEOREMA 4.22. Se f é uma fungdo bijetora, sua inversa f—*
também é.

@l A prova fica a cargo do leitor.

TEOREMA 4.23. A composi¢do entre fungoes injetoras, quando
eriste, € uma funcdo injetora. Ademais, a composicio entre
fungoes sobrejetoras, quando existe, é uma fungdo sobretora.

1@1 Ou seja, a composicao entre fungoes bijetoras, quando existe,
¢ uma funcao bijetora. A prova deste ultimo teorema fica por conta
do leitor.

Seja f : x — y uma funcado. Logo,

fol,
e
I, o f
sempre existem, independentemente da funcao f. Além disso,
folo=Ff
e
I,of=f.

Isso significa que fungoes identidade operam como elementos neu-
tros relativamente a composicao, desde que seja tomado cuidado com
o dominio (o qual coincide com o co-dominio) de cada funcao iden-
tidade. Se f : x — y admite inversa f~!, entdo f~! é um simétrico
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composicional de f, uma vez que f~'o f=1T,e fo f~' =1, No
caso em que

f_lof:]lxa

diz-se que f~! é a inversa d esquerda de f. No caso em que
=i __
fof—7 =1,

diz-se que f~! é a inversa a direita de f. Logo, f é inversivel sss f
admite inversa a esquerda e a direita.

;@I Para uma funcao admitir inversa a direita, basta ser injetiva.
Para admitir inversa a esquerda, basta ser sobrejetiva. Recomen-
damos ao leitor provar essas duas tltimas afirmagoes.

SECAO 33
( Conjuntos infinitos

A&Wm ordinal finito é qualquer elemento de w (ver Defini¢ao 3.5), e
apenas elementos de w sao ordinais finitos. A motivacao para esse
conceito reside no fato de que ordinais podem ser estendidos para
outros, além dos ordinais finitos. Detalhes podem ser encontrados
em [28].

EXEMPLO 4.19. 1. 2022 ¢ um ordinal finito;

I: w nao € um ordinal finito, uma vez que w & w;

1r: S(w) nao € um ordinal finito;

Iv: ﬁl 0 sucessor de um ordinal finito é um ordinal finito,

uma vez que w € indutivo. Recomendamos ao leitor que
Prove 18S0.

DEFINIGAO 4.17. Um conjunto x é equipotente a y sss existe
bijecio f : x — y. Denotamos isso por x ~ y.

Nao confundir a notacao ~ para equipoténcia entre conjuntos com
a mesma notagao empregada na Se¢ao 30 para definir inteiros a partir
de naturais.
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A ideia intuitiva por tras da ultima definicado é milenar, muito
anterior ao advento das teorias de conjuntos. Matematicos apren-
deram a ‘contar’ fazendo correspondéncias um-para-um. Uma bi-
jecdo f : x — y é uma ‘correspondéncia’ de cada elemento de x a
um, e apenas um, elemento de y, e de cada elemento de y a um, e
apenas um, elemento de z. Tal ‘correspondéncia’ é possivel gracas
ao fato da linguagem & aqui empregada contar com a igualdade =.
Onde h4 igualdade, hé a negacao dela (pelo menos sob os cdnones
da légica classica), para garantir a discernibilidade dos elementos de
x, bem como dos elementos de y. Logo, por exemplo, o conjunto

v =1{2,{2}, {{2}}}

tem trés elementos porque z é equipotente ao natural 3. Com efeito,
uma vez que o natural 3 é o conjunto

3={o,{2},{9 {g}}}
(conforme Segao 23), é possivel definir uma bijecao f : x — 3, dada,
digamos, por

f@)=2, f({o})={2}, F{{g}})={2,{2}}

O mérito da ideia acima reside no fato de que é possivel qualificar
que um conjunto x tem trés elementos, ainda que z seja diferente do
ordinal finito 3.

Se m ¢ um ordinal finito, um conjunto x tem n elementos sss x
for equipotente a n.

TEOREMA 4.24. FEquipoténcia entre conjuntos é reflexiva, si-
métrica e transitiva.

DEMONSTRACAO: 1I: Todo conjunto x é equipotente a si mes-
mo. Com efeito, basta definir f : x — x tal que f(a) = a
para todo a pertencente a x. Tal f é bijetora. Logo,
T~ T,

II: Se x ~ y entao existe bijecao f : © — y. Logo, existe
inversa de f dada por f~! : y — x, a qual é bijetora
(Teorema 4.22). Logo, y ~ x.

I: Sex ~yeyn~ z entdo existem f:z —>yeg:y — 2
bijetoras. Logo, go f : © — z é bijetora (Teorema 4.23).
Logo, = ~ z.
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Por conta do Esquema da Separacao, nao existe em ZF o conjunto
de todos os conjuntos. Isso porque, para definir o conjunto de todos
os conjuntos via Separacao ¢ necessario um conjunto universo, o qual
deveria ser o conjunto de todos os conjuntos. Mas essa estratégia é
uma circularidade, no sentido de que nao permite discernir definien-
dum de definiens. Logo, equipoténcia entre conjuntos nao é uma
relacdo no sentido da Secao 25. No entanto, é usual se referir a ~
como uma relacao de equivaléncia no sentido do Teorema 4.24, por
conta da reflexividade, simetria e transitividade de ~.

DEFINICAO 4.18. Um conjunto x € finito sss x € equipotente
a um ordinal finito. Caso contrdrio, dizemos que x ¢ infinito.

TEOREMA 4.25. Todo ordinal finito é um conjunto finito.

A prova deste tltimo teorema é imediata. Se n é um ordinal finito,
basta definir f : n — n como f(a) = a, para todo a € n. Isso porque
a diagonal de qualquer ordinal finito é uma bijecao.

A reciproca do tltimo teorema nao é teorema. Com efeito, basta
exibir um conjunto finito que nao seja um ordinal finito. Por exem-
plo, x = {3,4} ndo é um ordinal finito. Para provar que z é finito,
considere a fungao f : z — 2 tal que f(3) = 0 e f(4) = 1. Logo,
{3,4} ~ 2.

@' O conjunto w ¢ infinito. Com efeito, seja n um ordinal finito.
Logo, qualquer f : w — n é nao injetora. Igualmente, qualquer fun-
¢do g : n — w é nao sobrejetora. Consegue provar esses resultados?

DEFINIGAO 4.19. Um conjunto = € Dedekind-infinito sss exis-
tey C x tal que y ~ x. Caso contrario, x é Dedekind-finito.

EXEMPLO 4.20. w € um conjunto Dedekind-infinito. Com efeito,
seja
p={n€w|Im(mewAn=2m)}.
O termo p dado é o conjunto dos naturais pares e, portanto,
subconjunto proprio de w. Seja agora

fiw—p
dada por f(n) = 2n. Se m # n, entdo 2m # 2n. Logo, f(m) #

f(n). Logo, f € injetora. Além disso, todo natural par € o dobro
de um natural, o que garante que f € sobrejetora. Logo, p ~ w.
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ExeMpLO 4.21. £ 0 conjunto x = {3,4} é Dedekind-finito.
Com efeito, sey C x, entio y = {3}, ouy = {4} ouy =2. Em
qualquer um dos casos nao hd bijecio f :x — y.

Nos primérdios dos estudos sobre teoria de conjuntos, alguns ma-
tematicos acreditavam que conjuntos infinitos e conjuntos Dedekind-
infinitos eram conceitos equivalentes. Mas, com o tempo, foi perce-
bido que este nao é necessariamente o caso, especialmente em for-
mulagoes de ZF nas quais o Axioma da Escolha nao é teorema. Via
Teoria de Modelos (Segao 111) é possivel provar a existéncia de con-
juntos infinitos que sao Dedekind-finitos. Mas este é um assunto que
esta fora do escopo deste livro.

DEFINIGAO 4.20. Seja x um conjunto nao vazio. Um conjunto
m pertencente a x ¢ maximal relativamente a inclusao (ou sim-
plesmente maximal, se ndo houver risco de confusdo) sss

Vr((rexAmCr)=m=r).

Em outras palavras, o maximal m de x nao esta contido em qual-
quer outro elemento de x além dele mesmo.

Conjuntos quaisquer podem ter um unico maximal, nenhum, ou
varios maximais, conforme ilustrado a seguir.

EXEMPLO 4.22. Seja x um conjunto ndo vazio. Logo, p(x)
admite um unico maximal, a saber, x.

EXEMPLO 4.23. Seja x um conjunto nao vazio. Seja também
Yy o conjunto
y=A{r €x|r é singleton},
o qual foi definido usando o Esquema de Separacao. Neste caso,
todo elemento de y é maximal.

EXEMPLO 4.24. ,ﬁl Seja

y={r € pw) | r € finito},
onde w € o conjunto dos naturais. Neste caso, y nao admite
qualquer maximal. Em termos mais gerais, se x ¢ infinito e y
¢ o conjunto de todos os subconjuntos finitos de y, entao y nao
admite qualquer maximal. Sugerimos que o leitor prove isso.
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Uma das possiveis aplicagoes do conceito de maximal de um con-
junto é a definicao de base para um espago vetorial qualquer, con-
forme Secao 97.

fia )

I: Prove que o conjunto z = {3,4,5} é finito e Dedekind-finito;

II: prove que o conjunto dos nimeros naturais impares é infinito
e Dedekind-infinito.

SECAO 34
Preliminares para os reais

N leitor pode ignorar esta discussao e avangar para Secao 35,
sem prejuizo significativo para o que vem adiante. O objetivo aqui é
apenas motivar os mais sedentos pelo conhecimento.

Até o presente momento foi mostrado como ZF permite edificar
numeros naturais, inteiros e racionais. Naturais sdo construidos a
partir do conjunto vazio e da operagao monadica Sucessor, em parce-
ria com o Axioma do Infinito. Inteiros sao definidos como classes de
equivaléncia de pares ordenados de naturais. Racionais sao definidos
como classes de equivaléncia de pares ordenados de inteiros. No
entanto, qualquer tentativa de definir niimeros reais como classes de
equivaléncia de pares ordenados de racionais estd fadada ao fracasso.
Apresentamos aqui um esboco da prova deste resultado, o qual é di-
vidido em duas partes.

Na primeira parte provamos que € impossivel existir bijecao entre
w e o conjunto dos nimeros reais. Ainda que a definicao de nimero
real ndo tenha sido dada até este momento, qualquer que seja a
definicao, ela deve ser consistente com a representacao de nimeros
reais na notacao decimal usual dada a seguir:

Inln—1ln—2 " - lal1lo, dodrdy - - -

onde cada i; e cada dj ¢ um dos dez simbolos 0, 1, 2, 3, 4,5,6,7, 8¢
9, exceto possivelmente 7,. Isso porque, no caso da sequéncia finita
Inlpn—1ln—o - - - 191179 contar com mais de uma ocorréncia de simbolos,
entao i, # 0.
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EXEMPLO 4.25.  1: 1945,00689 € a representacao de um nai-
mero real ma motacao decimal usual; com efeito, i3 = 1,
i2:97i1:4,i0:5,dozo,dlzo,d2:6,d3:8,
dy =9 e os demais d, sao 0, com n > 4;

1: 0,3333--- € a representacao de um numero real na notagdo

decimal usual; com efeito, ig = 0 e todos os d,,, onde n é
um natural, sao iguais a 3.

Observar que empregamos, no EXEMPLO acima, uma linguagem
infinitdria para representar numeros reais em base decimal usual.
Linguagens infinitdrias sao aquelas que admitem sentencgas de com-
primento nao finito, enquanto sentencas de linguagens finitdrias sem-
pre sao sequéncias finitas de simbolos da linguagem. O item 11 do
ultimo EXEMPLO ilustra uma sentenca de comprimento nao finito.
Um dos aspectos mais fascinantes de ZF é o fato desta teoria formal
empregar uma linguagem finitdria (conforme Segdo 7) que permite
conceituar nimeros reais (como é mostrado na Segao 39).

Ademais, os niimeros reais devem contar com relacdes de ordem
total < (menor ou igual) e > (maior ou igual) andlogas as relagoes
de ordem total entre inteiros e racionais, de modo que os reais sejam
capazes de copia-los.

Neste contexto, qualquer nimero real maior ou igual ao real 0 (o
qual deve ser neutro aditivo) e menor ou igual a 1 (o qual deve ser
neutro multiplicativo) pode ser representado da seguinte maneira:

0, dod; dadsdy - - -

onde cada dj é um dos dez digitos do sistema decimal usual, para
todo k natural.
ExEmpPLO 4.26. 1: 0,00689,

1: 0,3333---; neste caso d;, € igual a 3, para cada k natural.

Item 11 € um caso particular daquilo que é conhecido como
dizima periodica.

Agora, seja [0,1] o conjunto de todos os nimeros reais maiores
ou iguais a 0 e menores ou iguais a 1. Supor que [0,1] e w sdo
equipotentes, i.e., existe uma bijecao

f:w—10,1].
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Logo, a cada natural de w corresponde um e apenas um real do
conjunto [0,1]; e cada real deste conjunto corresponde a um ape-
nas um natural de w. Podemos representar tal bijecao da seguinte
maneira:

0 — 0, doodo1do2dozdosdos - - -
1 — 0, dyod11d12d13d14ds5 - - -
2 — 0, dyodadaadazdasdas - - -
3 — 0, d3od31d32d33d34035 - - -
4 — 0, dyoda1ds2dszdasdys - - -
5 — 0, dsods1ds2d53d54ds5 - - -

sendo que cada d;; ¢ um dos dez simbolos do sistema decimal.

Neste contexto, cada natural n corresponde a um real

O, andnlandann4dn5 e
pertencente a [0, 1], no sentido de que
f(n) = O, dnﬂdnldn2dn3dn4dn5 Tt

No caso particular em que o real correspondente a um n natural
¢ 0, temos d,; igual a 0, para todo k natural. No caso particular
em que o real correspondente a um natural m ¢é 1, temos d,,,;, igual
a 9, para todo k natural. Com efeito, a dizima periddica 0,999 - -
¢ igual a dizima periodica 0,333 - - - multiplicada por 3. No entanto,
0,333--- = % Mas, % multiplicado por 3 é 1. Ou seja, 0,999 --- e 1

sao apenas notagoes distintas para o mesmo nimero real, a saber, o
neutro multiplicativo entre reais.

Agora considere o seguinte nimero real r do conjunto [0, 1]:
r = 0,7r9r17rar3ryrs - - -
sendo que cada r; é igual a 9 — d;;, para cada natural 7.

Ou seja,

e se d; =9, entao r; = 0;

e se d; = 8, entao r; = 1;

e se d; =7, entao r; = 2;

e se d; = 6, entao r; = 3;

e se d; = b, entao r; = 4;
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e se d; = 4, entao r; = b;
e se d; = 3, entao r; = 6;
e sed; =2 entaor; =7T;
e sed; =1, entao r; = 8§;

e se d; =0, entao r; = 9.

Logo, r; é sempre diferente de d;;.

Neste caso, r sera diferente de
0, doodo1dozdozdoados - - -
uma vez que g # dyo. Analogamente, r sera diferente de
0, dyod11d12d13d14dys - - -
uma vez que 1, # dy;. De maneira andloga, r sera diferente de cada
dnodn1dn2dp3dpadys - -

uma vez que cada r; é diferente de d;.

Isso significa que r é diferente de toda e qualquer imagem f(n).
Logo, qualquer fungdo injetora f : w — [0, 1] jamais pode ser sobre-
jetora. Com efeito, sempre restard pelo menos um real r pertencente
a [0,1] que ndo é igual a f(n) para natural n algum do dominio
de f. Na verdade é possivel provar que existe uma infinidade de
reais r diferentes de todo e qualquer f(n). Mas basta exibir um r
de [0, 1] que ndo é igual a qualquer f(n), para garantir que f nao
é sobrejetora. Logo, f nao pode ser bijetora, como foi inicialmente
assumido.

Se nenhuma funcao f : w — [0, 1] pode ser bijetora, entdo w nao é
equipotente ao conjunto [0, 1] de niimeros reais entre 0 e 1, incluindo
0 e 1. Uma consequéncia imediata disso é que w nao é equipotente
ao proprio conjunto dos niimeros reais, uma vez que [0, 1] deve ser
subconjunto do conjunto dos ntimeros reais.

Na sequnda parte da prova é mostrado que, qualquer tentativa de
construir os reais a partir de pares ordenados de racionais implica
que o conjunto de niimeros reais deve ser, na melhor das hipdteses,
equipotente a w. Uma vez que isso contradiz o que foi provado na
primeira parte, logo, nao é possivel definir nimeros reais a partir de
pares ordenados de racionais.
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Em primeiro lugar, é possivel provar que existe bijecao
froxw—w

(a qual garante uma bijecao f~!:w — w x w), ou seja, w é equipo-
tente a w X w. Com efeito, considere f da seguinte maneira (apenas
esboco a definigao de f):

I: f(0,n) = 2n; dessa maneira teremos f(0,0) = 0, f(0,1) = 2,
£(0,2) = 4 e assim por diante, cobrindo todos os naturais pares;

II: uma vez que restaram apenas os naturais impares para serem
imagens de elementos do dominio w X w via a bijecao f, faze-
mos f(1,0) = 1 (o primeiro impar) e, para os demais f(1,n),
‘pulamos’ sempre um fmpar, de modo que f(1,1) =5 (pulamos
03), f(1,2) =9 (pulamos o 7), f(1,3) = 13 (pulamos o 11) e

assim por diante;

I1I: ainda resta uma infinidade de impares para serem imagens de
elementos de w x w (os impares ‘pulados’ no passo anterior); uma
vez que o primeiro impar ‘pulado’ foi 3, fazemos f(2,0) = 3 e,
para os demais f(2,n) novamente ‘pulamos’ um impar por vez,
entre aqueles que ainda nao sao imagens de algum (m,n); de
modo que f(2,1) = 11 (pulamos o 7), f(2,2) = 19 (pulamos o
15), f(2,3) = 27 (pulamos o 23) e assim por diante;

IV: repetimos o processo por inducao infinita, de modo a cobrir
todos os impares. Logo, f é uma bijecao.

Em segundo lugar, w é equipotente a Z. Com efeito, basta consi-
derar a seguinte bijecao f : w — Z dada por f(0) =0, f(1) = —1,
f2)=1, f(3) = -2, f(4) =2, f(5) = =3, f(6) = 3 e assim por
diante.

Outro resultado espantoso é o fato de w ser equipotente a Q.

Antes de provar isso, vale ressaltar que todas as técnicas aqui usa-
das podem ser empregadas para provar também que Q é equipotente
a Q x Q. Uma vez que equipoténcia é transitiva, todos esses resul-
tados apontam para o fato de que Q x Q é equipotente a w. Logo,
qualquer tentativa de estabelecer uma bijecao entre o conjunto dos
numeros reais e Q x Q deve fracassar, no sentido de que tal bijecao
simplesmente nao existe.

Observar que a existéncia de tal bijecdo é indispensavel, uma vez
que eventuais parti¢oes de Q x Q devem ser definidas por classes de
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equivaléncia [(r, s)] (onde r e s sdo racionais) de modo que cada uma
delas corresponde a um e apenas um nimero real.

Com relagao a demonstracao de que w é equipotente a QQ, considere
f:w — Q dada como se segue: f(0) = 0 e as demais imagens f(n)
sao dadas de acordo com a tabela abaixo, na qual estao representados
todos os racionais diferentes de 0.

wff wff ol «fh
&

S S e R
&

ARGUMENTO DA DIAGONAL DE CANTOR

Seguindo as flechas da esquerda para a direita, conforme os sentidos
indicados,

+1 -1 +2 +1 —2
f<1>:T’ f(2):T7 f(?)):Ta f(4):7, f(5):T’
+3 -1 -3 +4 +1
f(6):T7 f(7):7; f(S)IT, f(9>:T’ f(10) = —

e assim por diante.

O cuidado a ser tomado é evitar imagens repetidas, para garantir
a injetividade de f. Afinal, por exemplo,

+2 41
4 2

Toda vez que ocorrer um racional repetido, basta ignora-lo e ir
para o préoximo na diagonal correspondente, para definir f.

As técnicas usadas acima para provar a equipoténcia dos racionais
com os naturais e a nao equipoténcia dos naturais com os reais sao
conhecidas na literatura como o argumento da diagonal de Cantor.
Isso porque essas técnicas foram concebidas por Georg Cantor, e
publicadas em 1891.
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SECAO 35
( Sequéncias

Jequéncias sao casos especiais de funcoes.

DEFINICAO 4.21. x é uma sequéncia sss x € uma funcao com
dominio de racionais que copia w.

Por abuso de notagao chamamos esse dominio de w. FEventual-
mente, por questao de conveniéncia, podemos omitir o natural 0 do
dominio de uma sequéncia. No caso especial de uma sequéncia x,
usualmente x(n) (a imagem de n por x) é denotada por .

Uma sequéncia racional é uma sequéncia cujas imagens sao nime-
ros racionais.

ExEmpPLO 4.27. 1 x:w — Q tal que x,, = 7.
Neste caso, vo = 7, xt1 =7, 9 = 7, ---. Observar que
(0,7) € z, (1,7) € x e assim por diante;

m: y:w— {0} - Q tal que y, = L.
1

Neste caso, y1 = 1, ys = %, Ys =3, "+, Ou seja (1,1) ey,
(2,3) €y, (3,3) €y e assim por diante.

De agora em diante, por questao de conveniéncia, sao empregados
quantificadores relativizados, os quais sao amplamente empregados
em Calculo Diferencial e Integral Padrao.

Seja P uma férmula. Logo:
Ve > 0(P) : Ve(e > 0 = P);

35 > 0(P) :35(5 > 0 A P).

Lé-se Ve > 0(P) como ‘para todo € maior do que zero, P’. Lé-se
36 > 0(P) como ‘existe § maior do que zero tal que P’. Obviamen-
te quantificadores relativizados representam economia de notacao.
Adotamos essa convencao para que este texto fique em sintonia com
praticas comuns encontradas em livros de calculo diferencial e inte-
gral e analise matemaética, entre outros.
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No primeiro caso da tultima definicao, o quantificador universal
estd relativizado a férmula € > 0. No segundo caso, o quantificador
existencial estéd relativizado a féormula 6 > 0.

Na proxima definicao pretende-se capturar a seguinte ideia: uma
sequéncia racional z,, converge para um racional L se, e somente se,
independentemente de qualquer valor racional para ¢ estritamente
positivo, as imagens x,, ficam confinadas ao intervalo aberto

(L—¢,L+e¢),
desde que n seja suficientemente grande.

O intervalo aberto em questao é apenas o conjunto de todos os
racionais r tais que L —e < r < L + ¢ (isso é uma abreviagdo para
a féormula L —e < r Ar < L+¢). Uma vez que a terminologia
‘confinadas’ e ‘suficientemente grande’ é vaga, ha a necessidade de
traduzir essa ideia na linguagem de ZF, como se segue:

DEFINIGAO 4.22.

T, > L:Ve>030>0(n>0d=|z,— L| <e).

Lé-se x,, — L como ‘x, converge para L’

E uma pratica comum se referir a uma sequéncia xr como x,, se
nao houver risco de confusao.

Seguem algumas observagoes.

I: Todos os termos envolvidos na ultima definicao sao racionais:
L,e, 0,0, n, z,.

1I: Se z é racional, entdo |z| =z sex > 0,e|z| = —xsex <0
(1&-se |z| como ‘valor absoluto de z”).

Por exemplo, |5| = | — 5| = 5.
,@l E teorema em ZF a seguinte férmula:
|+ 0] < |a] + 0],

para quaisquer a e b racionais (recomendamos provar esse resul-
tado).

1r: O termo |z, — L| é uma distincia entre x, e L. Aqui cabe
um breve comentario: no estudo de espagos métricos (Secao 86)
qualifica-se o que é a distancia entre um termo a e um termo
b; neste sentido é possivel provar que, de fato, |z, — L| é uma
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distancia entre x, e L; no entanto, para os propoésitos deste
texto, basta saber que |z, — L| captura a ideia intuitiva do que
deve ser a distancia entre duas ocorréncias de racionais; por

exemplo, a distancia entre =L e 2 ¢

3 %5

|—1 3|_|3 —1|_14

3 5 5 3" 15

1v: Nem toda sequéncia racional z,, converge para algum racional
L, como ¢ ilustrado em alguns exemplos adiante.

v: O valor racional L é chamado de limite da sequéncia x,.

vI: Excepcionalmente estao sendo usadas letras latinas maitisculas
em italico, na definicao de sequéncia convergente, por um motivo
de carater pragmatico: faz parte da literatura padrao esse tipo
de notacao.

A defini¢ao de sequéncia racional convergente (ou seja, com limite
L) dada acima captura exatamente a interpretacdo pretendida que
foi anteriormente sugerida. O valor racional estritamente positivo
define, para efeitos praticos, o que é confinar x, ao intervalo aberto
(L —¢€,L +¢). Com efeito, a formula

|z, — L| < e
é equivalente a formula

ZTn € (L—e,L+¢).

O valor racional estritamente positivo ¢ define, para os mesmos
efeitos praticos, o que sao naturais suficientemente grandes: sao
aqueles n tais que n > 9.

Logo, afirmar que a sequéncia racional z,, converge para o racional
L é equivalente a afirmar o seguinte: dado um intervalo de confina-
mento

(L -5 L+ 5)7
é necessario exibir um ¢ racional estritamente positivo tal que todo
n maior do que ¢ garante que

zn € (L—g,L+e¢).
Ou seja, se 0 nao puder ser arbitrario, deve depender tnica e exclu-

sivamente de €. Garantir que uma sequéncia racional x,, tem limite
¢é equivalente a exibir § nas condi¢oes impostas pela definicao.
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EXEMPLO 4.28. A sequéncia racional x,, =T converge para 7.

Neste caso, o valor de § pode ser qualquer racional estritamente
positivo, uma vez que qualquer n > § implica que

zn € (T—e,7T+¢).
Isso porque, independentemente do valor estritamente positivo

de e, 7 (a imagem de qualquer n via x) sempre pertence ao in-
tervalo aberto (7T —¢e,7+¢).

Uma extensao deste resultado € o tema do prérimo teorema.

No teorema abaixo adota-se uma notacao bastante comum na li-
teratura para sequéncias constantes (aquelas cujas imagens z,, tém
todas o mesmo valor) x,, = ¢, a saber, c.

TEOREMA 4.26.
Cc — C.

DEMONSTRACAO: Seja x,, = ¢, onde ¢ é racional. Logo, deve-
mos provar que

Ve>030>0n>d=|c—c|<e),
0 que é equivalente a
Ve>030>0(n>0d=0<e¢).

Mas ja temos como hipétese que € > 0 (ver Teorema 2.1).
Logo, qualquer ¢ racional maior do que 0 satisfaz a condi-
cional da definicao. Com efeito, basta perceber que n > ¢§ é
apenas uma hipétese a mais (ver Proposicao 2.3).

TEOREMA 4.27.

— — 0.
n

DEMONSTRAQAO: Devemos provar que
1
V5>036>0<n>6:>’—0‘<5>.
n
Podemos reescrever isso como

V5>035>0(”>5;“i‘<5>’
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que é equivalente a

V€>036>0(n>5:>i<8)’

uma vez que n > 0 e 6 > 0, o que faz de n estritamente
positivo. Essa ultima é equivalente a

V5>035>0<n>5:i<n>.

Finalmente, isso equivale a

V5>035>O(n>5:>n>i>.

Se escolhermos 1
0=—,
€
teremos uma férmula implicando nela mesma; isso, de acordo
com Teorema 2.1, é um teorema.

Com relacao a ultima demonstracao, notar que qualquer ¢’ maior
do que 6 = % também garante que

<n>6’:>‘;—0’<5>

é teorema. Portanto, § = % nao é o unico possivel valor para § que
garante a demonstracao de que % converge para 0. Mas, levando em
conta que a definicdo de sequéncia racional convergente exige que
exista pelo menos um ¢ que satisfaca o definiens, a prova acima é
suficiente.

EXEMPLO 4.29. Supor e = Tlo()' Neste caso, 6 = 1000. Todo

n maior do que 1000 garante que a distancia entre % e 0 € menor

1
do que 1555

Supor ¢ = % Neste caso, 0 = 3. Todo n maior do que 3
garante que a distancia entre % e 0 é menor do que %

TEOREMA 4.28. AL((—1)" — L).

DEMONSTRAGAO: As imagens de (—1)" sdo —1 e 1. Se, e.g.,
€= %, nenhum 0 racional maior do que 0 podera satisfazer
a definicao.
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Para o leitor nao familiarizado com a expressao ‘e.g.’, esta abrevia
‘exempli gratia’, a qual se traduz como ‘por exemplo’, do latim.

1@1 Provar que

2
ﬁ_}O'

Para resolver o exercicio acima proposto, demonstrar os seguintes
teoremas.

e O produto entre racionais é um racional.

2 = rr) é um racional.

e O quadrado r? de um racional r (ou seja, r
e Se r é um racional, entao existe racional s tal que s > r.
e Se, para qualquer € > 0, existe d > 0 tal que
n>d6=|z,— Ll <e,
e d >4, entao

n>d = |r,—L|<e.

Feito isso, temos o que se segue:

2 2
— — 0 sss vs>036>0<n>6:>|2—0\<5).
n n

Logo,

2 2
—2—>0 SSS ‘v’e>0§|5>0<n>5:>n2>6>.
n

Logo,

2 2
—2—>O SSS V5>035>0<n2>52:>n2>>.
n €

Jia Ou seja, basta escolher ¢ tal que 6% > g Os demais detalhes
ficam a cargo do leitor.

Uma das vantagens da introducdo de nimeros reais (a ocorrer na
Secao 39) é que a demonstragao do teorema

2

— — 0

n2

2
n2

se torna extraordinariamente mais simples, se ¢ uma sequéncia

cujas imagens sao NUMeros reais.
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SECAO 36
Sequéncias de Cauchy

A&€Fma notagao muito comum para sequéncias racionais convergentes
¢ a seguinte.

DEFINIGAO 4.23.

lim z, =L : %, — L.
n—o0

lim,, .o x, = L se lé como ‘limite de x,,, com n tendendo a infinito,
é L.

Observar que o simbolo oo nao corresponde a termo algum da lin-
guagem de ZF. Trata-se tao somente de um simbolo metalinguistico
que serve ao proposito de destacar a condicdo n > ¢ na defini¢ao
de sequéncia racional convergente. Neste sentido, uma sequéncia de
racionais é convergente sss existe L tal que

lim z,, = L.
n—oo

Levando em conta que muitos alunos insistem em tratar oo
como um termo, recomendamos que o leitor diga, diante do espelho,
a seguinte frase: ‘infinito ndo é um termo’. Repetir o procedimento
cinco vezes consecutivas.

O fato de que oo nao é um termo implica, entre outras coisas, que
nao sao termos sentencas como ‘0o 4 o0’, ‘0o — 00’, ‘co + 7’ ete.

Entre sequéncias racionais é possivel definir operagoes de adicao,
multiplicagao, subtracao e divisao:

DEFINIGAO 4.24. Sejam x, y e z sequéncias racionais. Logo,
I T4y =2 888 2, = Ty + Ypn, para todo n € w;

II: © — Yy = 2 88§ 2, = T, — Yn, para todon € w;
II: oY = 2 88§ 2, = TpYn, para todon € w; e

IV: )y = 2z 888 zn = Tp/Yn, para todo n € w, desde que
Yn # 0.
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EXEMPLO 4.30. Sejam x ey sequéncias dadas por x, = 2n e
Yn = 7; logo, xy € uma sequéncia z dada por z, = 14n ex +y é
uma sequéncia w dada por w, = 2n + 7.

Importante perceber que a adi¢ao de sequéncias racionais é definida
a partir da adi¢ao de imagens das mesmas sequéncias. Consequente-
mente, a adi¢do de sequéncias racionais é definida a partir da adic¢ao
de racionais. Isso implica que as propriedades algébricas de adigao
entre racionais sao replicadas na adicao de sequéncias racionais. Por
exemplo, a adi¢ao se sequéncias racionais é comutativa, associativa
e admite simétrico aditivo, bem como neutro aditivo. Comentario
analogo vale para as demais operagoes acima definidas.

O préximo teorema expressa o fato de que o limite da soma de
sequéncias racionais é a soma dos limites das mesmas, caso estes
existam.

TEOREMA 4.29. (z, = LAy, = M) = (x, +y, — L+ M).

DEMONSTRACAO: Temos, por hipdtese, a conjuncao de duas
formulas, a saber,

Ve>030>0n>d=|z,—L|<¢)e

1: Ve > 035" >0(n > = |y, — M| <e).
Uma vez que a defini¢ao de sequéncia racional convergente
exige que sejam considerados todos os e racionais estri-
tamente positivos, nao hé problema algum em assumir o
mesmo ¢ para ambas as féormulas I e 11. No entanto, a partir
do momento em que x e y sao sequéncias racionais quais-

quer, é possivel que ¢ seja eventualmente diferente de §”.
Isso justifica o emprego dos rétulos 0’ e §”.

Uma vez que
|xn+yn_(L+M>| < |xn—L|+|yn_M|

(ver item (ii) das OBSERVACOES logo apés a Defini¢ao 4.22
na Secao 35), se 0 for o maior valor entre ¢’ e §” (ou igual a
ambos no caso em que ¢’ = 0”), entao

Ve>0(n>d=|(xn+yn) — (L+ M) <
|Zn — L| + |yn — M| < € + € = 2¢).
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Levando em conta que ¢ é arbitrario (desde que seja ra-
cional estritamente positivo), o fator 2 em 2¢ ¢ irrelevante.
Ou seja, a existéncia de § para o caso x, + y, ¢ garantida
pela hipétese assumida no teorema de que ¢’ e 0" existem.

Os teoremas a seguir sao bastante uteis para a prova do Teorema
4.32, o qual se refere a limite de uma multiplicacdo entre funcoes
reais.

TEOREMA 4.30. Seja x uma sequéncia de racionais. Logo,

z, — L sss (x, — L) — 0.

DEMONSTRACAO: Basta usar a definicao de sequéncia racional
convergente e observar que

|z, — L| = [(x, — L) — 0.

ﬁ’ Observar que o termo L, que ocorre em
(¢, — L) —0
no ultimo teorema, é uma abreviagdo para a sequéncia constante
yn = L, enquanto o termo L que ocorre em
T, — L
é um numero racional.

Logo, temos aqui mais um exemplo de notacao abusiva. Um e-
xercicio que sempre se revela interessante é escrever formalmente,
usando apenas o vocabulario de &, enunciados de teoremas que, na
literatura, sao escritos com abusos de linguagem.

Ou seja, como ja foi discutido anteriormente, toda definicao ex-
plicita abreviativa é matematicamente supérflua (elimindavel).

TEOREMA 4.31. Se x,, — L, entdo cx,, — cL.

DEMONSTRAGAO: Se a constante ¢ for 0, a prova é trivial, de
acordo com o Teorema 4.26. Agora consideremos o caso em
que ¢ # 0. Temos, por hipotese,

Ve>030>0(n>0d=|z,— L| <e).
Logo,
Ve > 030 >0(n > 6 =|c||lz, — L| < |cle).
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Ou seja,
Ve > 030 > 0(n > 6 = |cx, — cL| < |cle).

Levando em conta que € é arbitrario (desde que seja racional
estritamente positivo), o fator |c| é irrelevante.

O teorema a seguir estabelece que o limite do produto entre se-
quéncias racionais € o produto entre os limites das mesmas, caso
estes existam.

TEOREMA 4.32. (z, > LAy, > M) = (z, -y, — L-M).

DEMONSTRAGQAO: Temos, por hipdtese, a conjungao de duas
formulas, a saber,

LVe>030>0n>0 =z, —L|<¢)e
1: Ve > 036" > 0(n>0d" = |y, — M| <e).
Uma vez que
(T = L)(yn — M) = 0] =
[(@n = L) (Y — M)| = |z — L[ - [y — M|,
se escolhermos § como o maior valor entre ¢’ e ¢”, entdo
Ve >0(n>6= (2, — L)(y, — M) —0| <e-e=¢

Levando em conta que ¢ é arbitrario (desde que seja racional
estritamente positivo), a condi¢ao |(z,—L)(y,—M)—0| < &2
(desde que n seja maior do que ) é equivalente a

(xn, — L)(yn, — M) — 0.

No entanto,
Tp Yo = (n — L)(yp — M) + Mz, + Ly, — LM.
Logo, usando Teoremas 4.26, 4.29, 4.30 e 4.31, temos que

A (2 - yn) =

lim (@0 L) (g = M)+ lizn (M) + lim (Lyn) + lim (~LM) =
O+ML+ LM — LM = LM.

A transitividade da igualdade encerra a demonstracao.

O préximo teorema trata do limite da diferenga entre sequéncias
racionais.
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TEOREMA 4.33. (z, = LAy, > M) = (v, —y, — L — M).

Finalmente,

TEOREMA 4.34.
(xn > LAYy, = MAM #0) = (z,/y, = L/M).

ﬁl As provas dos dois tltimos ficam como sugestoes de exercicios
ao leitor.

ExXEmpLO 4.31. Sex, =7 ey, = %, entao x, — 7 e y, — 0;
logo,
Tp+Yp — 7

Ty - Yn — 0.

Como o leitor deve ter observado, Teoremas 4.26 (limite de se-
quéncia constante), 4.27 (limite de 1), 4.29 (limite da soma), 4.32
(limite do produto), 4.33 (limite da diferenca) e 4.34 (limite da razao)
oferecem poderosas ferramentas para o efetivo calculo de limites de
sequéncias racionais. Obviamente a definicdo de sequéncia racional
convergente nao ¢ ‘amigavel’ para fins de céalculos, até porque tal
definicao nao oferece explicitamente qualquer procedimento efetivo
para determinar limites (caso existam). Neste momento deve ficar
claro o papel altamente relevante de teoremas. Teoremas, neste caso,
representam consideravel economia de pensamento.

Uma possivel critica em relagao aos teoremas até aqui provados é a
seguinte: como garantir que nao pode haver ambiguidade no calculo
de limite? Em particular, se o limite da sequéncia constante x,, = ¢
é a propria constante ¢ (Teorema 4.26), como garantir que o limite
nao pode ser também um valor racional d diferente de ¢? Pois bem,
o proximo teorema garante que jamais pode ocorrer tal ambiguidade
para sequéncia alguma que admite limite.

TEOREMA 4.35. O limite de uma sequéncia x de racionais, se
existe, € unico.

DEMONSTRAGAO: Temos, por hipétese, que existe L racional
tal que x,, — L. Supor que existe L' # L tal que L’ é
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racional e x, — L’. Logo, basta escolher
1
e=—|L-L',
SIL- T
ou seja, a metade da distdncia entre L e L’. Neste caso nao
existe racional x,, tal que
xn€(L—e,L+e)Nw, € (L' —e, L' +e¢).

Logo, nao ha § tal que n > ¢ implique em z,, € (L—e, L+¢)
exr, € (L'—¢e,L' +¢). L

Ou seja, o tltimo teorema foi demonstrado por reducao ao absurdo.
Esta é uma técnica muito usual em teoremas de unicidade, como o
caso do Teorema 3.2.

Um conceito relacionado ao de sequéncia racional convergente é
o de sequéncia racional de Cauchy. A ideia intuitiva é a seguinte:
uma sequéncia racional x, de Cauchy é aquela em que imagens z,,
ficam confinadas ao intervalo (z, — €,z, + €) e imagens z,, ficam
confinadas ao intervalo (x,, — €, ,, + €) na medida em que ambos
m e n se tornam arbitrariamente grandes. Em outras palavras, z, ¢
de Cauchy sss suas imagens z,, e x, ‘se aproximam cada vez mais
umas das outras’, na medida em que se aumentam os valores de
m e n. Neste sentido, uma sequéncia racional de Cauchy nao é
necessariamente convergente.

DEFINIGAO 4.25. z, é de Cauchy sss
Ve>030>0((m>0An>0)= |z, — x| <e).

EXEMPLO 4.32. Seja x a sequéncia dada por

Ty — 2
¢ 2
Tpi1 = (xn + ) /2.
Logo, '
3 17 577 665857
= T BT g8 T q08327

A sequéncia x do exemplo acima é definida recursivamente, no
seguinte sentido:

I: xg ¢ igual a 2;
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1: sabendo que z, 11 = (x, + %)/2, logo, x1 = (o + %)/2;

. _ 2 . . .
1I: logo, x2 = (x1 + 7-)/2; e assim por diante.

Observar que, no EXEMPLO acima, as distancias entre as imagens
Tm € T, se tornam cada vez menores, na medida em que m e n

aumentam.

ExEMPLO 4.33.

|l‘0 - $1| = 57 |901 - IQ\ = Ea
1 1
|wg — @3] = =, |23 — 2 = s,
408 470832

E possivel provar que a sequéncia acima é de Cauchy. Nao faze-
mos tal demonstragao neste livro, a qual pode ser feita por inducao
infinita mas é bastante ardua. No entanto, é facil provar que a se-
quéncia dada no ultimo EXEMPLO nao é convergente. A partir de
sua defini¢ao, observar que

2

W1 = T + —.
Tn

Supor que existe racional L tal que L = lim,,_,, x,,. Logo,
Al (2nr) = lim (@ + 2
por conta do Teorema 4.35. Além disso, lim, o Tpy1 = lim, o Ty,

se existir lim,, ,o, z,. Afinal, n >0 = n+1 > §. Logo,

lim 2 lim z,y; = lim =, + lim —,
n—oo n—o0 n—oo n—oo :L'n

por conta dos Teoremas 4.29 e 4.32. Isso implica em

2
2L =L+ —.
* L
Finalmente,
2
L=—
L ?
o que implica em
=%
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Porém, ndo existe racional L tal que L? = 2. Com efeito, se L for
racional, entao
=2
4q
sendo p e q inteiros e ¢ # 0. Logo, a substitutividade da igualdade
garante que

o que implica em
p2 _ 2q2

Mas, uma vez que p e ¢ sao inteiros, entao p e ¢ sao primos ou com-
postos (ou 1) (ver Definigao 4.2). Logo, p* conta com uma quantia
par de fatores primos, enquanto 2¢> conta com uma quantia fmpar
de fatores primos (lembrar que 2 é primo). Isso é uma contradigdo
com o Teorema Fundamental da Aritmética (o qual estabelece que
qualquer fatoragdo de um natural em primos é tnica, a menos de
arranjos dos fatores)! Consequentemente, L nao é racional. Logo,

AL (L = nlljglo xn> )

Apesar de sequéncias de Cauchy nao serem necessariamente con-
vergentes, o fato é que toda sequéncia racional convergente é de
Cauchy, como se mostra a seguir.

TEOREMA 4.36. Se x € uma sequéncia racional convergente,
entdo é de Cauchy.

DEMONSTRAGQAO: Temos, por hipdtese, que existe racional L
tal que z, — L. Logo,

Ve>030 >0(n>0d= |z, — L| <e¢).
Logo,
Ve>030 >0(m > = |z, —L| <e).
Uma vez que
|Zm — Zn| = [(Tm — L) — (zn — L)| <
|Zm — L| + |zn — L],
logo,

Ve>030>0((m>dAn>0)= |z, — x| < 2e).
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Sequéncias de racionais constituem uma Otima ferramenta para
definir niimeros reais a partir de racionais, como se vé na proxima
Parte. Observar que isso nao conflita com a discussao na Secao 34,
uma vez que a proposta nao é o emprego de pares ordenados de
racionais, mas algo muito mais rico: sequéncias racionais de Cauchy.
Isso ajuda a ilustrar o enorme poder de fungoes.

SECAO 37
Resumo da épera

sta quarta parte pode ser resumida como se segue.

e ZF permite conceituar, no contexto de sua linguagem, niimeros
naturais, inteiros e racionais.

A logica de ZF permite conhecer diversas propriedades algébri-
cas das operagoes de adi¢ao e multiplicacao entre naturais, in-
teiros e racionais.

Naturais e suas operacoes usuais sao definidos a partir de um
conjunto indutivo em particular, denotado por w.

Inteiros sao classes de equivaléncia de pares ordenados de na-
turais, enquanto racionais sao classes de equivaléncia de pares
ordenados de inteiros.

O que diferencia naturais de inteiros e racionais sdo as pro-
priedades algébricas das operacoes de adicao e multiplicacao.
Propriedades algébricas da adicao entre naturais sao preservadas
entre os inteiros. Mas os ultimos contam com a existéncia de
simétrico aditivo, algo que nao ocorre entre naturais. As pro-
priedades algébricas de adi¢ao e multiplicacao entre inteiros sao
preservadas entre os racionais. Mas os tltimos contam com a
existéncia de simétrico multiplicativo (exceto para o neutro adi-
tivo), algo que nao acontece entre inteiros ou naturais.

e Uma vez que reais ndao podem ser definidos como classes de
equivaléncia de pares ordenados de racionais, alguns conceitos
sao desenvolvidos na linguagem de ZF para contornar essa difi-
culdade. Entre esses conceitos, sequéncias racionais de Cauchy
sao de interesse estratégico a ser explorado na préxima Parte.
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SECAO 38
Notas histéricas

|
Y

4

LN

urante a transicao do século 19 para o século 20 houve extensas
discussoes sobre as ideias originais de Cantor. Leopold Kronecker
chegou a dizer que o infinito (na acepcao da Defini¢do 4.18) de seu
ex-aluno Georg Cantor era filosofia ou religido, mas nao matematica.

GEORG CANTOR, NO INiCIO DO SECULO 20
Fonte: Wikipedia.

Afirmando que Cantor era um corruptor das novas geragoes de
matematicos, Kronecker exerceu severas interferéncias na carreira
de seu ex-aluno, impedindo-o de se tornar professor na Universidade
de Berlim. No entanto, esse tipo de resisténcia nao era novidade.
Na Grécia Antiga, por exemplo, os niimeros irracionais eram aqueles
sobre os quais nada se falava. Por isso o nome! Irracionais eram
numeros ‘ilégicos’. Preconceito é uma inevitavel condi¢cao humana,
mesmo quando o assunto é matematica.
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Nimeros reais e complexos

Nesta quinta parte finalmente iniciamos os primeiros passos na
diregao de calculo diferencial e integral padrao.

SECAO 39
( Reais

‘efinimos nuimeros reais como certas classes de equivaléncia de
sequéncias de Cauchy de racionais. Antes, porém, precisamos intro-
duzir uma nova relagao.

DEFINIGAO 5.1. Sejam x, ey, sequéncias de racionais. Logo,
T = Yn - (Ty — yn) — 0.

Lemos x, = vy, como ‘x, ¢ equivalente a y, '

Seja w uma notagao abusiva para a cépia do conjunto dos ntimeros
naturais em Q. Se

r={t € plwxQ)|tésequéncia}

é o conjunto de todas as sequéncias racionais, entdo = define uma
relagao em r.
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ExEmpLO 5.1. It x, = % € Yn = % sao equivalentes, ou

seja,
1 2
n  n?
Com efeito,
1 2
(1-2)-o
n o on
n: z, = % € 2z, = D nao sao equivalentes, uma vez que
1
(--5)--5
n
e —5 #0.

11: Seja v uma sequéncia racional tal que v, = (—1)". Seja
w uma sequéncia racional tal que

B n?>  se n<10
S = (=)™ se n > 10.

Logo, para todo n > 10 temos v, = w,. Isso implica que
(U, — wy) — 0.

Portanto, v = w.

z@l E obviamente recomendével que o leitor prove o item 111 acima.

TEOREMA 5.1. A relacao = da Definicao 5.1 € de equivalén-
cia.

DEMONSTRAQAO: Uma vez que z, — x, = 0, de acordo com

Teorema 4.26,

(xn —xn) — 0.
Logo, x, = x,, o que prova que = é reflexiva.
Se &y, = Yp, entdo (r, — yn) — 0 (Defini¢ao 5.1). Mas
Yo — Tn = (=1)(Tn — Yn).
Logo,
(yn - $N) — <_1) nhlgo(xn - yn)7
de acordo com os Teoremas 4.26 e 4.32. Logo, (yn,—x,) — 0,

uma vez que o racional 0 é absorvente multiplicativo. Logo,
Yn = Tn, O que prova a simetria de =.
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Se Ty, = Yn € Yn = Zn, entao (T, —yn) — 0 e (yp — 2,) — 0.

Logo,
((xn - yn) + (yn - Zn)) — 0,
de acordo com o Teorema 4.29. Mas,
((#n = Yn) + (Un — 20)) = (Tn — 2n).
Logo, a substitutividade da igualdade garante que

(Xn — 2) — 0.

Isso implica em z,, = z,, 0 que prova a transitividade de

Consequentemente, a relagao = definida sobre o conjunto r das
sequéncias racionais é de equivaléncia.

Se r é o conjunto das sequéncias racionais e ¢ é o conjunto das
sequéncias racionais de Cauchy, entao ¢ C r e novamente = define
uma relagdo de equivaléncia, desta vez sobre c. Notar que item 111
do EXEMPLO 5.1 prova que, de fato, ¢ é subconjunto proprio de 7.
Com efeito, as sequéncias v,, e w, daquele item nao sao de Cauchy,
apesar de serem sequéncias racionais equivalentes entre si.

Teorema 5.1, em parceria com Teorema 3.10, permite finalmente
definir nidmeros reais, bem como reais racionais e reais irracionais.

DEFINIGAO 5.2. Seja ¢ o conjunto das sequéncias racionais de
Cauchy. Logo,
R=c¢/=
¢ o conjunto dos niimeros reais.

Cada elemento de c¢/= é chamado de ntimero real. Se qualquer
representante x,, de [x,] (onde [x,] é uma classe de equivaléncia
pertencente a ¢/=) é uma sequéncia de Cauchy convergente, en-
tao [x,] € um nimero real racional. Caso contrario, [x,] é um
numero real irracional.

Lembrar que ¢/= é o quociente do conjunto das sequéncias racionais
de Cauchy pela relagao de equivaléncia = (ver pardgrafo imediata-
mente apds a demonstracao do Teorema 3.11).

O conjunto R dos ntiimeros reais é também conhecido como o corpo
dos numeros reais. Existem outros corpos além de R. Detalhes na
Secao 96.
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ﬁ] Em R toda sequéncia de Cauchy é convergente. Recomen-
damos que o leitor prove isso.

Se os reais r e s tém, respectivamente, representantes xz, e y,,
entdo r + s (adigdo entre reais) é um real com representante x,, + yp,
e r-s (ou, simplesmente, rs, a multiplicagio entre reais) é um real
com representante x,, - y,.

EXEMPLO 5.2. ©: Seja x a sequéncia racional dada por
2
To=2€Xpy1 = (:L‘n + ) /2;
In

logo,

3 17 577 665857

2T 12 T q08” T aross2

Este é 0 mesmo EXEMPLO 4.32, apresentado na Secao 36.
Neste caso, x é de Cauchy, mas ndo convergente entre os
racionais (como ja discutido). Isso significa que x € repre-
sentante de um real v = [x,] irracional, a saber, um real
r tal que r? = 2. Este nimero real é usualmente denotado
por /2. Para que o leitor tenha uma ideia melhor sobre os
demais representantes de \/2, ver o prézimo item.

Xr1 =

I1: Seja y a sequéncia racional dada por

2
Yo =095 €Ypt1 = yn_}'; /2;

logo,
27 929 1446241
1770027 5400 T 10033200 T
Neste caso, x, = yn, apesar de T, # y,. Observar que, em
notacao decimal, v1 —y, = 1,2, x9 —ys = 0,303, r3 —y3 =
0,0272, ---.

Ambas as sequéncias x e y sdo de Cauchy, porém ndo con-
vergentes. Afinal, analogamente a discussdo na Secao 36, se
T ou Yy convergissem, deveriam convergir para um racional
L tal que L? =2, o que ndo pode ser o caso.

No entanto, [x,], a qual € igual a [y,], é o nimero real

r tal que r* = 2, ou seja, /2. ﬁl Outros exemplos de
representantes de /2 podem ser dados pelo leitor.
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Se x, + Yo = 2, dizemos que z, ¢ a soma das parcelas x, € yp,.
Se Ty - Yn = 2, dizemos que z, é o produto dos fatores x,, e y,. O
mesmo se diz sobre os respectivos reais com representantes x,,, vy, e
Zn.

EXEMPLO 5.3. v2(v/2) = 2.

Se r é um real racional, empregamos a mesma notagao introduzida
para racionais.

Obviamente, as propriedades algébricas de adicao e multiplicacao
entre racionais induzem as mesmas propriedades para a adicao + e a
multiplicagao - entre nimeros reais. Logo, sao teoremas as seguintes
formulas:

I: a adicao entre reais ¢ comutativa e associativa;

1: a adicdo entre reais admite neutro aditivo (denotado por
0) e simétrico aditivo para qualquer real r (denotado por
—7);

11: a multiplicacao entre reais é comutativa e associativa;

Iv: a multiplicacao entre reais admite neutro multiplicativo

(denotado por 1) e simétrico multiplicativo para qualquer
real r diferente de 0 (denotado por r=1);

V: o neutro aditivo é absorvente multiplicativo;

VvI: a multiplicacao é distributiva em relagao a adicao.

A nova propriedade algébrica entre nimeros reais, inexistente entre
racionais, é o fato de que sequéncias e Cauchy e sequéncias conver-
gentes sao conceitos equivalentes em R.

Entre os niimeros reais ha uma relagao de ordem total <:

r < 0: para todo representante x,, de r ha § tal que n > 0 =
r, < 0, sendo a ultima a relacdo de ordem < entre racionais.

r<s:r—s<0 (lembrar que r — s = r+ (—s), sendo que —s
é o simétrico aditivo de s)

r<s:r<sVr=s.

s>r:r<s

s>r:r<s
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Gracas as relagoes de ordem < e < em R, é possivel introduzir
conceitos muito tuteis para os estudos da Segao 44:

e Um intervalo aberto (a,b) é o conjunto

{reR|a<z Az <b};

e Um intervalo fechado [a,b] é o conjunto
{reR|a<zAz<b};

e Um intervalo fechado degenerado |a, b] é um intervalo fechado
tal que a = b;

e Um intervalo fechado nao degenerado é um intervalo fechado
que nao ¢ degenerado;

e Um intervalo aberto a esquerda e fechado a direita (a,b] é o
conjunto
{reR|a<zAz Db}

e Um intervalo fechado d esquerda e aberto a direita [a,b) é o
conjunto
{reR|a<xAx<Db}

e Uma vizinhanca de um namero real r é qualquer intervalo
aberto (a,b) tal que r € (a,b).

EXeEMPLO 5.4. 1©: (3,8) é uma vizinhanga de 5, mas nao de
3;

1 9 todo nimero real v admite uma vizinhanga (a,b) (con-
seque provar isso?).

fia

I: Exibir a classe de equivaléncia de sequéncias de Cauchy de
racionais correspondente ao real v/5;

II: provar que nenhum representante z, de /5 é convergente em
Q;

III: provar que, para quaisquer reais a, b e c taisquea < beb < ¢,
temos que (a,b) N (b,c) = @. Este ultimo é de importancia
estratégica para a compreensao de limites de funcoes reais, a
serem discutidos na Segao 44.
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Andlise na reta é o estudo da tripla ordenada (R, +, ),
incluindo fungoes com dominios e co-dominios contidos em R.

SECAO 40
( Complexos
SUMARIO
7 INDICE
“Aembrando que R? é o conjunto R x R dos pares ordenados de REDE

numeros reais, podemos agora introduzir o que sao complexos.

DEFINIGAO 5.3. O corpo C dos nimeros complexos € o con-
junto C = (R? +,-), onde

o +:R?xR? = R? € a funcio dada por

+((a,b), (¢,d)) = (a,b) + (¢,d) = (a+c,b+d) e
o - R2x R?2 = R? € a funcio dada por

(@), (&:d)) = (a,B) - (e,d) = (ac — bd, ad + be).

Cada (a,b) € R? é um ndmero complero. A fungdo + é chamada
de adi¢cao de complexos, enquanto - é a multiplicagio de complexos.

Se (m,n) + (p,q) = (r, s), dizemos que (r, s) é a soma das parcelas
(m,n) e (p,q).

Se (m,n) - (p,q) = (r,s), dizemos que (r, s) é o produto dos fatores
(m,n) e (p,q).

EXEMPLO 5.5. A adigio entre o complezo (5,—2) e o com-
plexo (v/3,0) é o complezo (5,—2) + (v/3,0) = (5 + /3, —2).

A multiplicacio entre o complexo (5,—2) e o complezo (v/3,0)
é o complezo (5,—2) - (v/3,0) = (5v/3 — (—=2)0,5(0) + (—2)V/3).
Ou seja, (57 _2> ’ (\/ga O) = (5\/§a _2\/5)

TEOREMA 5.2. A adicao entre complexos é comutativa. For-
malmente, isso se traduz como

(a,b) + (¢, d) = (¢,d) + (a,b),

onde (a,b) e (¢,d) sao complezos.
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DEMONSTRACAO:
(a,b) + (¢,d) = (a+¢c,b+d) =
(c+a,d+b) = (c,d) + (a,b).

TEOREMA 5.3. A multiplicacio entre complexos é comutativa.
Formalmente, isso se traduz como

(a7 b) : (Cv d) = (C7 d) : (av b):

onde (a,b) e (¢,d) sao complezos.

DEMONSTRAGAO:
(CL, b) . (Ca d) == ((IC — bd, ad —+ bc) =
(ca — db,da + cb) = (¢, d) - (a,b).

TEOREMA 5.4. Existe neutro multiplicativo entre os complezos.
Ademais, ele € inico. Formalmente, isso se traduz como

Jle 3'd((c, d) € R* AVaVb((a,b) € R? = (a,b) - (c,d) = (a,b))).

DEMONSTRAGAO: Basta fazer (¢, d) = (1,0). Com efeito,
(a,b) - (1,0) = (a.1 —.0,a.0+b.1) = (a,b).

Ou seja, (1,0) é neutro multiplicativo.
Para provar a unicidade do neutro multiplicativo, supor

que existe outro. ﬁl Cabe ao leitor verificar que essa hi-
potese produz uma contradi¢cao. Portanto, o par ordenado
(¢,d) mencionado é apenas (1,0).

Outra maneira para demonstrar o ultimo teorema é a seguinte.
Uma vez que (a,b) - (¢,d) = (ac — bd, ad + bc), basta provar que

(ac —bd,ad + bc) = (a,b) sssc=1ANd=0.

Gragas a comutatividade da multiplicagao, (1,0) - (¢,d) = (¢, d).

TEOREMA 5.5. Eziste neutro aditivo entre os complexos. Além
disso, ele é unico. Formalmente, isso se traduz como

Jlc 3'd((c, d) € R* A VaVb((a,b) € R* = (a,b) + (c,d) = (a,b))).
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DEMONSTRACAO:
(a,b) +(0,0) = (a+0,b+0) = (a,b).
Ou seja, (0,0) é neutro aditivo. Para provar a unicidade

do neutro aditivo, supor que existe outro. @l Cabe ao
leitor verificar que essa hipdtese produz uma contradicao.
Portanto, o par ordenado (¢, d) mencionado ¢ (0, 0).

TEOREMA 5.6. Todo complexo admite simétrico aditivo. For-
malmente, isso se traduz como

Vavb((a,b) € R?* = 3c3d((c,d) € R* A (a,b) + (c¢,d) = (0,0))),

sendo (0,0) o neutro aditivo do Teorema 5.5.

DEMONSTRACAO:
((Z, b) + (—(Z, _b) = (CL + (-CL), b+ (_b>> = (07 0)
Logo, (—a,—b) é simétrico aditivo de (a,b), onde —a e —b
sao os simétricos aditivos dos reais a e b, respectivamente.

Portanto, o par ordenado (¢, d) mencionado é (—a, —b). No-
tar que, para cada (a,b) complexo, (—a, —b) é tinico.

Em particular, (—1,0) é o simétrico aditivo do neutro multiplica-
tivo entre os complexos. Essa informacao se revela particularmente
relevante para discernirmos complexos de reais.

@' E teorema a seguinte féormula: a multiplicacdo entre com-
plexos é associativa. Recomendamos que o leitor prove isso. Esse
fato facilita bastante o cdlculo dado pela seguinte definicao.

DEFINIGAO 5.4. Se (a,b) é um complezo diferente do neutro
aditivo e n é um natural, entdo

I (a,b)° = (1,0);
1: (a,b)"™ = (a,b) - (a,b)".

ExEMPLO 5.6. (0,1)% = (0,1)-(0,1)> = (0,1)-(0,1)-(0,1)! =
o leitor escolhe a ordem em que deseja realizar as operagoes de
multiplicacdo, uma vez que multiplicacdo entre complexos € co-
mutativa e associativa.
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Lemos (a, b)" como ‘(a,b) elevado a n’. Em particular, (a,b)? se 1&
também como ‘(a, b) ao quadrado’ e (a,b)® se 1& também como *(a, b)
ao cubo’.

Entre os complexos existe uma propriedade algébrica que nao ocorre

entre os reais, os racionais, os inteiros ou os naturais, conforme o
proximo teorema.

TEOREMA 5.7. Existe um complexo cujo quadrado € o simétrico
aditivo do neutro multiplicativo.

DEMONSTRAGAO: (0,1)-(0,1) = (0.0-1.1,0.14+1.0) = (—1,0).

O simétrico aditivo do neutro multiplicativo entre os reais é —1.
No entanto, nao existe real r tal que r> = —1, sendo 72 = r - r.
Comentario analogo vale para os racionais e os inteiros. Entre os
naturais, em particular, o simétrico aditivo do neutro multiplicativo
sequer existe.

O complexo (0,1) cujo quadrado (0,1)% é o simétrico aditivo do
neutro multiplicativo (1,0) (ou seja, (—1,0)) é conhecido como uni-
dade imagindria. Comumente abrevia-se (0,1) pelo simbolo i. Ou
seja,

i=(0,1).

TEOREMA 5.8. Os complezos da forma (e,0) copiam os nimeros
Teais.

DEMONSTRAGAO: Basta observar que
(a,0) - (c,0) = (ac — 0.0,a.0 + 0.c) = (ac,0)

(a,0) + (c,0) = (a+¢,0+0) = (a+c,0).
Logo, adigdo a + ¢ entre reais é copiada por (a,0) + (¢, 0).
Resultado analogo vale para multiplicacao.

Este ltimo teorema justifica a pratica comum de abreviar com-
plexos (a,0) como a. Neste contexto, se z = (a,b) é um complexo
qualquer, entao

(a,b) = (a,0)-(1,0) + (b,0) - (0,1)
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(basta fazer as contas para confirmar). Abreviadamente, isso corres-
ponde a afirmar que

2 =a+ b,
onde a e b sdo complexos que copiam reais (lembrar que a-1 =a) e
¢ ¢ a unidade imaginaria.
Logo,
(a+bi)+ (c+di)=(a+c)+ (b+d)i

(a+ bi)(c+ di) = (ac — bd) + (ad + be)i,
de acordo com a Definicao 5.3.

Se z = (a,b) é um complexo, chamamos a de parte real de z, e b de
parte imagindria do complexo z. Essa convencao é consistente com
o fato de que complexos (a,0) copiam os reais, enquanto complexos
(0,b) contam com uma propriedade algébrica nao replicavel pelos
reais, por consequéncia do Teorema 5.7.

Uma vez que complexos sao definidos como pares ordenados (ver
Teorema 3.4) de reais, um complexo z é igual a um complexo 2’ sss
a parte real de z for igual a parte real de 2’ e a parte imaginaria de z
for igual a parte imaginaria de z’. Obviamente essa ultima afirmacao
é um teorema.

A partir de agora adotamos a notagao abreviada a para complexos
(a,0) e i para a unidade imaginaria (0,1). Logo, bi abrevia o com-
plexo (0,b), enquanto a + bi abrevia (a,b). Neste contexto, sao teo-
remas as seguintes férmulas (lembrar que multiplicagdo entre com-
plexos é associativa):

V=1, it =4, i? =—1, = —i, i* =1, > =i e assim por diante.

Ou seja,

i4n _ 1’ Z’4n+1 — An-+2 _ _1

onde n é um natural.

Esses resultados sao usados na Secao 57.

Observar que, apesar dos complexos estenderem os reais em termos
das operagoes algébricas de adi¢do e multiplicagao, eles nao fazem o
mesmo para a relacao de ordem total < entre reais. Com efeito, se
r e s sdo reais tais que r # 0 ou s # 0, entdo 7% + s2 > 0.
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No entanto, entre os complexos isso nao é teorema. Por exemplo,
212 _
1“4+ 1 =0.

Pior ainda, (2i)* + 12 = -3 < 0.

Por conta disso, entre os complexos nao é possivel definir uma
relacao de ordem total < que seja compativel com as operacgoes de

adicao e multiplicacao entre complexos, e que ainda seja uma copia
da relagao usual < entre reais.

Copiar a relacao de ordem total < dos reais entre complexos que
copiam os reais é algo trivial:

(a,0) < (b,0) sss a <b.
O problema sem solucao é estender essa relagao para todos os com-

plexos.

Andlise compleza é o estudo da tripla ordenada (C,+,-) e das
func¢des com dominio e co-dominio contidos em C.

SECAO 41
( wCZCQcCcRCcCC?

A&lkm discurso usual na literatura diz que todo natural é um inteiro,
todo inteiro é um racional, todo racional é um real e todo real é um
complexo. Usualmente isso se traduz como

wCZNZCQANQCRARCC.

No entanto, obviamente nao é o caso aqui. O zero natural é o
conjunto vazio, enquanto o zero inteiro é uma classe de equivaléncia
de pares ordenados de naturais. Dadas as construgoes aqui exibidas,
nenhum natural é inteiro, nenhum inteiro é racional, nenhum racional
é real e nenhum real é complexo. Ou seja, a férmula

WZIZNZEQAQZRARZC
¢é teorema.

Por outro lado, vimos que inteiros positivos copiam naturais; racio-
nais %, tais que ¢ = 1, copiam os inteiros; reais cujos representantes
sao sequéncias de Cauchy convergentes copiam os racionais; e com-
plexos (a,0) copiam os reais (incluindo a ordem total < entre reais).
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Isso significa que complexos podem ser usados para copiar também
racionais, inteiros e naturais. Logo, o que temos é o seguinte:

c(w) Ce(Z)Ne(Z) Ce(Q)Ae(Q) C e(R) Ae(R) C C,

onde c(w), ¢(Z), ¢(Q) e ¢(R) sdo, respectivamente, coépia dos natu-
rais entre os complexos, copia dos inteiros entre os complexos, copia
dos racionais entre os complexos e copia dos reais entre os complexos.
Apenas por abuso de notagao que se afirma que w C ZAZ C QAQ C
RAR cCC.

@ Na literatura especializada ha muitos outros conjuntos numéri-
cos, como os quatérnions, os hiperreais, os hipercomplexos, os sur-
reais, os perpleros, os transfinitos, entre outros. As relagoes entre
esses conjuntos nao sao 6bvias. Por exemplo, a multiplicacdo entre
quatérnions é nao comutativa.

SEGAO 42
Funcoes reais

Z=:or enquanto voltamos a discutir sobre niimeros reais, deixando os
complexos de lado. Mais adiante fica evidente que o conhecimento so-
bre certas fungoes reais — aquelas cujas imagens sao apenas nimeros

reais — depende de consideragoes sobre os complexos.

A definicao recursiva a seguir é usual.

DEFINICAO 5.5. Seja x um niumero real diferente do neutro
aditivo. Logo,

M gl = 1

I g™t =g .- z"
tivo.

, onde n é um real que copia um inteiro posi-

EXEMPLO 5.7.

$4:$'$3:$'$'$2:1"£E"$'$1:$'$'$'$'xozx'$'$'$;

uma vez que multiplicacao entre reais € associativa, nao hd ne-

cessidade de qualquer preocupacao com parénteses.
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O termo /z (lé-se ‘raiz quadrada de z’) é uma abreviagdo para
um real y nao negativo tal que y*> = z. Ou seja,

y=+zTVy=—Tsssy’ =z

Obviamente isso somente pode ser o caso se x > 0. Se y? = x,
onde x é positivo, entdo y = \/x ou y = —/z, 0 que se abrevia como
y = t/x.

E uma convencao adotar que /z > 0 se > 0. Logo, —/z é
o simétrico aditivo de y/z. Se /z for estritamente positivo, entao
—y/x ¢ um real negativo.

O termo /z (lé-se ‘raiz n-ésima de x’) é uma abreviagdao para um
real y tal que y" = x, onde n > 2 é um real que copia um natural.
Se n for impar, entdo /z é definido para qualquer real z; se n for
par, entdo /x estd definido apenas para os reais x positivos. No
caso particular /z, 1é-se ‘raiz ctibica de x"

O principal propésito, de agora em diante, é o estudo de fungdes

fra—0
tais que ambos a e b sdo subconjuntos de R.

Qualquer fung¢ao cujo co-dominio é subconjunto de R é dita uma
fungao real. A Definigdo 5.5 para 2™ e seu correspondente V/z sao
luteis para o estudo de muitas fungoes reais.

EXEMPLO 5.8. I: f:R — R tal que f(z) = = (fungdo iden-
tidade); observar que

f={(z,y) eRxR|y=ux},
ou seja, f={(z,z) |z €R};

1: Sejam ¢ um nimero real e g : R — R tal que g(z) = ¢
(fungdo constante); observar que

g={(z,c) eR?| z € R};

1r: Seja h:d— R tal qued CR e
h(l‘) - anzn + anfll'nil 4 axn72-z‘n72 S oo ¢ CLQ:IJ2 aF a,xr + ap,

onde ag,ay,--- ,a, SA0 numeros reais e n € uma copia de
um numero natural entre os reais. Funcdo h é conhecida
como funcao polinomial de grau menor ou igual a n; o grau
dessa fung¢ao polinomial h é n se a, # 0;
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Iv: A fungao identidade é uma funcao polinomial de grau 1;
v: j: R — R tal que
j(z) =4z — 2zt + V2

é uma fungio polinomial de grau 4; neste caso ay = V2,
a1 =4,a,=0,a3=0 ¢ a4 = —2.

VI: k: R — R tal que k(x) = ¢, onde {c} € o conjunto escolha
obtido por aplicacao do Axioma da Fscolha sobre o conjunto
unitario {R}. FEssa fung¢io k € conhecida como fungao es-
colha de R. Uma vez que o Azioma da Escolha foi usado
apenas sobre um singleton, a funcao escolha aqui ilustrada
¢ uma fungdo real constante. Obviamente ndao sabemos qual
foi a constante ¢ ‘escolhida’.

Na Secao 102 é usada uma funcao escolha para ilustrar exemplo
de evento que, apesar de ter probabilidade zero, ocorre.

Fungoes polinomais sao extremamente versateis para expressar até
mesmo fungoes nao polinomiais, conforme se percebe a partir da
Secao 54. Portanto, é de grande interesse conhecé-las.

Na proxima Se¢ao héd uma breve discussao sobre os zeros de fungoes
polinomiais. Naturalmente, o assunto nao é esgotado apenas com
isso. Mas ja é um comeco.

SEGAO 43
( Zeros de funcoes polinomiais

’s zeros de uma fungdo real f qualquer (polinomial ou nao),
com dominio d C R, sao os valores r € d tais que

f(r)y=0.

Exemplos sao dados nos proximos paragrafos. Mas, antes, pre-
cisamos de algumas consideragoes basicas.

Existe uma estreita relacao entre zeros de fungoes reais e certas
equacoes. Para evitar possiveis confusoes muito comuns entre alunos,
é essencial que o leitor tenha consciéncia sobre a importante diferenca
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entre fungoes e equagoes. Fungoes sao casos particulares de conjun-
tos, conforme discutido na Secao 29. Logo, fungoes sdo termos de ZF
(conforme Secao 7). Equagoes, por outro lado, sao férmulas atdmicas
da forma u = v, onde u e v sdo termos (conforme Segao 7). Uma vez
que nenhuma férmula é um termo e nenhum termo é uma férmula,
nenhuma equagao é uma funcao e nenhuma func¢ao é uma equacao.

Se o termo 7 é um zero da fun¢ao f, nas condigdes acima colocadas,
entao (r,0) pertence a f. No entanto, cada elemento de f é um par
ordenado (r, f(r)). Logo, determinar os zeros de f é equivalente a
determinar os reais r tais que

(r, f(r)) = (r,0).
Por conta do Teorema 3.4,

(r, f(r)) = (r,0) se, e somente se, f(r)=0.

Mas a igualdade
flr) =0
é uma equacao, uma féormula atémica que estabelece uma igualdade
entre a imagem de r, via f, e 0. Neste contexto, a equagao f(r) =0
é equivalente a outra formula atémica, a saber, (r,0) € f.

Ou seja, determinar os zeros de uma funcao real f implica em
responder quais sao os valores r que satisfazem a equagio f(r) = 0.

Em outras palavras, determinar os zeros de uma func¢do real f
implica em responder quais sdo os valores r tais que a equagao f(r) =

0 é teorema.
POLINOMIAIS DE GRAU 0 I

Seja p : R — R uma func¢ao polinomial de grau 0 qualquer, ou seja,

p(z) = a.

Se a constante « for diferente de 0, entdo p ndo admite zero algum.
Se a constante a for 0, entao cada elemento do dominio R de p é um
zero de p.

Nos proximos paragrafos promovemos uma breve discussao sobre
zeros de fungdes polinomiais de grau maior do que 0. Deve ficar
claro que polinomiais de grau 0 sao as tnicas polinomiais que podem
admitir uma infinidade de zeros.
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2 .

y
—p(z) =-1

[ui

—2

Na imagem acima temos uma representagao grafica de uma poli-
nomial p(x) = « para o caso a« = —1.

POLINOMIAIS DE GRAU 1 I

Seja f : R — R uma func¢do polinomial de grau 1 qualquer, ou
seja,

f(z) = azx + B,
sendo a # 0. Determinar os zeros de f é equivalente a determinar
os numeros reais = tais que ax + § = 0 (ou seja, tais que a equagao
azr + f =0 é teorema, onde o # 0). Neste caso,

r = ——
(07

Ou seja,
$:—é(:>ozx+ﬁz()
o

é teorema. Isso equivale a afirmar que

_ B
r=_—==
o

¢ 0 Unico zero de f.

Observar que, de acordo com a discussao anterior, f é uma funcao
e, portanto, um conjunto. Neste sentido, determinar os zeros de f é
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equivalente a determinar quais sdo os pares ordenados (z,0) tais que
(,0) € f. Ja a equagao ax + f = 0 é uma férmula atémica u = v
(onde u é o termo ax+f e v é o termo 0) usada como ferramenta para
auxiliar na busca por zeros da funcao f. Comentario analogo vale
para cada uma das fungoes polinomiais apresentadas nos préximos
paragrafos.

1y
]—f(x):2x_1‘

-2

Na imagem acima temos uma representacao grafica de uma poli-
nomial f(x) = azr+ f paraocasoa =2¢e = —1.

POLINOMIAIS DE GRAU 2 I

Seja g : R — R uma fung¢ao polinomial de grau 2 qualquer, ou seja,

g(z) = az® + Bz + v,
sendo a # 0. Determinar os zeros de g é equivalente a definir os
nimeros reais  tais que az? + Bz + v = 0.
Mas az? + Bz + v = 0 equivale a 40222 + 4aBz + 4oy = 0, uma
vez que o # 0. Logo,
40’%2? + 4afz + day + B2 = B2,
o que implica em 4022 + 4afz + (% = B2 — dary.

A tltima equivale a (2az + §)? = % — 4ay, a qual implica em
20 + B = ++/? — 4ary, sendo que o simbolo + serve ao propédsito
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de destacar que existem até dois possiveis valores reais 2ax + (3 tais
que (2ax + 8)? = 3% — 4a.

Logo,
2 = —f £ 4/ P2 — dary,
—BE£ VP —4day
gy = .

2a

o que implica em

Logo, g admite um tnico zero sss 2 — 4ay = 0.

A mesma funcao polinomial g de grau 2 admite dois zeros se, e
somente se, 3% — 4oy > 0. Finalmente, g ndo admite zero algum sss
B% — 4oy < 0.

Notar que os zeros da func¢ao g foram obtidos por meio de uma
raiz quadrada envolvendo apenas os coeficientes o, [ e 7.

Aparentemente Brasil é o tinico pais do mundo a se referir a equagao

B+ /P —dny
T =
2c0
como formula de Bhaskara, em homenagem ao famoso mateméatico

e astronomo indiano do século 12. A comunidade internacional se
refere a ela como formula quadrdtica.

2,,

ﬂig(x):—3z2+2z+1

-2

Na imagem acima temos uma representacao grafica de uma poli-
nomial g(z) = az® + Bz +y paraocasoa = -3, 3=2ey=1.
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POLINOMIAIS DE GRAU 3 I

Seja h : R — R uma fun¢ao polinomial de grau 3 dada por

h(z) = az® + Bx® + yr + 6,

sendo a # 0. Estabelecer os zeros de h é equivalente a determinar
os ntimeros reais z tais que ax® + Sz* + yr + J = 0. A mudanga de
variaveis

p

r=t— —
3o

permite reescrever a igualdade anterior como se segue:

at® +rt+s=0,

sendo

3ay — 52 233 — 9By + 27025
r=—'_" e s=
3o 2702

Observar que a igualdade ot + 7t + s = 0 envolve um polindmio
no qual o coeficiente real que multiplica ¢2 é 0.

Os valores t que satisfazem a ultima equagdo sdo os mesmos que
satisfazem

£+t+2 0.
(0% (6%

@ Logo, o problema pode ser resolvido por raizes /s seguindo o
Método de Cardano (em homenagem a Girolamo Cardano, polimata
italiano do século 16). O Método de Cardano pode ser encontrado
em inumeras referéncias da literatura.

Uma vez obtidos os valores ¢t que satisfazem a tltima equacao em
destaque (via Método de Cardano), o fato de que

B

r=1t— —

3av
permite obter os zeros da func¢do polinomial h de grau 3, a qual
admite pelo menos um zero real, independentemente dos valores de
a, 8, v e d. Em contrapartida, h admite no maximo trés zeros reais.
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2 Ty /
—h(z) =2% — 322 + 22+ 1

—2

Na imagem acima temos uma representacao grafica de uma poli-
nomial h(x) = ax’® + Bz’ +yr+J paraocasoa=1, 3= -3, 7 =2

ed=1.
POLINOMIAIS DE GRAU 4 I

Seja ¢ : R — R uma fung¢ao dada por
i(z) = az* + B2 + yo? + 6z + €,

sendo a # 0. Ou seja, ¢ é uma funcao polinomial de grau 4. Deter-
minar os zeros de ¢ (aqui o simbolo ¢ nada tem a ver com a unidade
imagindria dos complexos!) é equivalente a determinar os nimeros
reais x tais que

az + B3 + vzt + 0z +e=0.

A mudanca de variaveis

B
=t =
v 4o

permite reescrever a igualdade anterior como se segue:
at* +rt* + st +u = 0.
sendo

_32 3 _34 2 5}
" 40{,3 +y, ==, g O

T 12 20 Y= 2560 T 1602 4o
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E‘ Os valores de t que satisfazem a equacgao
r s u
t+ —t*+—t+—=0
o a o«

podem ser obtidos a partir do Método de Ferrari (em homenagem a
Lodovico Ferrari, matematico italiano do século 16). O Método de
Ferrari pode ser encontrado em diversas referéncias.

Uma vez obtidos os valores t que satisfazem a tltima equagao (via
Método de Ferrari), o fato de que

B

=t =
v 4o

permite obter os zeros da fun¢ao polinomial ¢ de grau 4, a qual admite
no maximo quatro zeros reais, podendo também nao ter um tunico
ZEro.

2 !
i(x) = 2% — 222

=il

Na imagem acima temos uma representacao grafica de uma poli-
nomial i(z) = az? + B2® + 2% + dx + ¢ para o caso a = 1, 8 = 0,
y=-2,0=0ee=0.

POLINOMIAIS DE GRAU MAIOR OU IGUAL A 5 I

Seja 7 : R — R uma funcao dada por

j(z) = az® + Ba* + ya® + 62 + ex + (,
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sendo a # 0. Determinar os zeros de j é equivalente a definir os
numeros reais x tais que

az® + Bt + vy} + 622 +ex + ¢ =0.

O Teorema de Abel-Ruffini (1799, 1824) garante a impossibilidade
de estabelecer solugoes de equacdes polinomiais de grau maior ou
igual a 5, para coeficientes reais arbitrarios, em termos de raizes dos
coeficientes que multiplicam cada monomio z™. A Teoria de Galois
(devida a Evariste Galois), a qual trata de conexdes entre teoria de
corpos e teoria de grupos, estende consideravelmente este resultado.

Para certos casos particulares de fungdes polinomiais, de grau
maior ou igual a 5, ainda ¢é possivel determinar os zeros por meio
de raizes dos coeficientes envolvidos. Um exemplo simples é a fun-
¢ao q : R — R tal que

q(z) = 2% — 1.

Neste caso, os zeros de ¢ sdo os reais z tais que 2% = 1, ou seja,
8
B = i\/I,

o que equivale a x = £1. Mas o Teorema de Abel-Ruffini impede que
um método envolvendo raizes seja desenvolvido para toda e qualquer
funcao polinomial de grau maior do que 4.

No entanto, ainda é possivel obter zeros de fungoes polinomiais
quaisquer (entre outras) via aprozimagoes obtidas pelo truncamento
de fungoes definidas recursivamente. Fungoes recursivas f que podem
ser programadas em maquinas sao da forma

Tn+1 = f(«rn>7

onde f(zo) = fo. Essas fungdes sao simplesmente sequéncias reais. O
truncamento de § para algum nimero natural m é necessario como
critério de parada do algoritmo executado pela maquina, desde que
existam condigdes de convergéncia para f. Detalhes sobre casos par-
ticulares de tais métodos implementéaveis em maquinas sao examina-
dos na Sec¢ao 108.

Rudimentos de métodos numéricos definidos por fungoes recursivas
sao conhecidos hé milénios, muito antes do advento do computador
digital. Ver, por exemplo, o método babilonico para a obtencao da
raiz quadrada de qualquer nuimero real positivo, o qual também é
discutido na Secao 108.
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OBSERVACAO FINAL I

Como tltima observagao, vale a pena mencionar um fato de grande
importancia. O célebre Teorema Fundamental da Algebra garante,
como uma de suas consequéncias, que qualquer equacao polinomial
de grau n, ou seja, qualquer férmula

AnZ" + G 12"+ Apox™ % 4 -+ a3z’ + axx® + a1+ ap =0,

onde a, # 0, admite no maximo n valores reais x que satisfazem
tal igualdade. Ou seja, ainda que nao seja possivel determinar —
por raizes dos coeficientes a,, a,_1, -+, ag — todos os reais x que
satisfazem essa equacao (no caso de n > 5), pelo menos se sabe
que hé sempre uma quantia finita desses valores (quantia finita essa
menor ou igual a n).

Logo, sejam v : R — R e v : R — R fungoes polinomiais quais-
quer. O Teorema Fundamental da Algebra garante, como outra con-
sequéncia, que u = v se, e somente se, os coeficientes dos monomios
de mesmo grau de u e v forem idénticos. Se

=il =% 3 2
U(T) = apx™ + Q12" F @pox™ "+ -+ azx” + asx” + a1 + ay,

cada parcela a;z7 é chamada de mondmio de grau j; além disso, o
fator a; é o coeficiente do mondmio a;x’. Ou seja, a ultima afirmagao
¢é simplesmente a seguinte: se

wW(z) = apx” + ap12" 4 @n_ot™ P+ - 4 a3z’ 4 aa® 4+ a1z + ag
(&
V(T) = bpx™ + b1 2™ + bp_ox™ 2 4 - - 4 b3z + byx® + by + by,

entdao u(z) = v(x) para todo € R sss a; = b; para todo j tal que
0<j<n.

A prova desse resultado pode ser feita por reductio ad absurdum.
Com efeito, se houver algum j tal que a; # b;, entdo a igualdade
u(x) = v(z) passa a ser uma equagao polinomial que somente pode
ser satisfeita para uma quantia finita de possiveis valores reais .
Logo, nao ha igualdade entre u(z) e v(x) para todo z real.

Qualquer soma finita de monémios é um polinémio.

A demonstracao do Teorema Fundamental da Algebra esté fora do
escopo deste livro. No entanto, este é um resultado usado com muita
frequéncia aqui e em diversas areas da matematica.
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SECAO 44
( Limite de funcao real

N que se segue é fortemente relacionado com o conceito de sequén-
cia racional convergente. No caso desta Se¢ao, porém, o foco é sobre
fungoes reais. Também nao ha qualquer preocupacao com valores
arbitrariamente grandes. Estes sdo os primeiros passos na direcao
do Cdlculo Diferencial e Integral Padrdo.

DEFINICAO 5.6. Seja f : d — R uma funcao tal que d C R e
a € (b,¢) para algum intervalo aberto (b,c) C d. Logo,

lim f(x) =L:Ve>030>0(0<|z—al <d=|f(x)—L| <e).

Tr—a

O termo |x — a| é uma distdincia entre = e a, assim como | f(x) — L|
é uma distancia entre f(x) e L. A justificativa formal para essas afir-
magoes ¢ dada no EXEMPLO 8.44, Secao 88, Parte 8. Por enquanto,
basta uma visao intuitiva sobre distancias em R.

O definiens na Definicao 5.6 é equivalente a seguinte férmula:

Ve>030 >0(z € (a—d,a+06)—{a}= f(x) € (L—¢,L+¢)).

Observar que novamente estamos usando quantificadores relativiza-
dos, os quais foram introduzidos na Se¢ao 35. A diferenca é que agora
estamos lidando com termos que sdo nimeros reais.

Lé-se lim,_,, f(z) = L como ‘limite de f(x), com z tendendo a a,
é L’. A ideia intuitiva é a seguinte: afirmar
lim f(z) = L
equivale a dizer que, para toda vizinhanca (L — e, L +¢) de L, deve
existir uma vizinhanga (a —d,a+9) de a de modo que todo x perten-
cente a (a — d,a + 9), exceto o proprio a, admite uma imagem f(x)
pertencente a (L — e, L + ¢).

-

E usual se referir ao conjunto (L — ¢, L + ) como um intervalo
aberto centrado em L e com raio €. Analogamente, (a — d,a + 0) é
um intervalo aberto centrado em a e com raio 6. Obviamente, todo
intervalo aberto centrado em um real b, com raio 7 real estritamente
positivo, € uma vizinhanca de b.
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O conceito de vizinhanca de um real, introduzido ao final da Secao
39, permite capturar a intuicdo de pontos ‘proximos’ de r. Neste
contexto, em geral, quanto ‘mais proximo’ um x estiver de a, ‘mais
proximo’ f(z) estd de L. Para efeitos praticos, quanto menor o valor
de £, menores os valores admissiveis para d, caso o limite L exista. O
unico caso em que ¢ nao depende de € é aquele que envolve fungoes
constantes, como se verifica no proximo teorema.

TEOREMA 5.9. Seja f : R — R tal que f(x) = ¢. Logo,
lim,,, f(z) = c.

DEMONSTRAGQAO: Devemos provar que lim, .,c = ¢. Logo,
devemos provar que

Ve>030>00<|z—a|l|<d=|c—c| <e).
Mas essa tultima féormula equivale a
Ve>030>0(0<|z—al<d=0<e).

Qualquer 0 real maior do que 0 satisfaz essa formula! Com
efeito, basta aplicar Teorema 2.1 e Proposicao 2.3. Afinal,
€ > 0 = ¢ > 0 ¢ teorema, independentemente de qualquer
hipétese envolvendo 4.

O 1ltimo teorema pode ser estendido para fungoes localmente cons-
tantes, i.e., para fungoes f tais que existe intervalo aberto («, 5) de
modo que f(z) = ¢, para todo z pertencente a (a, ). Neste caso,
lim,_,, f(z) = ¢ para todo a pertencente a («, ). Obviamente a
demonstracao deste resultado exige um cuidado extra com relagao
ao valor de 0, a saber, ¢ pode ser qualquer real estritamente positivo
menor ou igual ao menor dos dois valores a seguir: a —a e § — a.

TEOREMA 5.10. Seja f: R — R tal que f(z) = x. Logo,
lim f(z) = a.

r—a

DEMONSTRAQAO: Devemos provar que lim, .,z = a. Logo,
devemos provar que

Ve>036>0(0<|z—al<d=|r—al <e).
Faca § = . Com efeito, se § = ¢, entao a férmula

O<|zr—a|<d=|r—a|<e
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é teorema. Isso porque a féormula
|z —a|<e=|z—a|<e

¢ teorema, mesmo que |z — a| < € ndo seja teorema (ver
Teorema 2.1 e Proposigoes 2.3 e 2.5).

O ultimo teorema pode ser estendido para fungoes f tais que, lo-
calmente, se comportam como a fungao identidade, i.e., f(z) = x
para todo = pertencente a um intervalo aberto («, ). Neste caso o
deve ser menor ou igual ao menor entre dois possiveis valores: a — «

e B —a.

Sejam f e g funcoes reais que compartilham o mesmo dominio d
tal que d C R. Neste caso,

I (f+g) é uma fungdo com dominio d tal que
(f +9)(x) = f(z) + g(w),
para todo x € d;
11 (f — g) é uma fungdo com dominio d tal que
(f —9)(z) = f(z) — g(x),
para todo x € d;
111 (fg) é uma fungdo com dominio d tal que
(fg)(x) = f(x)g(x),
para todo x € d;
1V (f/g) é uma fun¢ao com dominio d tal que

(f/9)(x) = f(x)/g(x),

desde que g(x) # 0 para todo x pertencente a d.

Observar que, na ultima definicdo, foram conceituadas adicéo,
subtracao, multiplicacdo e divisdo entre funcoes reais, a partir de
adicao, subtracao, multiplicacao e divisdo entre reais, respectiva-
mente. Logo, as propriedades algébricas de adicao e multiplicagao
entre fungoes reais sao analogas aquelas entre reais, como comuta-
tividade, associatividade e as demais.

EXEMPLO 5.9. Sejam f:R —- R eg: R — R funcoes tais que
flx) ==
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g(x) =5.

Logo, f + g é uma funcao real com dominio R tal que

(f +9)(x)=x+5.

TEOREMA 5.11. Se f e g sao fungoes que compartilham o mesma
dominio d C R e

lim f(2) = I
e
lim g(z) = M,
entao:
I lim, o (f + 9)(z) = L+ M,
1 lim, . (f —g)(z) =L — M,
ut: lim,,,(fg)(x) = LM e

v: lim, . (f/g9)(x) = L/M (se M #0).

Em particular,
lim ¢f(z) = cL,

Tr—a
se
lim f(z) = L.
ﬁl A demonstragao do Teorema 5.11 é anédloga as provas dos Teo-
remas 4.29, 4.32, 4.33 e 4.34. Basta fazer as adaptacoes necessarias.
Recomendamos que o leitor faga isso como exercicio.

TEOREMA 5.12. Seja p: R — R uma fungdo tal que
p(ac) =a,z" + an—ﬂn_l I an—Qw”_Q oo oSE a3x3 == a2x2 + a1+ ay,

onde ag,ay,--- ,a, SGo numeros reais e n € uma copia de um
inteiro positivo entre os reais. Entao,

lim p(z) = p(a).

r—a

DEMONSTRAGAO: ﬁl Basta usar os Teoremas 5.9, 5.10 e
5.11, uma vez que qualquer fung¢ao polinomial é redutivel
a operacoes de adi¢do e multiplicacao envolvendo funcoes
constantes e a funcao identidade. Lembrar também que
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essa prova tira proveito do fato de adicao e multiplicacao
entre fungoes reais serem associativas. Com efeito, essas
sao definidas a partir de adicao e multiplicacao entre reais,
como ja mencionado. Essa prova exige paciéncia, mas é
muito simples.

O ultimo teorema pode ser estendido para funcdes localmente poli-
nomiais, i.e., fungoes p tais que

() = ™ + A 17"+ Ao 4 - 4 azx® + apr® + a1 + ag
para todo x pertencente a um intervalo aberto (o, 3). Neste caso,
lim p(x) = p(a),

se a pertence a («, [3).

Uma funcao real f é racional sss

sendo p e g fungdes polinomiais.

Nao confundir fungbes racionais (aquelas cujas imagens sdo nime-
ros racionais) com fungoes reais racionais, acima definidas.

ExempLO 5.10. 1: f: R — R tal que

73— 2x
T ="ary

¢ uma funcao real racional; afinal, m : R — R dada por
m(z) = 23 — 22

en:R — R dada por

n(r) =z*+4
sao fungoes polinomiais, e
_ m(z)

onde n(x) # 0 para todo x pertencente a R;

11: toda fungdo polinomial p : R — R € real racional, uma vez

que
Pzg
1
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e a fungao constante g : R — R dada por g(x) = 1 € poli-
nomial de grau 0;

1t: A fungio h : R — R dada por h(zx) = |z| ndo é polinomial
e nem real racional.

Neste e no proximo paragrafo justificamos a afirmacao feita no item
111 dado acima. Supor que h : R — R, dada por

h(z) = |z,
¢é polinomial. Logo, existem n, a,, a,_1, - -, ag, tais que
h(z) = anZ™ + @ 1™ " + Gn_ox™ 2 + - - - + a3z’ + 492’ + a1z + ag.

No entanto,

r sex >0
h(x){ —x sex <0

Logo, de acordo com a OBSERVAGAO FINAL da Secao 43, h(xz) = x
e h(z) = —x para todo x real. L.
@l Aqui cabe outra observacao. A funcao k : d — R dada por
k(z) = |z|

é polinomial se todos os elementos de d forem reais positivos ou todos
os elementos forem reais menores ou iguais a 0. Consegue provar?

O paragrafo acima deixa claro que o conceito de fungao polinomial
depende do dominio da funcao.

ExeEmpPLO 5.11. Seja f: R — {0} — R uma fungao tal que

/(@)
Neste caso, nao existe L tal que
glclir(l) f(x)=L.
Com efeito, se existisse o limite, entao
Ve>030>0(x e (0-0,04+0)—{0} = f(z) € (L—¢,L+¢)).

No caso em que

]

i

1

10’

nao existe 6 que satisfaca a condicional da definicao. Isso porque
f(z) assume apenas os valores 1 e —1.

& =

PAGINA 178



MATEMATICA PANDEMICA PARTES SECAO45

Além disso, a distancia entre 1 e —1 € 2, um nidmero real bem

maior do que
1

TO.

Logo, nem toda fun¢ao admite limite.

Observar que a fun¢do do ultimo EXEMPLO nao é uma fungao real
racional, uma vez que |z| ndo define uma polinomial em R — {0}.

Notar também que a funcdo f: R — {0} — R tal que

|z|
fla) =2

admite limite
lim /()

para qualquer a diferente de 0. Para provar isso, nao esquecer que
f € localmente polinomial em qualquer ponto a pertencente ao seu
dominio.

DEFINICAO 5.7. Uma fungdo real f é continua em um ponto
a $ss

lim f(z) = f(a).

Tr—a

EXEMPLO 5.12. 1. Toda funcao p : R — R polinomial € con-
tinua em todos os pontos de seu dominio, conforme Teorema
5.12;

i: f:R—{0} — R tal que

o)==

nao € continua em 0, apesar de ser continua em todos o0s

el

pontos de seu dominio. 1@] Fortemente recomendamos a
demonstracao deste teorema.

TEOREMA 5.13. O limite de uma fungdo real, quando existe,
€ unico.

A prova deste ultimo é analoga a do Teorema 4.35.

PAGINA 179



MATEMATICA PANDEMICA PARTES SECAO45

SECAO 45
( Estendendo limites

{Lesta Secio estendemos a Definicao 5.6 sobre limite de funcio real,
de modo a incluir doze outras defini¢oes de tipos especiais de limites.
Tratam-se de conceitos tteis, por exemplo, na prova do importante
Teorema 6.19, na Secgao 61.

DEFINIGAO 5.8. Seja f : d — R uma fungao tal que d C R.
Logo,

lim f(z)=L:¥Ve>030>0(a<x<a+d=|f(x)—L|<e).

z—a™t

Lemos lim, 4+ f(x) como ‘limite de f(x), com x tendendo ao ponto
a pela direita’. A ideia é semelhante a Defini¢ao 5.6. A tnica diferen-
¢a reside no fato de que aqui estamos interessado apenas nos reais x
tais que
z € (a,a+9).

Na Definicao 5.6 estamos interessado em todos os x tais que
z € (a—46,a)U(a,a+9).
A expressao ‘tendendo pela direita’ remete ao fato de que § é es-

tritamente positivo; portanto, a + & > a, o que implica que todo x
pertencente ao intervalo aberto (a,a + §) estd ‘a direita’ de a.

ExXEMPLO 5.13. Seja f: R — {0} — R uma fungao tal que

flo) ==

Neste caso, como jd foi discutido anteriormente, nao existe L
tal que

il

lim f(z) = L.
z—0
Com efeito, se existisse o limite, entao

Ve>030>0(zx € (0-0,04+09)—{0} = f(z) € (L—¢,L+¢)).

No caso em que € = 1—10, nao existe & que satisfaca a condicional

da defini¢do. Isso porque f(x) assume apenas os valores 1 e —1.
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No entanto, existe lim, o+ f(z). Além disso, lim, .o+ f(z) =
1. Com efeito,

Ve>036>00<z<0+6=[1-1|<e).

Isso porque todo x entre 0 e 046 (excluindo 0 e 0+ ) € estrita-
mente positivo, o que implica em |x| = x e, portanto, f(r) = 1.
Novamente Teorema 2.1 e Proposi¢ao 2.3 concluem a prova.

DEFINICAO 5.9. Seja f : d — R uma funcdo tal que d C R.
Logo,

lim f(z)=L:Ve>030>0(a—-0<z<a=|f(x)—L|<e).

T—a

Lemos lim,_,,- f(z) como ‘limite de f(x), com x tendendo ao ponto
a pela esquerda’. A ideia aqui é andloga a discussao acima, mas desta
vez estamos lidando com reais = a esquerda de a.

Os termos

lim f(x) e lim f(x),

z—at T—a~

quando existem, sao chamados de limites laterais.

EXEMPLO 5.14. 3 Seja f : R — {0} — R uma fungao tal

que
_ =l

f(z)

Neste caso, lim,_,o- f(x) = —1. Cabe ao leitor justificar.

TEOREMA 5.14. Seja f uma fungdo real. Logo,
lim f(z) =L sss lim f(x) =LA lim f(z) = L.
T—a r—at T—a~

@l A discussao acima sobre limites laterais d4 uma boa ideia
de como provar esse ultimo resultado. Por conta disso, deixamos a
tarefa ao leitor. O teorema acima apenas afirma que limite existe
sss os limites laterais existirem e forem coincidentes. Gracas a esse
teorema, os dois ultimos EXEMPLOS ficam bem mais faceis de jus-
tificar. Afinal, uma mesma funcao admite limites laterais distintos.
Logo, neste caso, ela nao admite limite.
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As préximas definigdes desta Secao sdo conhecidas como limites
envolvendo infinito. Elas se dividem em dois grupos nao necessa-
riamente excludentes entre si, a saber, limites infinitos e limites no
infinito.

DEFINIGAO 5.10. Seja f:d — R uma funcao tal que d C R.

lim f(zr)=00:Ve>030>0(a<z<a+d= f(x)>e).

z—at

Este é o primeiro caso de limite infinito. A definigdo acima
segue uma notagao abusiva que comumente confunde alunos. Isso
porque no definiendum ha uma igualdade na qual ocorre a sua direi-
ta o simbolo metalinguistico co. Mas é imprescindivel que o leitor
entenda que oo nao é um termo da linguagem & aqui usada. Além
disso, co também nao abrevia termo algum de &. No entanto, a
sentenga metalinguistica lim,_,,+ f(x) = co abrevia a férmula

Ve>030>0(a<z<a+d= f(x)>e¢),

na qual nao ha uma tnica ocorréncia do simbolo co.

Do ponto de vista intuitivo, a ultima definicdo captura a seguinte
ideia: na medida em que x se aproxima de a pela direita, as imagens
f(z) se tornam arbitrariamente grandes. A ideia de imagens f(x) se
tornarem arbitrariamente grandes se caracteriza pela desigualdade

f(z) > e,

a qual deve ser satisfeita para qualquer real ¢ estritamente positivo.
Levando em conta que, nas condigbes acima ditadas, f(x) nao fica
confinado a qualquer intervalo (L — ¢, L + ¢), fica claro entdao que o
limite lateral acima é um caso particular de limite que nao existe.
Justamente por isso que insistimos que a notagao acima é abusiva.
Todo limite infinito, como vemos nas proximas discussoes, é um caso
particular de limite que nao existe.

Limites laterais sao aqueles em que x pertence ao intervalo (a, a+9)
(limite lateral pela direita) ou (a—d, a) (limite lateral pela esquerda).

A titulo de curiosidade, o simbolo oo foi introduzido em 1655, por
John Wallis, em um tratado sobre se¢oes conicas. Contemporaneo
de Isaac Newton, Wallis foi um dos responsaveis pela concepgao do
calculo diferencial e integral.
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ExEMPLO 5.15. Seja f: R — {0} — R uma fungao dada por

; .
Logo,

Jip £2) = o

Com efeito, a formula
1
Ve>030>0 (O<x<0+5:>>5>
x

(a qual é o definiens na Defini¢io 5.10) é equivalente a formula

€
uma vez que x € estritamente positivo. Logo, Teorema 2.1 e
Proposicio 2.3 garantem que basta fazer

§=-.
£

Ve >03d6 >0 <O<x<5:>:v<1>,

DEFINIGAO 5.11. Seja f:d — R uma funcao tal que d C R.

lim f(z) =—-00:Ve>030>0(a<z<a+d= f(x) < —e).

r—at

Este é um segundo exemplo de limite infinito. Neste caso, na
medida em que x se aproxima pela direita de a, as imagens f(x) se
tornam arbitrariamente grandes em valor absoluto, mas com sinais
negativos.

EXEMPLO 5.16. #2 Seja f: R — {0} = R dada por

ey ==
Logo,

Recomendamos que o leitor faca a prova.

ﬁ' O leitor pode escrever os conceitos de
lim f(z) =00

r—a—

lim f(x) = —o0,

T—a—
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bem como exemplificar.

As proximas duas defini¢oes sao mais dois casos de limites infinitos.

DEFINICAO 5.12. Seja f :d — R uma fungdo tal que d C R.
lim f(z) =00:Ve>030>0(0<|z—al <d= f(z) >e).

A ideia intuitiva é a seguinte: na medida em que x se aproxima
de a (tanto pela esquerda quanto pela direita) as imagens f(z) se
tornam arbitrariamente grandes. Ou seja, mais um caso particular
de limite que nao existe.

EXEMPLO 5.17. Seja f : R — {0} — R uma fungao dada por
1
f(z) =

ﬁ.
Logo,
lim f(z) = oo.

z—0
Com efeito, a formula

1
Ve>03>0 (O<|x_0|<6:>a:2>6>
¢ equivalente a formula

1
Ve>030>0 <O<|x|<5:>|x|<\/g>.

S
Logo, basta fazer 6 = 7

DEFINIGAO 5.13. Seja f:d — R uma fungio tal que d C R.
lim f(z) = —c0:Ve>030>0(0< |z —a| <= f(z) < —e).

Tr—a

A ideia intuitiva é a seguinte: na medida em que x se aproxima
de a (tanto pela esquerda quanto pela direita) os valores absolutos
das imagens f(z) se tornam arbitrariamente grandes mas com sinal
negativo.

EXEMPLO 5.18. 3 Seja f: R —{0} = R uma fungio dada

por i
fla) ==

x2’

PAGINA 184



MATEMATICA PANDEMICA PARTES SECAO45

Logo,

:lgiir(l) f(z) = —o0.

Recomendamos ao leitor que prove isso.

TEOREMA 5.15. Seja f uma fungdo real. Logo,

lim =00 sss lim = oo A lim = oo.

r—a z—at T—a—
Analogamente,
lim = —c0 sss lim = —oco A lim = —oo0.
r—a z—at T—a—

1@1 A prova fica a cargo do leitor.

EXEMPLO 5.19. Seja f : R — {0} — R uma fungio dada por
flx) = % Logo, como discutido anteriormente,

Jip 1(0) =9 iy f(6) = ~o0

Ou seja, além de nao existir lim, o f(x), este é um caso de
limite inexistente que ndo € limite infinito. Em outras palavras,
todo limite infinito € um caso particular de limite inexistente.

Mas nem todo limite inexistente é um limite infinito. z@' A
proposito, essa funcdo f é continua em todos os pontos de seu
dominio. Consegue provar isso?

DEFINICAO 5.14. Seja f: d — R uma fungao tal que d C R.
lim f(z) =L sss Ve >036 >0 (x>0 =|f(x) — L| <e¢).

T—00

Este é o primeiro caso de limite no infinito, pelo menos neste breve
estudo sobre funcgoes reais.

A ideia intuitiva aqui é a seguinte: na medida em que x se torna
arbitrariamente grande (conceito esse dado por x > ¢), as imagens
f(z) ficam confinadas ao intervalo

(L—¢,L+¢),

para todo e qualquer real € estritamente positivo.

ExXEMPLO 5.20. Seja f: R — {0} — R uma fungao dada por
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Logo,
lim f(x)=0.

T—>00
Com efeito, a formula
1
Ve>036>0 (m>6: —0‘<5)
7

Ve>0dd>0 <$>5:>E:'<€>’

¢ equivalente a formula

a qual é equivalente a
1
Ve>030>0 (m>5:>|x|>).
€
A dltima, por sua vez, é equivalente a

Ve>03d6>0 <x>5:>:1:>i),

uma vez que x € estritamente positivo por conta da premissa
x > 0. Logo, basta fazer

§==.
£

DEFINICAO 5.15. Seja f :d — R uma fungdo tal que d C R.
$1_i)1}1£)(}f(:6) =L sss Ve>030 >0 (x < —d=|f(x)—L| <e).

EXEMPLO 5.21. #3 Seja f: R — {0} — R dada por

fle) ==
Logo,
g A =0

O leitor deve justificar.

DEFINICAO 5.16. Seja f:d — R uma fungao tal que d C R.
lim f(z) =00 sss Ve > 030 >0 (z > = f(x) > ¢e).

T—r 00

Este é o primeiro caso de um limite infinito no infinito, entre
fungoes reais. A ideia intuitiva é a seguinte: na medida em que x
se torna arbitrariamente grande, as imagens f(z) também assumem
valores reais arbitrariamente grandes.

PAGINA 186



MATEMATICA PANDEMICA PARTES SECAO 46

EXEMPLO 5.22. Seja f: R — R dada por f(x) = 6x.
Logo,
Jiy (o) = o
Com efeito, a formula
Ve>030>0 (x>0 = 6x>c¢)

¢ equivalente a
Ve>036>0 <m>(5:>x>g>.

Logo, basta fazer

§=<.
6

ﬁl Para as trés tultimas defini¢des de limites infinitos no infinito
o proprio leitor pode criar seus exemplos.

DEFINIGAO 5.17. Seja f : d — R uma fungao tal que d C R.
Logo,

lim f(z) =—00 sss Ve > 035>0 (z > 6= f(z) < —e).

T—r00

DEFINICAO 5.18. Seja f : d — R uma funcao tal que d C R.
Logo,

lim f(z) =00 sss Ve > 035>0 (z < =6 = f(z) > e).

T—r—00

DEFINICAO 5.19. Seja f : d — R uma fungao tal que d C R.
Logo,

lim f(z)=—00 sss Ve >036>0(x < —0= f(z) < —¢).

T—r—00

— SEGAo 46
Mergulhando nas aguas de limites

>< 9 i

< sta Secao é um grande exercicio.

A definicao de limite de fungoes reais foi uma das grandes con-
quistas da matematica, introduzida por Karl Weierstrafl e Augustin-
Louis Cauchy no século 19. O padre catélico Bernardus Bolzano
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teve ideias semelhantes muito antes de Weierstra§ e Cauchy, mas a
proposta dele passou completamente despercebida na época.

Nao é uma tarefa facil para pessoas em geral perceberem o que os
quantificadores alternados Ve > 0 36 > 0 realmente estao dizendo
na definicao de limite de funcao real. Uma 6tima maneira para com-
preender a definicdo de limite é ‘navegar’ por ela, resolvendo exerci-
cios, como aqueles ja propostos até aqui. Outra, porém, é ‘mergu-
lhar” na defini¢ao, levantando a seguinte questao: o que aconteceria
se a Definicao 5.6 fosse diferente?

Uma vez que certas defini¢oes, como a de limite, estdo socialmente
consolidadas na comunidade matematica, nao faz sentido propor
qualquer alteracao nelas. Mas, para fins de exercicio investigativo,
podemos propor novos conceitos inspirados na definicao de limite.

Por exemplo, digamos que o matematico ficcional Dick Tate (alter
ego de Dinah Mite) proponha o seguinte conceito:

limi, ,of(x) =L:Ve>0V6>00<|z—a|<d=|f(x)—L|<e,

onde lemos limi, ,,f(x) como ‘limitante de f(x) com z tendencioso
aa.

Neste caso, o limitante de f(z) com x tendencioso a um real a
existiria apenas para fungoes constantes f : R — R tais que f(z) = c.
Além disso, temos que limi, ., f(z) = ¢. Recomendamos ao leitor
provar esse atipico teorema do misterioso senhor Tate.

Logo, o conceito de limitante seria algo trivial e completamente
inutil.

Digamos agora que Hugh Jass, oponente de Dick Tate, proponha
a seguinte defini¢ao:

limiar, ,f(z) =L:3>030 >0 (0 < |z—a| < =|f(x)—L| <&,

onde lemos limiar,_,,f(x) como ‘limiar de f(x) com x se aproxi-
mando de a’.

Nesta situagao, o limiar de qualquer fungdo f : R — R existiria
para qualquer real a, algo bem mais abrangente do que os limitantes
do senhor Tate. No entanto, o limiar de uma fung¢do real nao seria
unico, tornando o conceito proposto por Jass como algo novamente
inutil, uma vez que nao poderia ser usado para definir o desejavel con-
ceito de derivada como caso particular de limiar. Uma das grandes
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vantagens da unicidade de limite radica no seu emprego para definir
derivada de uma funcao, tema da proxima Segao.

Propomos ao leitor provar esses resultados sugeridos.

Outras propostas podem ser introduzidas para rivalizar (ou nao)
com a definicao de limite. Esse tipo de atividade é um excelente
exercicio de criatividade, aparentemente nunca explorado em livros
de calculo diferencial e integral ou salas de aula.

Questoes como ‘o que aconteceria se a matematica fosse diferente’
sao altamente pertinentes para fins investigativos. Com efeito, tais
questoes podem provocar estimulantes discussoes. Mas é necessario
que os Tates e Jasses da vida nao levem para o lado pessoal eventuais
criticas que receberem as suas ideias.

SEQAO 47
Derivada

imites permitem definir derivadas e integrais de Riemann.

Derivadas sdo uma das ferramentas mais comumente empregadas
para mapear fendmenos do mundo real. Isso porque derivadas cap-
turam as ideias intuitivas de ‘dinamica’, ‘gradiente’, ‘velocidade’,
‘aceleracao’, ‘taxa de variagao’, entre muitos outros. Neste sentido é
uma pratica comum a proposta de modelos matematicos para des-
crever fendmenos fisicos a partir de derivadas.

Integrais de Riemann, por sua vez, permitem lidar com os modelos
propostos via derivadas, para que seja possivel fazer previsoes de
longo termo. Detalhes sao dados na medida em que avangamos por
aqui. Exemplos sao dados também adiante.

DEFINIGAO 5.20. Seja f uma fungdo real. A derivada de f
em relagao a x no ponto a, se existir, € definida como

d . fla+h) = f(a)
%f(ﬂc) z:a:}}j}}) A :

Obviamente, duas condigOes necessarias para

d
Ar (z)

r=a
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existir sao as seguintes:
I: f(a) deve existir, ou seja, a é um elemento do dominio de f, e

1I: f(z) deve existir para todos os reais x pertencentes a algum
intervalo aberto I tal que a € I.

Com efeito, uma vez que

d
Ar (z)

r=a
¢ um limite com ‘h tendendo a 0’, isso corresponde a dizer que h
pertence a um intervalo aberto

(0—10,0+9),
exceto o ponto 0, de acordo com a defini¢ao de limite.

Logo, a + h (termo usado na Definigao 5.20) pertence ao conjunto
(a —d,a+9) — {a},

o qual é uma vizinhanca de a (lembrar que 0 é estritamente positivo)
na qual se ignora o préprio ponto a.

No entanto, essas duas condigdes (f(a) existe e f(z) existe para
qualquer z de uma vizinhanga de a), apesar de necessérias, nao sao
ficient ti isténcia de -+ f -
suficientes para garantir a existéncia de - f(x , conforme exem

r=a

plificamos mais adiante.
Com relagao a visao intuitiva da Defini¢ao 5.20, ela expressa a

taxa de variagio de f(x), em relagdo a variagdo de x, no ponto a.

Conforme discutido na Secao 1, matematica pode ser usada para
mapear fendmenos do mundo real. Neste contexto, digamos que x
seja interpretado como tempo em segundos, enquanto f(z) é inter-
pretado como a posi¢ao, em metros, de um corpo material ao longo
de uma estrada retilinea. Diante desta interpretacao é sugerido que a
posicao f(x), em metros, do corpo material depende do tempo x em
segundos: a cada instante x de tempo o corpo estd em uma posi¢ao

f(@).
A wvelocidade média do corpo material, ao longo de dez segundos,
pode ser obtida da seguinte maneira:

I: no instante, digamos, 7s (a letra s abrevia ‘segundos’) avalia-se
a posicao f(7)m (a letra m abrevia metros) do corpo;
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11: no instante (7+ 10)s (ou seja, 17s) avalia-se a posigao f(17)m;

II1: a razao
fA7) -1 (7)
17-7
¢ a velocidade média do corpo ao longo de dez segundos na
estrada retilinia. Tal velocidade média é dada em metros por
segundo, uma vez que temos uma divisao entre distancia per-
corrida e intervalo de tempo transcorrido.

No contexto da Definicao 5.20, a discussao acima corresponde ao
termo

fla+h) = f(a)
h ,

uma vez que h = (a + h) — a.

No entanto, Defini¢cao 5.20, no contexto do mapeamento proposto,
nao informa velocidade média do corpo material em questao, mas
velocidade instantanea. Isso ocorre por conta do limite aplicado sobre
a funcgao

fla+h)— f(a)
h Y

com ‘h tendendo a 0’

Em outras palavras, a derivada de f em relagao a x, no ponto a, é
o limite de uma fungéo g(h) com h tendendo a zero, sendo

oty = L8 = 116)

Um carro viajando de Curitiba a Sao Paulo pode ter uma veloci-
dade média de 50 quildometros por hora ao longo de todo o tempo de
viagem, ainda que em alguns trechos da estrada atinja a velocidade
instantanea de 120 quilometros por hora e, em outros, permaneca
com uma velocidade instantdnea de 0 quilémetros por hora (por
conta de um engarrafamento). Velocidade instantdnea, neste sen-
tido, corresponde aquilo que é registrado no velocimetro do carro.

Retornando a Definicao 5.20, uma vez que ‘h tende a zero’, isso
corresponde ao fato de h pertencer ao intervalo aberto

(0—6,0+0),

exceto possivelmente o ponto 0.
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Logo, h pode assumir tanto valores reais estritamente positivos (&
direita de 0) quanto valores reais negativos (a esquerda de 0). Se

h—0 h

existir, porém, obviamente o valor de % f(z) deve ser um tnico

real, estritamente positivo, negativo ou nulo, f;)? conta do Teorema
D18

Observar que a possivel interpretacao de derivada de uma funcao
real, em um ponto a, como velocidade instantanea, nao é tnica. Se
x for interpretado como tempo em segundos e f(x) for interpretado
como velocidade em metros por segundo,

d
Ar (z)

r=a

é uma aceleragao (variagdo de velocidade em relagdo a tempo) ins-
tantanea em metros por segundo por segundo, no instante a.

Se x for associado com posi¢gdo em metros numa reta vertical (al-
tura) e f(x) for associado com temperatura em graus Celsius, o
mesmo valor

d
Ar (z)

r=a

corresponde a um gradiente de temperatura na altura vertical a.

Aplicagoes de derivadas para lidar com fenomenos fisicos sao am-
plamente documentadas e muito bem sucedidas ha mais de trés sécu-
los, ajudando a moldar até mesmo a economia de nagoes, no que se
refere a avancos tecnologicos.

No entanto, em momento algum é sugerido que o mapeamento
matematico de fendomenos fisicos implica que a posicao de um au-
tomovel numa estrada é uma funcao de tempo, no sentido do que
se entende por fungdes em ZF. Assim como o mapa de uma cidade
nao é a cidade, a matematica opera tao somente como uma forma
de retratar certos aspectos do universo onde todos vivemos.

Por outro lado, derivadas de fungoes reais em um dado ponto ad-
mitem interpretagoes fora do ambito de aplicagoes no mundo real.
Por conta disso, segue a préxima Se¢ao, na qual conceitos muito ele-
mentares de Geometria Analitica Plana sao explorados do ponto de
vista de derivadas. Na Secao 49 continuamos a estudar derivadas

PAGINA 192



MATEMATICA PANDEMICA PARTES SECAO 48

através de alguns teoremas importantes. Ne Secao 63 usamos deri-
vadas para mapear fendmenos fisicos de decaimento radioativo.

SECAO 48
( Plano cartesiano

‘\‘ 22 ':esta Secao estamos interessado apenas nas retas
r={(x,y) € R?| ax + by = c}

tais que b # 0. Estas sao chamadas de retas nao verticais. Uma
reta nao vertical, portanto, é o conjunto de todos os pares ordenados
(z,y) € R? tais que
y=ozx+p,

onde
—a
— e

b

O real « é chamado de coeficiente angular da reta r e 8 é chamado
de coeficiente linear da reta.

o =

c
B=3.

Pontos e retas podem ser representados visualmente como se segue
na préoxima imagem.

Se (z,y) é um ponto de R? chamamos z de abscissa do ponto e
y de ordenada. Os valores x e y sao chamados de coordenadas do

ponto (z,y).
1Y

/

O conjunto de todas as possiveis abscissas de pontos de R? estd
visualmente representado acima pelo eixo horizontal x. O conjunto
de todas as possiveis ordenadas de pontos de R? estd representado
pelo eixo vertical y. Logo, os eixos horizontal x e vertical y permitem
identificar univocamente quaisquer coordenadas de quaisquer pontos
de R2.
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As flechas representadas nos eixos servem para indicar que os reais
do eixo x crescem para a direita, enquanto os reais do eixo y crescem
para cima. A intersegdo entre esses eixos é o ponto (0,0). Na imagem
acima ha uma representagao visual do ponto (6,1) e da reta r dada
por

L
=—z—1.
Y=3

Observar que, se x = 0, entdao y = —1. Isso significa que o ponto
(0, —1) incide sobre r. Além disso, se y = 0, entdo z = 2, o que
implica que o ponto (2,0) também incide sobre 7. H4 uma infinidade
de outros pontos incidentes sobre r. Mas os pontos (0,—1) e (2,0)
bastam para definir r.

Observar também que o ponto (6,1) nao incide sobre r. Com
efeito, se x = 6, entdo y = 2. Logo, qualquer ponto com abscissa 6
incidente sobre r deve ter ordenada 2, o que nao ocorre com o ponto
(6,1).

Um ponto (z,y) de R? incide sobre uma reta r sss (z,y) € 7.

Pois bem. Acontece que existe uma estreita relacao entre derivadas
de funcoes reais em um ponto e retas de R2.

Uma vez que toda funcdo f : R — R é um subconjunto de R2,
f também pode contar com uma representacao visual de maneira
analoga aquela da ultima imagem.

Na imagem acima a Curva Bézier ilustrada é uma representacao
visual de uma fungao f : R — R.

Curvas de Bézier foram concebidas nos anos 1960 por Pierre Bézier,
para o desenho de carros Renault. Hoje sao amplamente utilizadas
em computagdo grafica. Aqui empregamos para ilustrar uma visao
intuitiva sobre derivadas.

O ponto p ilustrado acima é o par ordenado (a, f(a)), o qual é um
ponto pertencente a f. O ponto ¢ (também pertencente a f) é o
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par ordenado (a + h, f(a + h)), para o caso particular em que h é
estritamente positivo. Por conta disso que a + h esta a direita de a
nesta ilustracao.

Os pontos p e ¢ definem um segmento de reta que pode ser inter-
pretado como a hipotenusa de um triangulo retangulo no qual um
dos catetos mede a distdncia de a até a + h, ou seja, |h| (neste caso,
|h| = h). Em contrapartida, o outro cateto mede a distancia de f(a)
até f(a+ h), ou seja, |f(a+ h) — f(a).

A razao
fla+h) — f(a)
h
é o coeficiente angular de uma reta definida pelos pontos p e gq. Essa
reta definida por p e ¢ (ndo representada visualmente para nao so-
brecarregar a imagem) intersecta a fungao f exatamente nos pontos
p e q. Ao aplicar o limite

i flath) = £(0)

h—0 h ’

o ponto a + h se ‘aproxima arbitrariamente’ do ponto a. Uma vez
que o limite, quando existe, é inico, neste caso o limite acima é o
coeficiente angular de uma reta que tangencia a funcao f no ponto
a. Situagao analoga ocorre para o caso em que h é negativo e, con-
sequentemente, a + h esta a esquerda de a.

Neste contexto, retas tangentes a uma curva sao casos ‘limites’ de
retas secantes, sendo que uma reta secante a uma curva é aquela que
intersecta a curva em pelo menos dois pontos.

Logo,
d
= @)
se existir, pode ser interpretada como o coeficiente angular de uma
reta que tangencia f no ponto (a, f(a)).

Observar que os valores f(a + h) — f(a) e h nio correspondem
necessariamente a medidas de catetos de um triangulo retangulo com
hipotenusa definida pelos pontos p e ¢, uma vez que tais valores
podem eventualmente ser negativos. No entanto, os valores absolutos
de f(a+ h) — f(a) e h sdo medidas de tais catetos. Essa questao
¢é relevante para discussoes sobre crescimento de decrescimento de
funcoes, conforme vemos mais adiante.

PAGINA 195



MATEMATICA PANDEMICA PARTES SECAO 49

SECAO 49
( Teoremas elementares sobre derivadas

avprendemos aqui a calcular algumas derivadas.

TEOREMA 5.16. Seja f : R — R tal que f(x) = ¢ (fungao
constante). Logo, a derivada de f em relagio a x em qualquer
ponto a do dominio de f é Q.

DEMONSTRACAO:
d . c—c .0 )
—c = lim = lim — = lim 0 = 0.
dr 'z==a h—=0 h h—0 h—0

Observar como se justifica a igualdade
0
lim — = lim 0
h—0 h h—0
na ultima demonstracao: levando em conta que h tende a 0, isso é
equivalente a afirmar que h pertence a uma vizinhanga (0 — d,0+ 0)

exceto o ponto 0. Logo, de fato % ¢ igual a 0, uma vez que h ¢
diferente de 0.

Com relagao a ultima igualdade na demonstragao acima,

lim 0 = 0,
h—0

foi aplicado o Teorema 5.9 sobre limite de fungdo constante (aqui a
constante é zero).

O ultimo teorema pode ser estendido para func¢oes localmente cons-
tantes, i.e., para fungdes f tais que existe intervalo aberto («, 3) de
modo que f(z) = ¢ para todo = pertencente a («, 3). Neste caso,

d
%f(x)

para todo a pertencente a («, 3).

=0

r=a

TEOREMA 5.17. Seja f : R — R tal que
fl@)==

(fungao identidade em R). Logo, a derivada de f em relagao a
x em qualquer ponto a do dominio de f é 1.
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DEMONSTRACAO:
h) —
—x :lim<a+ ) a:hm—:limlzl
dr |z=q h—0 h h—0 h—0

Observar que novamente estamos levando em conta que h é dife-
rente de 0, uma vez que h pertence a uma vizinhanga de 0, excluindo
o proprio ponto 0. Por conta disso que temos

. h

lim - = lim 1

h—0 h  h—0
na ultima demonstracao.

Novamente aplicamos o Teorema 5.9 sobre limite de fun¢ao cons-
tante, para o ultimo passo. Neste caso a constante é 1.

O 1ltimo teorema pode ser estendido para fungoes que se compor-
tam localmente como a funcao identidade. Comentario analogo vale
para teoremas que seguem nos proximos paragrafos.

TEOREMA 5.18. Seja f: R — R tal que
f) = a2

Logo, a derivada de f em relacio a x em qualquer ponto a do
dominio de f € 2a.

DEMONSTRACAO:
d , . (a+h)?—a? o a’+2ah+ h? —a?
— = lim — = lim =
dr  |z=q h—0 h h—0 h
h(2 h
lim h(2a+h) = lim(2a 4+ h) = lim 2a + lim h =
h—0 h—0 h—0 h—0

2a + 0 = 2a.

Cabe ao leitor justificar cada passo da demonstragao.

TEOREMA 5.19. Seja f: R — R tal que
f(z) =27,
onde n € um real que copia um inteiro estritamente positivo.

Logo, a derivada de f em relacio a x em qualquer ponto a do

dominio de f é

na™ '
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DEMONSTRACAO:

lim —((a" + na" *h+--- 4+ h") —a") =
h—0
lim —(na" 'h+---+ k") =
h—0
1 n—1 n—1\ __
hr% Eh(na +-- A" =
lim(na" ' +--- + A" =
h—0
nan—l
Notar que

na" '+ A
¢ um polindmio relativamente a variavel h, de grau n — 1.

Logo, na ultima igualdade empregamos o Teorema 5.12
sobre limite de fun¢des polinomiais.

Na ultima demonstracao foi utilizado o binomio de Newton, o qual
¢ uma generalizagdo do Teorema Binomial para Naturais (ver Teo-
rema 4.6), no seguinte sentido: se a e b sao reais e n é um real que
copia naturais diferentes de 0, entao

wror e (D

k=0

;@I Fortemente recomendamos que o leitor justifique passo a passo
essa ultima prova.

TEOREMA 5.20. Se

existe, entao
d
%Cf ()

onde ¢ é um real.
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DEMONSTRACAO:

CZECf(x) _ cf(a—i—h}z—cf(a) _

= h—0

e(f(a+h) — f(a) _

lim

h—0 h
: . fla+h)—fla) d
A W

ﬁl Recomendamos que o leitor justifique cada igualdade da 1l-
tima demonstragao.

DEFINIGAO 5.21. Seja f : d — R wma fungio tal que d é
uma uniao arbitraria de intervalos abertos de reais. A funcao
derivada ' de f, se ewistir, é dada por ' :d — R tal que,

Va (a ed= f'(a) = CZcf(:r) :v:a) :

Uma fungdo real, nas condicoes acima, € diferenciavel sss admitir
funcao derivada.

Em outras palavras, se uma funcao f admite derivada em cada
ponto de seu dominio, é possivel definir a funcao derivada de f sim-
plesmente como uma fungao f’ tal que cada termo x do dominio de
f tem como imagem f’(x) a derivada de f no ponto z. O dominio
de f’ é o mesmo de f.

EXEMPLO 5.23. 1. se f: R — R € uma funcgdo dada por

flz) =c,
entio f': R — R dada por
flz)=0

¢ a fungao derivada de f, por conta do Teorema 5.16;

1: se g: R — R é uma funcao dada por

g(x) = at,
entao ¢’ : R — R dada por
g'(z) = 4a®

¢ a funcao derivada de g, por conta do Teorema 5.19.
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As duas fungoes dadas no EXEMPLO acima sao diferenciaveis.

A seguir mostramos como definir fungdes derivadas em intervalos
fechados nao degenerados.

DEFINIGAO 5.22. Seja f: |, B] — R, uma fungdo, onde a <
B. A funcao derivada f’ de f, se existir, é dada por

filo, Bl = R
tal que,
% (x) sea € (a, )
/ J—
f(a) = limy, o+ f(a+h2—f(a) 50 @ = a
limy,_,o- w sea =3

Neste caso dizemos que f ¢ diferenciavel no intervalo fechado

[, B].

Os termos
L fla+h) = fa)
h—0t h
e
lim flath) - f(a)j
h—0— h

na ultima definicao, sao chamados de derivada a direita e derivada
a esquerda, respectivamente.

EXEMPLO 5.24. ,@I

L ose f:[—v2,V/3] = R € uma fungio dada por f(z) = c,
entdo f': [—v/2,v/3] = R dada por f'(x) = 0 ¢ a funcdo
derivada de f, por conta do Teorema 5.16 e de sua extensdo
para derivadas laterais;

I: se g:[2,3] = R é uma fungio dada por g(x) = x*, entdo
g :[2,3] = R dada por ¢'(z) = 42® € a fungdo derivada
de g, por conta do Teorema 5.19 e de sua extensdo para
derivadas laterais.

IQ] Todos os teoremas para derivadas, examinados neste livro,
podem ser generalizados para derivadas laterais. Por conta disso,
nao nos preocupamos com elas nas préximas demonstragoes.
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TEOREMA 5.21. Se u e v compartilham o mesmo dominio e
sao diferencidveis, entdo (u+v) =u +v'.

DEMONSTRAGAO:
(u+ ) = lim (u~|—v)(:1:~|—h})L— (utv)(z) _
y u(x 4+ h) +v(x+h) — (u(z) + v(x)) _
hlg(lj h
. (u(z+h)—u(x) v@+h)—v(@))
%5%( h " h ) -
e ) ) el ele) o
A K e h St

Ou seja, a derivada de uma adicao ¢ a adigdo de derivadas.

TEOREMA 5.22. Se u e v compartilham o mesmo dominio e
sao diferencidveis, entio (u—v) =u' —v'.

DEMONSTRAGAO: Basta usar o Teorema 5.21 em parceria com

o Teorema 5.20 para a constante ¢ = —1. ﬁ' Com efeito,
¢ teorema entre os reais a seguinte formula:
(=)r =—r

para qualquer real r (consegue provar isso?).

Ou seja, a derivada de uma diferenca ¢é a diferenga entre derivadas.

Uma consequéncia imediata dos dois tltimos teoremas é que, se u
e v sao diferencidveis, entao u + v e u — v sao diferencidveis.

Para que possamos enunciar e provar teoremas sobre derivada de
produto e derivada de uma razao, precisamos de mais informagoes.

DEFINICAO 5.23. Seja f uma fungdo real cujo dominio é uma
unido arbitrdaria de intervalos abertos de reais. Dizemos que f é

continua sss
lim /(z) = f(a)

para todo a pertencente ao dominio de f.

Ou seja, grosso modo, uma funcao real é continua se, e somente
se, for continua em todos os pontos de seu dominio.
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EXEMPLO 5.25. 1: Teorema 5.12 garante que toda fungdo
polinomial

p:R—-R
¢ continua.
1: Seja f: R — R uma funcao dada por

7T sex <2
f(x) =2 8 sex>2
9 sex =2

Se a < 2, entdo existem o e [ tais que a < 2, f <2 e a <
a < B; logo, f € localmente constante no intervalo aberto
(o, B), no sentido de que a € («, ) e todo x pertencente a
(cv, B) € menor do que 2; portanto,

lim f(z) = f(a) = 7.
Se a > 2, novamente f € localmente constante e, portanto,
lim £(z) = f(a) = 8.
No entanto, nao existe real L tal que
lim f(z) = L
(recomendamos provar isso). Logo, nao € teorema a formula
lim f(2) = £(2),
apesar de f(2) =9. Uma vez que 2 pertence ao dominio de
f mas f ndo é continua em 2, entdo f nao € continua.
1nr: A funcao de Dirichlet g : R — R dada por

(z) = 1 sex € real racional
g 0 sex € real irracional

¢ nao continua em todos os pontos de seu dominio. Logo,
este ¢ um exemplo bastante radical de fungdo nao continua.

ﬁ' Recomendamos que o leitor prove isso. Dica: demons-
trar que todo intervalo aberto («, ) de nimeros reais conta
com reais racionais e reais irracionais pertencentes a ele.

Teoremas 5.25 e 5.26 evidenciam profunda relagao entre diferencia-
bilidade e continuidade. Mas, antes de explorarmos essa importante
questao, precisamos dos proximos resultados.
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TEOREMA 5.23. A composicao entre fungoes continuas, quando
existe, € uma funcdo continua.

DEMONSTRAGAO: Sejam [ e g fungbes reais tais que f o g
existe e g é continua em «a, enquanto f é continua em g(a).

Logo,
Ve>030>0(0<|z—al <d=|g(z)—gla)| <e)
e
Ve>030">0(0 < |g(x)—g(a)] <" = |f(g(x))—f(g(a))| <e)
Portanto,

Ve>030>0(0<|xz—a)l <d=|f(g(z)) — flg9(a))| <e).

Seguindo estratégia semelhante aquela empregada para diferencia-
bilidade em intervalos fechados, podemos estender o conceito de con-
tinuidade para intervalos fechados nao degenerados.

DEFINIGAO 5.24. Uma fungdo real f é continua em um inter-
valo fechado [a,b] de nimeros reais sss

I: f é continua no intervalo aberto (a,b);
I lim, .+ f(z) = f(a);
1t lim, - f(x) = f(b);

Teorema 5.23, sobre composicao de fungoes continuas, pode ser
estendido para fungoes continuas em intervalos fechados.

O préximo resultado mostra que derivada de uma funcao em um
dado ponto real qualquer pode ser definida de maneira diferente,
porém equivalente.

TEOREMA 5.24. Se existe - f(z)| , entdo
d _ i S@) = f(a)
%@)m:a_}}—% r—a

DEMONSTRACAO: Basta fazer h = x —a. Logo, t =a+ h e

L f@) = @) flat k) = fla)

z—a T —a z—a h
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Mas, se = tende a a, isso equivale a afirmar que
z € (a—0d,a+9)—{a}.
Logo, z —a € (0 — 6,0 + 0) — {0}, o que é equivalente a
h € (0—0,0+0)—{0}. Logo,

o fat ) = f@) _ | flath) = £
T—a h h—0 h

d
= @f(@

A transitividade da igualdade encerra a prova.

r=a

O préximo teorema é de extraordinaria importancia.

TEOREMA 5.25. Toda fungdo diferenciavel é continua.

DEMONSTRAQAO: Se f é diferencidvel, entao existe a funcao
derivada f’ de f. Mas, de acordo com o Teorema 5.24,

_ f(z) — f(a)
/ -1
fa) = lim ——"—
para todo a pertencente ao dominio de f. No entanto,

hm(ﬂ@—f@%x_@>:

T—a €r— Q

lim (f(x) — £(a)) = lim f() — lim f(a),

uma vez que x # a. Além disso,

hm(ﬂ@—f@%x_@>_

T—a T — a
%W-%@—@:f’(a)-o:o

A transitividade da igualdade garante que
lim /() — lim £(a) = 0.
Logo,

lim /() = lim /(a) = f(a).
para todo a pertencente ao dominio de f, o que equiva-
le a afirmar que f é continua. Observar que a igualdade
lim, ,, f(a) = f(a) é consequéncia do Teorema 5.9 sobre

limite de funcao constante.

A reciproca do ultimo teorema nao é teorema. Isso significa que
existem fung¢oes continuas nao diferenciaveis.
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EXEMPLO 5.26. Seja f: R — R uma funcao dada por
f(@) = |zl
Para qualquer a € R temos que
lim f(x) = f(a)

r—a

(ﬁl recomendamos que o leitor prove isso, dividindo a demons-
tragao em trés partes: para a < 0, para a > 0 e, finalmente, para
a=0). No entanto, apesar de existir

d
%f ()
para qualquer a # 0, nao existe L real tal que

d
L:%f(l’)

Logo, f € ndo diferencidvel.

r=a

z=0

Este ultimo exemplo revela que ¢ impossivel uma reta tangenciar
a funcao f no ponto (0,0).

Teoremas 5.25 e 5.24 revelam algo de extraordinaria importancia:

Continuidade é uma condicao essencial para diferenciabilidade.

Em virtude disso, temos o seguinte resultado.

TEOREMA 5.26. Seja
f:d—R
uma fungdo tal que f(a) existe e o ponto a pertence a algum

intervalo aberto contido em d. Logo, f € diferencidvel no ponto
a sss existe uma funcao @, continua no ponto a tal que

f(@) = f(a) = pa(z)(z — a).

DEMONSTRAGAO: De acordo com o Teorema 5.24, ¢, é uma
funcao que aproxima continuamente os coeficientes angu-
lares de retas que secam f nos pontos (z, f(x)) e (a, f(a))
(para x # a) do coeficiente angular da reta que tangencia f
no ponto (a, f(a)).

Logo, ¢, é tnica para cada a, tal que p,(a) = f'(a).
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A primeira pessoa a perceber esse tltimo resultado foi Constantin
Carathéodory [33], em 1954. Carathéodory chegou a propor o teo-
rema acima como defini¢cao para funcgao diferenciavel, apesar de aqui
preferirmos a definicao usual. No entanto, esse resultado simplifica
consideravelmente certas demonstragoes de calculo diferencial e in-
tegral (como ocorre no Teorema 6.3, o qual é discutido mais adiante
e permite calcular rapidamente a derivada de fung¢oes compostas).
Observar também que a fungdo ¢, acima mencionada depende do
ponto a. Em outras palavras, para cada a existe uma ¢,.

TEOREMA 5.27. Se u e v compartilham o mesmo dominio e
sao diferencidveis, entao

(wv) = v'v +uv'.

DEMONSTRAGAO:
(uv) = lmn (uv)(z + h})L — (w)(z) _
lmn u(z + h)v(z +hh) —u(z)v(z) _
lim uw(x + h)v(z + h) —u(x)v(z + h) + u(z)v(x + h) — u(x)v(x)_

h—0 h

Mas este ultimo é igual a

lim (u(z + h) —u(x)v(z + h) + u(z)(v(z+ h) —v(x)) _

h—0 h
lim (u(z + h) — u(z))v(x + h) + lim u(x)(v(z + h) —v(z)) _
h—0 h h—0 h
h) — h) —
lim uz+h) - ulz) Jim v(z+h)+1lim u(z)-lim v{z +h) — v() =
h—0 h h—0 h—0 h—0 h
u'(x)v(z) + u(z)v'(x),
uma vez que limy, o v(x + h) = v(z), por conta do fato de
que toda fungao diferencidvel é continua (Teorema 5.25) e

}llii% u(z) = u(x)

por conta do Teorema 5.9 sobre limite de funcao constante.

ﬁ' Uma sugestao divertida de exercicio é provar que
!/ !/ / /
(vow)" = v'vw + w'w + wow’,

se u, v e w sdo fungoes reais diferenciaveis.
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Obviamente fica muito facil demonstrar o resultado acima se o

leitor usar o Teorema 5.27. Consegue estender esse resultado para
uma multiplicacdo entre n funcgoes diferenciaveis, usando indugao
infinita para provar o teorema proposto? Esta é uma 6tima oportu-
nidade para perceber a versatilidade do Teorema 5.27.

TEOREMA 5.28. Se u e v compartilham o mesmo dominio e
sao diferencidveis, entao

(u)’ uw'v — uv'
)=
v v2

desde que v(x) # 0 para todo x pertencente ao dominio de v.

DEMONSTRAGAO:

i U u(@z+h)  u(x)
() = tim sEHR) = 5@) g ven e

v h—0 h h—0 h

u(x + h)v(z) — u(x)v(x + h)

fllig(ll h-v(z)-v(x+ h) -
lim u(x + h)v(z) — u(x)v(x + h) lim 1
h=0 h h=0 v(z) - v(z + h)

Temos assim um produto entre duas ocorréncias de limi-

tes, onde o primeiro pode ser reescrito como
uw(x + h)v(z) —u(z)v(z) + u(z)v(z) — u(x)v(x + h)

— h ‘

Daqui em diante a prova é muito semelhante com o que

foi feito na demonstracao do Teorema 5.27. ﬁl Sugerimos
que o leitor termine.

EXEMPLO 5.27. Seja f: R — R tal que f(x) = 523 — 182% +
16. FEntao, f'(z) = 152% — 36z, sendo f' wma funcdo real com
dominio R.

Teorema 5.28 estende o alcance do Teorema 5.19.

TEOREMA 5.29. Seja f : R — {0} — R wma fung¢io dada por
f(z) = a™, onde n é um real que copia um inteiro negativo.
Entao a funcao derivada f' de [ existe e € tal que

f'(z) = nz™ .
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DEMONSTRAGAO: Se f(z) = 2™ (onde n é uma cépia de um
inteiro negativo), entao
1
f@) ==,
onde —n é um real que copia um inteiro estritamente posi-
tivo. Logo, de acordo com Teoremas 5.28 e 5.19,
0.z —1-(—n)-z!

f,('];) (x_n>2 _

—1-(-n) -zt

$72n

=n - $—n—1+2n‘

Consequentemente, f'(z) = nx™ 1.

Agora sabemos que, em notacao abreviada,
( I‘n)/ —-n l‘n_l

para qualquer n real que copia um inteiro diferente de 0, independen-
temente de n ser estritamente positivo ou negativo. Esse resultado
pode ser estendido ainda mais, como vemos no Teorema 5.31. Mas
antes precisamos de um resultado preliminar.

TEOREMA 5.30. Seja f: R — {0} — R uma func¢io dada por
f(z) = /x. Logo,
lim f(z) = a.

T—a

DEMONSTRAGAO: Se estamos assumindo que f é uma fungao,
naturalmente estamos excluindo a possibilidade de ¢ ser um
inteiro par. Para obter resultado analogo no caso de ¢ par,
basta assumir

f:{zeR|z>0} =R

fm Va7 ylme,

ou seja, a negacao da tese. Logo,

a = limz = lim(¥z)? = <glg1—r>% \‘I/E)q £

r—a T—a

Supor que

q
< a/lim a:) = lim z = a, ou seja, a # a. L
T—a T—a
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TEOREMA 5.31. Seja f : R — {0} — R wma func¢io dada por
f(z) =™, onden é um real que copia um racional diferente de 0.
Entdo a funcdo derivada f' de f existe e € tal que f'(x) = na™ L.

DEMONSTRAGAO: Se estamos assumindo que f é uma fungao,
naturalmente estamos excluindo a possibilidade de n = £

onde ¢ é um real que copia um inteiro par. Para obter
resultado analogo no caso de ¢ par, basta assumir

f:{zreR|z>0} >R

De acordo com o Teorema 5.24,

dr” lpmq 220 z—a

Sen = 5, onde p e g sdo reais que copiam inteiros tais que

q # 0, entao
n __ n Q_ L
. Hh a . xTa aq
hmizhmiz
T—=a T — @ T—=a 1 — Qq

2 P 1 1
. r1T —a1 T1 — a9
lim - - | =
r—a €T — Q ‘/Ea_aa

p P 1 1
. Trae —aa 1 — Q49
lim | — T :
Tr—a Ig_aq TrT — a

1 1
Se fizermos y = x7 e b = as (ver Teorema 5.30, uma vez

Ly P - 2700 oS Z
que este prova que ze é continua), entdo o dltimo limite é
igual a

(Y= y—b oy =0y —b
lim . = lim |
y=b\ y—b y?l—0be

Mas no tltimo termo acima temos exatamente a derivada
de y? em relagdo a y no ponto b (onde p é um inteiro e, por-
tanto, podemos aplicar Teoremas 5.19 e 5.29), bem como
a derivada de y? em relagdo a y no ponto b (onde g é no-

vamente um inteiro estritamente positivo ou negativo), de
acordo com Teorema 5.24.
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Logo, este tltimo termo é
pbp_l/(qbq_l) = gbp_q = na%(pfq) — e =
q

Uma vez que isso vale para todo a do dominio de f, entao

(z™) = nz" L.

Mais adiante, na Secao 66, é possivel provar que tal resultado pode
ser estendido para qualquer n real, desde que x seja estritamente
positivo.

Funcao derivada f’(z) de uma f(z) é também conhecida como
derivada primeira de f(x). Derivada em relagao a x de ordem n + 1
de uma fungao real f(z), se existir, é definida como

dn d [ d
(@) = o (@)

uma vez que ja definimos derivada primeira.

EXEMPLO 5.28. I:

g 2 d o o
@(x — 2z —I—Gx)—%(i’)aj — 4z 4 6) = 6 — 4;
II:
4 2 &,
ﬁ(l‘ — 2z +6x)zﬁ(3x — 4z +6) =
d
2 (62— 4) = 6.
dw<6x )=6

Naturalmente, estamos assumindo que x° —2x?+6x abrevia
uma fungdo polinomial com dominio R.

Comumente derivadas de segunda e terceira ordem sao denotadas
por f” e f"”, respectivamente. Derivadas de ordem n, quando exis-
tem, sdo também denotadas como £,

EXEMPLO 5.29. Se s: R — R é uma funcao tal que
s(t) = —5¢* + 20,
entio s'(t) = —10t e s"(t) = —10.

Com os devidos cuidados, s pode ser interpretada como uma fun-
cao que, localmente, descreve queda livre de um objeto proximo a
superficie da Terra. Com efeito, basta interpretar t como tempo

PAGINA 210



MATEMATICA PANDEMICA PARTES SECAO 50

em sequndos e s(t) como a altura em metros em que o objeto se
encontra relativamente ao solo.

Se assumirmos que, a partir de um estado de repouso relativa-
mente ao solo, o objeto é abandonado em queda livre no instante
0 segundo,

s(0) =20
informa que esse objeto foi abandonado a vinte metros do solo.
No mesmo instante t = 0, a velocidade s'(0) em metros por
sequndo € zero.

Mas, na medida em que o tempo passa, a velocidade aumenta em
valor absoluto. No instante t = 1, por exemplo, o objeto estd a
15 metros do solo e com velocidade de —10 metros por sequndo
(cujo valor absoluto é 10 metros por sequndo). O sinal negativo
da velocidade indica a rota de colisdo em direcao ao ponto zero,
0 solo. Isso porque estd em queda livre (sem resisténcia do ar ou
outros agentes fisicos).

Durante todo o tempo de queda, a aceleragio s”(t) € constante,
no valor de menos dez metros por sequndo por sequndo. Mas
este mapeamento da queda livre pela fungdo s s6 € possivel no
intervalo aberto (0,2), uma vez que no instante 2 sequndos o
objeto atinge o solo. Afinal, s(2) = 0.

A partir da Segdo 54 discutimos sobre fungoes circulares (seno, co-
seno, secante, co-secante, tangente e cotangente), as quais nao sao
polinomiais ou reais racionais. Antes, porém, é conveniente conhe-
cermos um pouco sobre sequéncias reais e séries.

SEGAO 50
Sequéncias e séries

SUMARIO

INDICE
‘e agora em diante, sempre que falarmos de sequéncias, estamos

nos referindo a sequéncias reais (a nao ser que seja avisado o con-
trario), ou seja, fungdes x cujas imagens x,, sa0 nimeros reais e cujos
dominios sdo w ou w — {0}.

REDE

Por abuso de notagao estamos adotando a notacao w para designar
os reais que copiam naturais. Neste primeiro momento trabalhamos
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com sequéncias cujos dominios sdo w— {0}, onde 0 é o neutro aditivo
dos reais.

DEFINIGAO 5.25. Seja x uma sequéncia cujas imagens SGo T, .
A soma parcial S, de x é definida como

Sn:x1+x2+---+xn:2xi.
i=1

Ou seja, toda soma parcial de uma sequéncia x é a soma das
primeiras n imagens de x.

Deve ficar claro ao leitor que a definicao de soma parcial é possivel
por conta da relacdo de ordem total < entre os naturais, além do
fato de que qualquer conjunto de niimeros naturais admite menor
elemento relativamente a <. Gragas a isso é possivel qualificar o que
sao as primeiras n imagens.

ExeEmpLO 5.30. 1. sex, =7, entao
Sy=T4+7+7+7=28.

II: se x, = %, entao
11 1 1
Ss=14+-+-+-+=
5T Tty
ou seja, Sy = %. Em notacao decimal, S5 = 2,2833333 - - - ;
II1: se x, = %, entao
5106 = Sl 000000 — 14, 3927267 - - - 5
além disso,
51043 < 100

ﬁ' @ Consegue provar a ultima desiqualdade?

DEFINICAO 5.26. Dada uma sequéncia x,, a série

2 @n

€ a sequéncia de somas parciais S, de x,.

ExeEmpPLO 5.31. I. sex, = 7, a série > x, € a sequéncia
cujas imagens sao 7, 14, 21, 28, ---; em outras palavras,

@, = {(1,7), (2,14), (3,21), (4,28),- - };
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II: se x, = %, entao a série Z% ¢ uma sequéncia cujas pri-
meiras 1magens SG.o
3 11 50 137

9 6 a0 60

E imprescindivel que o leitor nao confunda somatorio

n
> T
i=0
como uma série
S,

No primeiro caso, temos uma soma de n + 1 termos. No segundo
caso temos uma sequéncia de somas parciais de uma dada sequéncia.

Intuitivamente falando, uma série opera como uma ‘soma de in-
finitas parcelas’. No entanto, uma vez que adicao de reais é uma
operacao bindria, ndo é possivel definir qualquer soma que envolva
quantias nao finitas de termos (apesar da associatividade da adigao
de reais). Para contornar essa dificuldade, introduz-se os conceitos
de soma parcial (toda soma parcial é um somatério) e de sequéncia
de somas parciais (fun¢des com dominio w ou w — {0}).

DEFINIGAO 5.27. Dada uma sequéncia x,, sua Série corres-
pondente
>

converge $ss a sequéncia de somas parciais S, de x, converge.
Caso contrdrio, dizemos que a série diverge.

A série
1
2y
¢é chamada de série harmonica.

Como foi ilustrado no EXEMPLO 5.30, se somarmos as primeiras
10*® imagens (dez milhoes de quintilhoes de quintilhdes imagens) da
sequéncia x,, = %, sequer alcancamos a soma 100. Logo, é natural
questionar se a série harmonica converge, ou seja, se ha um limite
para a sequéncia de somas parciais associadas a x, = % Como se
percebe no préximo teorema, esse limite nao existe.

TEOREMA 5.32. A série harmonica diverge.
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DEMONSTRACAO: A soma parcial S, de % é dada por

il
2 3 n

A soma parcial Sy, é dada por
1

n+1 n+2 ' Ty

1+1+1+ +1—|—
2 3 n

Logo,

Mas,
1 1 1 1 1 1
ntl nr2 Tt ot T Ty
desde que no lado direito da tltima desigualdade existam n

ocorréncias de % No entanto,
1 i 1 o 1 1
2n  2n on " n o 2

Logo, S, — S, > =.
Lembremos agora que uma sequéncia S, é de Cauchy sss
Ve>030>0((m>0An>0)=|S,— S <e).

Paraocasoem quem =2nec = %, temos que a condicional
da defini¢ao de sequéncia de Cauchy jamais é satisfeita para
qualquer ¢ real maior do que 0, uma vez que

1
|Sgn = Sn| > 5

Logo, a sequéncia de somas parciais 5,, nao é de Cauchy.
Uma vez que toda sequéncia convergente é de Cauchy, entao
S, nao é convergente.

Esse ultimo teorema, em parceria com o resultado Sjgs < 100,
mostra que a divergéncia da série harmonica ¢ muito lenta. Mas, a
passos muito lentos,

(2

L
!

sempre ultrapassa qualquer ntimero real. Basta escolher n suficien-
temente grande.
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A contrapositiva do préximo teorema nos fornece uma condigao
suficiente para uma série ser divergente.

TEOREMA 5.33. Se Yz, converge, entao x, — 0.

DEMONSTRAGAO: Se Y x, converge, entao existe real L tal

que
n
lim 999 = I,
Jim Bz,
i=0
Mas
n n—1 n—1
lim z; = lim (z z; | = lim z lim ;.
n—>oozo ! n—00 ”+ZO g n—00 n+n—>oozo ¢
1= 1= (=

Uma vez que
n—1
lim x; =L
n—)oo;) v ’
1=

entao
L= lim x, + L.
n—oo

Logo, lim,, o, x,, = 0.

Ou seja, se x,, ndo converge para zero, entao > x, diverge.

Como vimos acima, a reciproca deste ultimo teorema nao é teo-
rema. Com efeito, % — 0, mas

> -
n
diverge.

Mesmo assim, Teorema 5.33 oferece uma condicao necessaria para
uma série ser convergente, apesar de nao ser suficiente.

Na literatura de calculo diferencial e integral padrao e analise mate-
matica ha discussoes pormenorizadas sobre sequéncias e séries reais,
incluindo outros critérios de convergéncia de séries, além do Teorema
5.33. Para finalizar esta Se¢ao, mencionamos um desses critérios, o
qual é usado mais adiante.

TEOREMA 5.34. Seja Y x, a série real correspondente a Se-
quéncia real x,. Logo, se
Tn+1
xn

lim <1
n—oo
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entdo Y. x, € convergente.

Mais do que isso, é teorema que Y |x,| converge se

Tn+1
Tp

< 1.

lim
n—oo

@ A prova desse resultado pode ser encontrada em textos de
analise matematica. Nao é uma demonstracao dificil, mas foge dos
propositos deste livro.

SECAO 51
Resumo da épera

L

sta quinta parte pode ser resumida como se segue.

e Numeros reais sao classes de equivaléncia de sequéncias racionais
de Cauchy. Se um representante qualquer de um real r» é uma
sequéncia de Cauchy convergente, r é um real racional (nao
confundir com racional). Se um representante qualquer de um
real r € uma sequéncia de Cauchy nao convergente, r é irracional.

e Entre os reais ha operagoes de adi¢ao e multiplicacao que preser-
vam as propriedades algébricas de adicao e multiplicacao entre
racionais. No entanto, os reais tém uma propriedade algébrica
que nao conta com equivalente entre racionais: toda sequéncia
de Cauchy de reais é convergente.

e Complexos podem ser definidos como pares ordenados de reais.
Entre os complexos ha operacoes de adi¢cao e multiplicacao que
preservam as propriedades algébricas de adi¢ao e multiplicacao
entre reais. No entanto, os complexos contam com uma pro-
priedade algébrica que nao ocorre entre reais: a existéncia de
um termo cujo quadrado é o simétrico aditivo do neutro multi-
plicativo.

e Uma vez que a linguagem & de ZF finalmente permite qualificar
naturais, inteiros, racionais, reais e complexos, estamos pronto
para iniciar estudos de célculo diferencial e integral padrao. Ini-
ciamos isso com os conceitos de limite e derivada.
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e Derivadas sao casos especiais de limites, no contexto do calculo
padrao.

e As defini¢oes de limite e derivada de uma funcao real nao sao
amigaveis para fins de calculos. Por conta disso, os teoremas
sobre limites e derivadas sao indispensaveis para compreender o
carater epistemolégico e metodolégico do calculo padrao.

SECAO 52
Notas historicas

\\ \ 4 /7

N que define calculo diferencial e integral é o Teorema Fundamen-
tal do Calculo, assunto a ser discutido adiante. Neste sentido, as
primeiras ideias intuitivas sobre calculo diferencial e integral padrao
nasceram com a obra de Isaac Newton, no século 17.

STUDIES IN LOGIC
AND THE
FOUNDATIONS OF MATHEMATICS
L.E.J.BROUWER | A.HEYTING/A. ROBINSON/P. SUPPES
EDITORS

Non-standard

Analysis

A. ROBINSON

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM

CAPA DA PRIMEIRA EDIQAO DO LIVRO DE ABRAHAM ROBINSON
Fonte: Evening Star Books.
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O movimento de analise matematica surgido no século 19 viabili-
zou os conceitos hoje estudados sobre limites e derivadas. Parale-
lamente ao trabalho de Newton, Gottfried Leibniz desenvolveu, de
forma independente, ideias semelhantes, porém enfatizando o papel
de infinitesimais para conceituar derivadas. Um infinitesimal ¢ é um
termo estritamente positivo menor do que qualquer real estritamente
positivo. Além disso, podem existir infinitesimais ¢ tais que ¢ > 0 e
¢? = 0. Logo, infinitesimais ndo podem ser niimeros reais.

Somente no século 20, gracas ao trabalho de Abraham Robinson,
infinitesimais foram formalizados de maneira clara, dando origem
a andlise nao standard. Hoje se sabe que infinitesimais sao casos
particulares de hiperreais e surreais, os quais estendem os ntmeros
reais. Tanto hiperreais quanto surreais conseguem copiar os reais.

7" N
\ ‘2
¢~ \Ll/?
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PARTE 6

Funcoes circulares, exponenciais e
logaritmicas

Aqui exploramos certas fungoes transcendentes, as quais sao fun-
¢oes reais nao racionais. Mas, antes, precisamos saber mais sobre
sequeéncias, séries e derivadas.

SEQAO 53
( Equacodes diferenciais
SUMARIO
. , L InpICE
AZkm conceito importante é o de operador diferencial. Nao pre- REDE

tendemos conceituar operadores diferenciais. Mas um caso particular
perfeitamente til para os nossos propésitos é o que se segue.

Seja § um conjunto de fungdes f : R — R tais que, cada f admite
derivada de ordem n. Logo, a funcao ®© : §f — § dada por

Q(f) = Z Oéif(i)
i=0

é um operador diferencial definido sobre f, onde cada «; é um
ntimero real e cada f® é uma derivada de f, em relacdo a x, de
ordem i, se 1 <i<mn,e fO = f.
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Uma definicao mais ampla deveria assumir que cada «; ¢ uma fun-
cao
a; R — R.
Nao obstante, isso ainda nao cobre o espectro de todos os possiveis
operadores diferenciais. A definicdo dada acima ja é o bastante para
0S N0SSos propositos.

Uma vez que f admite derivada de ordem n, naturalmente admite
qualquer derivada de ordem 7, desde que i seja menor ou igual a
n. Isso é consequéncia imediata da definicdo de derivada de ordem
superior.

EXEMPLO 6.1. Seja f o conjunto de todas as fungoes reais poli-
nomiais
p:R—R.
Logo, ® : § — §, dada por

¢ um operador diferencial

Z azf(l) )
1=0

onden =1, ap = 0 e oy = 1. Isso itmplica que a derivada
primeira de qualquer funcdo polinomial é um operador diferen-
cial.

EXEMPLO 6.2. Seja f o conjunto de todas as funcoes reais
p:R—-R
que admitem derivada terceira. Logo,
E:f =,
dada por
E(f)=5"-2f"+ [,

€ um operador diferencial

1=0

onden=3,ap=0,a; =1, ag = =2 e azg = 5. Isso implica que
a derivada primeira de qualquer funcdo de f subtraida do dobro
de sua derivada sequnda e somada do quintuplo de sua derivada
terceira é um operador diferencial.
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EXEMPLO 6.3. Seja f o conjunto de todas as fungoes reais poli-
nomiais p : R — R. Logo,

H:F=T
dada por

¢ um operador diferencial
i=0

onden =1, ag =0 e oy = 0. Logo, a fungcdo constante iden-
ticamente nula no espago de funcoes polinomais, € um operador
diferencial.

Deve ficar claro que cada parcela de um operador diferencial
©(f> = Zaz‘f(i)
i=1

também define um operador diferencial. Além disso, cada f® é um
operador diferencial, para ¢ > 1. O somatoério acima é chamado de
combinacdo linear dos operadores diferenciais f). Logo, qualquer
operador diferencial é uma combinacao linear de operadores diferen-
ciais.

ﬁ&l E teorema fcil de provar que, se © é um operador diferencial,
entao

D(f+9) =2(f) +D(9)
e, além disso,
D(cf) = D(/),

onde ¢ é uma constante real.

Agora podemos definir o que é uma equacao diferencial, pelo menos
para os nossos modestos propoésitos neste livro. Uma equacdo difer-
encial é uma equacao u = v onde ocorre pelo menos um operador
diferencial em u ou v. A rigor, estamos tratando aqui apenas de
equagoes diferenciais definidas sobre espagos de fungoes reais.

EXEMPLO 6.4. Seja y : R — R uma funcao que admite deri-
vada de qualquer ordem. Logo,

y'+y=0
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¢ uma equagao diferencial. Com efeito, essa equacao € equiva-
lente a
D(y) =0,
onde ® : § — | € o operador diferencial dado por
D) =y" —vy.

Essa equagdo diferencial em especial é de grande interesse, como
se percebe na Secao 5.

O estudo e a aplicacao de equacgoes diferenciais é a principal meta
do calculo diferencial e integral.

SECAO 54
( Séries de poténcias
SUMARIO
o _ . INDICE
A&kma funcao f é chamada de classe C* sss f admite derivada de REDE

ordem n, para qualquer n inteiro estritamente positivo.
Seja f : R — R uma funcao tal que
fz) =) a,a"
Podemos representar f da seguinte maneira:
f(z) = ap+ a17 + a2® + azz® + - + apa” + -,
onde assumimos a convencao x° = 1 para qualquer real .

Funcgoes como essas sao chamadas de séries de poténcias. Ou seja,
fungoes f definidas por séries de poténcias sao aquelas em que, cada
x do dominio de f, admite uma imagem f(x) dada pela série acima.

E usual escrever séries de poténcias como

o
Z a,x"
n=0
ou
(o 0]
Z a,x",
n=k

sendo k£ um inteiro positivo.

TEOREMA 6.1. Toda funcdo definida por uma série de potén-
cias € de classe C*™°.
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DEMONSTRACAO: Cada soma parcial S, de Y a,z™ é uma
funcao polinomial. Uma vez que toda fun¢do polinomial
admite derivada de qualquer ordem, entao Y a,x" admite
derivada de qualquer ordem.

Adotamos aqui o emprego de séries de poténcias para representar
certas func¢oes. Lembrar que, para todo x real, temos
ao+ a1z +asr? +aszd+- -+ anz™ = bg+b1x+box® + b3+ - -+ bz

sss a; = b; para todo i de 0 a n (ver discussao na Secao 43). Uma vez
que séries de poténcias sao sequéncias de somas parciais definidas
por polinémios, entao

Z a;xt = Z b;x’ sss a; = b;

para todo ¢ natural.

Para fins de ilustracao, consideremos a funcao y : R — R tal que

y'(z) +y(z) =0
y(0)=0
y'(0) = 1.

Esta fungao é conhecida como seno. Abreviamos y(x) como
sen(x), neste caso. Lemos sen(x) como ‘seno de .

Se y"(z) + y(x) = 0, entdo y"(x) = —y(x). Se existir série de
poténcias para representar y, temos o seguinte:

y(z) = ag + a1z + agx® + asz® + ayx* + asx® + agz® + agz” + - -

Y (z) = a1 + 2a2% + 3azz® + 4a4x® + Sasz* + 6agz® + Tarz® + - -
y'(x) = 2ag + 3.2a37 + 4.3a42” + 5.4as2® + 6.5a¢x* + 7.6a72° 4 - - -

sendo

—y(x) = —ag — a1 — apx® — a3z’ — ayx* — asx® — agx® —arr’ — - --
Logo,
_ —Qo Ut TGz Qo _—a3 a4
2=y BT g MT Y3 T 432 BT 54 5432

uma vez que os coeficientes dos monoémios de grau m das somas
parciais de y”(x) devem ser iguais aos coeficientes dos monémios de
grau m das somas parciais de —y(x).
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Ou seja,
—Qo — Qo
a/2 = — CLS = — a4 =
2 3.2 4.3.2°
aq —Qo —aq
as

5432 M 65432 Y 765432
e assim por diante.

Em outras palavras, a igualdade y”(z) = —y(z) permite reduzir a
infinidade de coeficientes a,, da série de poténcias de y(x) a apenas
dois coeficientes, a saber, ag e a;. Conhecer os valores de ag e a;
permite determinar todos os demais a,,.

Mas seno nao é definida apenas por y”(x) = —y(x). As condigoes
de contorno também fazem parte da definigao. Observar, por exem-
plo, que y(0) = ag e ¥'(0) = a;. Logo, ag = 0 e a3 = 1. Logo,
apar = 0. Além disso, cada @impar ¢ diferente de 0, como se percebe a
seguir:

-1 1 -1 1
a; =1, @3:§, CL5:§, G7:W, @9:@

e assim por diante.

Basta agora substituir os valores dos coeficientes a,, na série de
poténcias correspondente a y(z). Portanto,

x> ° oz’
y(x):x—ijLﬁ—ﬁ-l-“-
Ou seja,
( ) i( 1)n x2n+1
sen(z) = 1),
— (2n +1)!

sendo que » 7, denota apenas uma série .

ﬁl A dltima férmula pode ser facilmente demonstrada por in-
dugao infinita. Basta usar a defini¢ao de seno dada acima. Recomen-
damos como exercicio, uma vez que a notagdo acima empregando
reticéncias (- -+ ) ndo é uma préatica matematicamente elegante.

Nessa discussao ¢ imprescindivel que o leitor perceba o seguinte:
seno, por definicdo, é uma funcao y : R — R que satisfaz uma
equagdo diferencial sujeita a duas condigoes de contorno. A equagao
diferencial é y” + y = 0; as condigoes de contorno sao as férmulas
y(0) = 0 e ¢(0) = 1. Ou seja, seno é uma funcao y cuja derivada
segunda ¢ o simétrico aditivo de y, tal que seno de zero ¢ zero e a
derivada primeira de seno no ponto zero ¢ um.
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Para garantir a consisténcia do que fizemos até agora (admitindo
que ZF é consistente), precisamos do préximo teorema.

TEOREMA 6.2.

[ee) :L.Q'n—l—l
sen(z) = nZ:O(—l)"(Qn—w

converge para todo real x.

DEMONSTRAGAO: Aplicando Teorema 5.34, temos que

ndtl 2D+
r (—1) * IO+ | (2n+1)! 2
i} pam | = dm ol =
(=" Gty (2n +3)!
1
lim ||

n—oo (2n 4 3)(2n + 2)

Mas, para qualquer z real, o dltimo limite é 0, o qual é
menor do que 1. Logo, Teorema 5.34 garante a convergéncia
da série em questao.

Logo, a série de poténcias

o) x2n+1

Z<_1)n(2n+ 1)!

n=0

permite de fato definir uma fungdo y : R — R que atende as
condi¢oes impostas na definicao de seno.

Para efeitos computacionais, é possivel programar uma maquina
para gerar aproximacoes de seno de um real x qualquer com a pre-
cisao desejada. Para isso basta truncar a série de poténcias acima.
Na representacao grafica abaixo a fungao

0 p2n+l
em azul, ¢ uma primeira aproximacao de seno de z. A funcao
6 2n+1 3 5 7 9 11 13
x x x x x 0 x
= —1 n___ - —_— _—— — _—— — —_—
9(@) n;( oy Rkt TR I I TR TR E TR

em vermelho, é uma aproximacao que trunca a série na sétima parcela.
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Y

A funcao co-seno é uma funcao y : R — R tal que
y'(z) +y(z) =0,
y(0) =1

y'(0) = 0.

Ou seja, co-seno de x, abreviada como cos(z), é definida a partir da
mesma equacio diferencial usada para conceituar seno. A diferenca
entre seno e co-seno reside Unica e exclusivamente nas condigoes de
contorno y(0) e y/(0).

Usando as mesmas técnicas empregadas para representar seno por
uma série de poténcias, é possivel provar que

2 4 6 8

cos(x)zl—x—+£_£+£_...:i(_l)n

1.271
ol "4l 6l 8l = (2n)’

onde cos(z) = y(x).
z@' E teorema a convergéncia da série acima. Recomendamos a
prova deste resultado.

Uma vez que seno e co-seno podem ser representadas por sequén-
cias de somas parciais, onde cada soma parcial ¢ um polinémio, entao
fica facil demonstrar que

—sen(z) = cos(x).

dz
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Analogamente, é facil provar que

d
%cos(x) = —sen(z).

Por exemplo,

d d< #  a @ )
—sen(z)=— |2 — =+ —=—=+:-: | =

. o 3T T
2 z* b
1_§+E_a+~--:cos(m).

Uma vez que seno e co-seno foram definidas a partir da mesma
equacao diferencial, mudando apenas as condig¢oes de contorno, é
natural questionar quais sao as possiveis solugoes para a mesma
equagao diferencial sob condig¢oes de contorno arbitrarias, nao ape-
nas aquelas usadas para definir seno e co-seno. Ou seja, considere
uma funcao y : R — R tal que

y'(x) +y(z) =0,
y(0) =a

onde « e 3 sdo reais quaisquer.
Se existir série de poténcias para representar y, temos o seguinte:
y(z) = ag + a1 + agx® + asx® + agx* + a5z + - -
Y (z) = a1 + 2097 + 3azx® + 4asx® + Sasz® + 6agz® + - - -

y'(x) = 2as + 3.2a37 + 4.3a42° + 5.4a52° + 6.5a6x* + 7.6a72° + - - -
sendo

—y(l’) = —Qp — a1 — CLQZL’2 — CL3I3 — CL4ZE4 - CL5.T5 — CL6I6 — CL7ZE7 —

Logo,
a —ag a —a a —asz Qo a —as a

2 3.2 4.3 4.3.2’ 5.4 5.4.3.2°
Ou seja,
—0o — Qo
a/2 = — CLS = — a4 =
2’ 3.2 4.3.2’
ay —ao —

%= 5432 %" 55432 Y T 765432
e assim por diante.
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Mas y(0) = a e y/(0) = 8. Logo, ap = o e a3 = 3. Logo,

y@)=a+fr— -+ O P
ST R R R TR 7

ou seja,

Zl?2 954 {E6 :BB £B3 335 $7
a<1—2!+4!—6!+8!—"'>+6<l‘—.+—.+"‘>

Logo, y(x) = accos(x) + Psen(z).
Observar que

y'(x) = —asen(z) + S cos(z).

Logo, y(0) = a e y'(0) = S

A prova de que y(z) = acos(z) + fPsen(z) é solugdo da equagao
diferencial y” 4+ y =, sob condi¢des de contorno y(0) = « e 3/ (0) = 3,
¢ de interesse no estudo de dlgebra linear. Detalhes nas Secoes 84 e
85.

MORAL DA HISTORIA: A equagdo diferencial y”(z) + y(xz) = 0
admite uma infinidade de solugdes. Uma vez definidas as condicoes
de contorno y(0) = o e ¢/ (0) = 3, temos uma tnica solucdo expressa
por uma combinacao linear de seno e co-seno (ou seja, a adigdo entre
acos(z) e Psen(x)). Em particular, se « = 5 =0, y(z) = 0. Logo, a
fungao constante y : R — R dada por y(z) = 0 também é solucao da
equagao diferencial dada, desde que as condi¢oes de contorno sejam
y(0) =0ey'(0) =0.

As fungoes seno e co-seno admitem interpretacoes geométricas no
contexto de triangulos retangulos em geometria plana. Mas, para
que sejamos capazes de contemplar esse fato, precisamos de algumas
consideragoes dadas a seguir.

SEQAO 55
( Derivada de composicao de funcoes

presentamos aqui uma poderosa técnica para calculo de deriva-
das de composi¢oes nao triviais de fungoes reais.
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TEOREMA 6.3. Sejam u = u(v) e v = v(x) fungdes reais di-
ferencidaveis em relagio a v e x, respectivamente, que admitem
composicao uov. Logo, u € diferencidvel em relacao a x e

DEMONSTRAGAO: Devemos provar o seguinte: se v é diferen-
ciavel no ponto a e u é diferenciavel no ponto v(a), entao
uov é diferencidvel em a e

(uov)'(a) =u'(v(a)) - v'(a),
onde p
W/(v(e)) = (o)

e as demais derivadas sao em relacao a x no ponto a. Isso

porque

u(z) = u(v(z)).
De acordo com o Teorema 5.26, existe funcao continua ¢,
(nas condigoes impostas pelo teorema) tal que

v(x) —v(a) = pa(x — a).
Analogamente, existe funcdo continua ¢, tal que

u(z) = u(v(a)) = pu@(z —v(a)).

v=v(a)

Logo,

(uov)(z) — (uov)(a) = u(v(z)) —u(v(a)) =
Pu(a)(v()) - (v(z) — v(a) = (Pu@) © V) - Pa(T) - (2 — a).
Mas (¢y(q) © V) - @, € continua no ponto a, com valor

u'(v(a)) - v'(a)
no ponto a.

Uma vez que isso vale para todo a do dominio de v (e,
consequentemente, do dominio de u o v), entao a prova esta
concluida.

Comumente o teorema acima ¢é escrito como
du  dudv
de  dvdx’
Apesar do carater mnemonico da férmula acima, a qual parece
sugerir uma ‘simplificacao’ de dv com dv no lado direito da igualdade
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(restando apenas g—g), obviamente este nao € o caso. Com efeito, uma

derivada como g—z nao é uma razao entre um real dv e um real dx.
Uma vez que derivada € o limite de uma razao, Teorema 5.28 garante
que o limite de uma razao é a razao entre limites, desde que o limite
do denominador seja diferente de zero. No entanto, este nao é o caso

do conceito de derivada, de acordo com a Defini¢ao 5.20.

EXEMPLO 6.5. Seja u : R — R uma fungdo tal que u(z) =
(322 + 2x)2. Como calcular 3“7
Técnica 1: sem empregar Teorema 6.3, temos que
u(z) = 9zt + 122° + 42%;
logo,
d
o 362° + 3622 + 8x;
dx

Técnica 2: usando Teorema 6.3, podemos reescrever a fungdo

u como uma composicao, onde u(v) = v? e v(z) = 3z%+2z; logo,

du _ du dv

dz ~ dvdx

20(6x + 2) = 2(3z% + 22)(6x + 2) = (62° + 4x)(6x + 2) =
362> 4 122 + 242% + 8x = 362> + 3622 + 8z.

Técnica 2 (ou seja, empregar Teorema 6.3) acima pode ser incon-
veniente para o exemplo dado. No entanto, ela se mostra muito
eficiente para uma fungao u : R — R tal que u(z) = (32 + 2x1)%.
Afinal, ndo é uma boa ideia desenvolver (322 + 2)3® em sua forma
polinomial antes de derivar em relacao a x. Portanto, mais uma vez
percebemos o enorme poder de teoremas. A meta, num momento
como esse, é sempre a mesma: economia de pensamento.

Logo, se u(z) = (3x2 + 22)3%, entao

u'(z) = 38(6x + 2)(3z% + 22)%".

EXEMPLO 6.6. Quanto é

d
%Sen(:pz)?

Neste caso, u(v) = sen(v) e v(z) = x2. Logo,
d _dudv

_— 2y 27277 o 2 ) 2 )
dxsen(:c ) 7o da cos(v)2z = cos(x”)2x = 2x cos(x”)
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EXEMPLO 6.7. Quanto é
ngsen2(x)?
Neste caso, u(v) = v? e v(z) = sen(zx). Logo,
d du dv
Jpsen (x) = o 2v cos(x) = 2sen(x) cos(x).

@ ﬁl Em 1800 Louis Frangois Antoine publicou em um livro
de célculo uma generalizacao do Teorema 6.3, hoje conhecida como
formula de Faa di Bruno. Esta permite determinar a derivada de
qualquer ordem n de uma composicao de duas fungoes, sem a neces-
sidade de calcular as derivadas de ordem anterior a n. Demonstrar
a férmula de Faa di Bruno por indugao infinita pode ser uma tarefa
um tanto exaustiva. Mas o leitor estd convidado a pensar sobre o
assunto.

SEQAO 56
( Funcao exponencial

.xiste uma importante relacdo entre funcoes circulares (seno e
co-seno) e fungdo ezponencial, a qual é uma das mais comumente
empregadas em inimeras aplicacoes, incluindo estatistica. Antes de
estudarmos isso, precisamos definir exponencial.

DEFINICAO 6.1. Exponencial € uma funcao y : R — R tal que

Y (z) = y(z)

y(0) = 1.
Abreviamos y(x) como exp(z). Lemos exp(x) como ‘exponencial
de x'.

Ou seja, exponencial é uma funcao y que é solugao de uma equacao
diferencial (y' = y) com uma condigdo de contorno (y(0) = 1).

Se existir série de poténcias para representar y(z) = exp(x), temos:
y(z) = ag + a1 + agx® + asz® + ayx* + asx® + agz® + agz” + - -

Y () = a1+2as0+3as2x? +4ayx® +5a52* +-6ag2° +Tazx® +-8agx 4 - - .
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Logo,

ai Qg 45 Qo as ao
alza/07 CLQZ—:—7 algz—:i’ a4:—_

2 2 3 3.2 4 4392

Uma vez que y(0) = 1, temos ap = 1. Logo
2 1‘3 134 00

6Xp()—1+l’+§+§+1+ —:Oﬁ

ﬁ&l Sugerimos ao leitor provar a férmula acima por inducao.

Observar que

4y +x2+x3+x4+ =1+ +x2+I3+x4+
B = — 4 — = i = — 9F —
dz 2! " 3 2l ' 3

ou seja,
G \Znl) = 2
n=0 """ n=0
o que confirma a condigao y' = y.
Para efeitos computacionais, é possivel programar uma maquina
9
para gerar aproximagcoes de exponencial de um real x qualquer com

a precisao desejada. Para isso basta truncar a série de poténcias

acima.
,,y

=2 —1.5 =1l —0.5 0.5 1 1.5 2
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Na representacao grafica acima a fungao

em azul, é uma primeira aproximacao de exponencial de x. A funcao

2 SUS 1'4 LE’5 376 LU7

7 n
X x
9@ =2 r=ltrt gttt et

em vermelho, é uma aproximacao que trunca a série na oitava parcela.

TEOREMA 6.4. A série
(oe) :En
n=0 ’I’L'

converge para todo x real.

DEMONSTRAGAO: Aplicando Teorema 5.34, temos que

mn+1
e | = e e = e e

Como 0 < 1, entao a série em questao converge.

Portanto, a série de poténcias acima de fato pode ser usada para
representar exp(x).

SEgRO 57
( Propriedades de funcoes circulares

avs fungoes seno, co-seno e exponencial podem ser estendidas para
o corpo C dos complexos. Detalhes em livros sobre func¢oes com-
plexas. Logo

. o (ix)® (iz)d ()7 Y~ I L
sen(iz) = ix — 6 + I _...:m+@§+15+2ﬁ+...
Analogamente,
L (iz)?> (i)t (iz)®  (iz)8 B
cos(ix) =1 — 51 + RG] + o=
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| 2 1‘4 176 IS
+ o7 + 1 + o + 3l 4 -

onde ¢ é uma abreviagdo para a unidade imaginaria introduzida na
Secao 40.

Ver Secao 40 para lidar com as poténcias n acima.

No entanto,
N g @) () (i) _
exp(iz) = 1 + iz + s T Ty TS
.732 .733 I4
1+m——2! —2—3! _1_74! +

Logo, podemos rearranjar os termos da série de poténcias como se
segue:

1 w2 - z° , O
exp(ix) —§+Z_a+...+z x_§+§_ﬁ+

Ou seja,

exp(ix) = cos(x) + isen(x)

A ultima férmula é o célebre Teorema de Fuler.

TEOREMA 6.5. Sejam « e B numeros reais quaisquer. Logo,
exp(a) exp(B) = exp(a + f).

DEMONSTRAGAO: Considere a equagao diferencial v’ = u com
a condicao de contorno u(0) = exp(«). Se

y:R—-R

for uma funcao tal que

y(x) = exp(a) exp(),
entao Teorema 5.20 garante que

y'(v) = exp(a) exp(),
ou seja,

y =y
Além disso,
y(0) = exp(a),

uma vez que Definicdo 6.1 diz que exponencial de 0 é 1.
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Agora, seja z : R — R uma funcao dada por
z(z) = exp(a + ).
Teorema 6.3 garante que
' (x) = exp(a + ),
uma vez que a derivada, em relacao a x, de a+x é 1. Logo,
zZ =z

Além disso,
2(0) = exp(a).

Logo, ambas as fungoes

y(r) = exp(a) exp(x)

z(x) = exp(a + )
satisfazem a mesma equagao diferencial com a mesma con-
dicao de contorno.

Uma vez que v’ = u, com u(0) = exp(a), admite uma

unica solucao para qualquer real « (@E‘ recomendamos ao
leitor que prove isso), logo,

exp(a) exp(z) = exp(a + x).

Para concluir a prova, basta fazer z = f3.

No Teorema 6.21 (a ser examinado adiante) é provado, entre outras
coisas, que exponencial exp(r) de qualquer real r é um real estrita-
mente positivo. Logo, no contexto da demonstracao acima, fica claro
que a equagao diferencial ¥ = y com condigao de contorno y(0) =,
admite solucao se v > 0. Se v < 0, ndo ha solugao alguma para o
mesmo problema de contorno.

Lembrar que uma solugdo y de uma equacao diferencial D(y) = g
(onde © é um operador diferencial e g é uma funcio real) é uma
funcao tal que a formula ®(y) = g é teorema de ZF. Naturalmente,
y' =y é um caso particular de D(y) = g.

TEOREMA 6.6. Sejam [ e v reais quaisquer. Logo,
cos(f + ) = cos(3) cos(y) — sen(f)sen(y)

sen(B +7) = sen(B) cos(y) + cos(B)sen(7).
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DEMONSTRAGAO: De acordo com o Teorema de Euler,
exp(if + i) = exp(i(8 + 7)) =
cos(f + ) + isen(S + 7).

No entanto,
exp(i) exp(iy) = (cos(B) + isen(8)) (cos(y) + isen(7))
que ¢ igual a
cos(8) cos(vy) — sen(B)sen(y)+
i(sen(B) cos(y) + cos()sen(7)).

Uma vez que
exp(if3) exp(iy) = exp(if + i7)
(uma generalizagdo do Teorema 6.5 que pode ser demons-

trada de forma andloga), comparando as partes reais e ima-
ginarias, temos as duas igualdades a seguir:

cos( + ) = cos(B) cos(y) — sen(B)sen(y)

sen(f + v) = sen(pB) cos(7y) + cos(B)sen(y).

z@' Observar que seno ¢ uma fung¢ao impar, i.e.,

sen(—z) = —sen(z).

Logo,

sen(8 — 7) = sen(B) cos(y) — cos(B)sen(7).

Teorema analogo pode ser obtido, notando que cos(—7) = cos(7).

cos(3 — ) = cos(3) cos(7) + sen(B)sen(y)

Ou seja, para compreender propriedades das fungoes seno e co-seno
sobre reais, ajuda muito conhecer as mesmas sobre os complexos.

DEFINICAO 6.2. Seja f : d — R uma funcao, sendo d C R.
Dizemos que F': d — R € uma primitiva de f sss
dF(x)
dr ().
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EXEMPLO 6.8. 1: Seja f: R — R tal que
f(z) = 623 — 2z + 5;
logo, para cada c € R, F': R — R, tal que

F(z) = Z:E4—x2+5x+c,
¢ uma primitiva de f;
1: sejay : R — R uma funcao tal que
y(z) = sen(z);
logo, para cada c € R, Y : R — R, tal que
Y (z) = —cos(x) + ¢,

¢ uma primitiva de y.

Se F' e (G sao primitivas de f, entdo, para todo x pertencente ao
dominio de f temos
F(z) =G(z) +c,
para alguma constante real c. Basta derivar em relacao a x ambos
os lados da igualdade acima. Logo,

d d d d d
Mas, por hipdtese,
d P B d G B
Air () = f(z) e dr (z) = f(=)

Logo, primitivas F' e G de uma mesma funcao real f diferem entre
si apenas por uma constante real c. Esse fato repercute significati-
vamente no estudo das fungoes seno e co-seno, entre outras. Para
ilustrar essa ultima afirmacao, ver a discussao a seguir.

Como vimos anteriormente,

—sen®(z) = 2sen(x) cos(z).

dz
Entretanto,
d o
el - _9
€8 (x) sen(z) cos(z),
ou seja,

—(—cos*(x)) = 2sen(z) cos(x).

dx
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Isso implica que uma primitiva qualquer de 2sen(z) cos(z) pode ser
tanto

sen’(x) +d
quanto
—cos?(z) +e.

Logo, essas primitivas diferem entre si por uma constante, ou seja,

sen’(x) = — cos?(z) + c.

Logo,
sen®(z) + cos®(z) = c,
para todo real x.

Nao obstante, essa constante ¢ deve assumir o mesmo valor para
todo z pertencente ao dominio de ambas as fungoes sen(z) e cos(z).
Se x = 0, temos sen(z) = 0 e cos(x) = 1 (isso é consequéncia das
defini¢oes das fungoes circulares). Logo, ¢ = 1. Portanto, para
qualquer z pertencente aos reais temos

sen’(x) + cos?(z) = 1.

Se |sen(z)| e | cos(z)| sdo medidas de catetos de um tridngulo retan-
gulo com hipotenusa medindo 1, a tltima igualdade se identifica com
o Teorema de Pitagoras, o qual diz o seguinte: o quadrado da medida
da hipotenusa de um triangulo retangulo é a soma dos quadrados das
medidas dos catetos.
Lembrar que [sen(z)|> = sen?(z) e |cos(x)[* = cos®(z), para todo
real x. Lembrar também que um triangulo é uma curva poligonal
fechada com trés lados, um triangulo retangulo é um triangulo em
que um de seus angulos internos é um angulo reto e a hipotenusa de
um tridngulo retangulo é o lado com maior medida. Alguns detalhes

podem ser vistos na Parte 7.

Uma vez que ambas as funcgoes sen e cos tém periodicidade 27
(sen(x + 27) = sen(x) e cos(z + 27) = cos(x), por conta da inter-
pretagdo geométrica acima), no contexto do circulo trigonométrico
usual sen(z) pode ser identificado como a razao entre a medida do
cateto oposto a um angulo agudo de medida x (em radianos) e a me-
dida da hipotenusa de um triangulo retangulo. Resultado analogo
vale para cos, dessa vez envolvendo um cateto adjacente ao angulo
de medida .
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Com relacao a periodicidade 27 das funcoes seno e co-seno, lem-
brar que 7 é a razao entre o perimetro de uma circunferéncia e seu
diametro. Tal definicao se sustenta por um teorema da geometria
plana que estabelece a invariancia da razao entre o perimetro de
uma circunferéncia e seu didmetro. O valor aproximado, em notagao
decimal usual, é

T~ 3,1415926535897932384626,

com vinte e duas casas decimais apds a virgula. O simbolo &~ denota
‘valor aproximado’, com uma quantia finita de casas apds a virgula.

Na Se¢ao 108 hé uma breve discussao sobre como calcular rapida-
mente o valor de 7 com uma Otima precisao.

Para finalizar esta Secdo, alguns conceitos usuais.

DEFINIGAO 6.3. I
tan:{xER|Vn<nEZ:>x7é72T+mr)}—>R

¢ a fungdo dada por

sen(z)

tan(z) = cos(z)’

II:
cot:{x€R|Vn(nEZ:>x7émr)}—>R

¢ a fungdo dada por

cot(z) =

II1:
Sec:{x€R|Vn<n€Z:>x7ég—l—mr)}—>IR
¢ a funcao dada por

1 .
cos(z)’

sec(z) =
Iv:
csc:{x€R|‘v’n(n€Z:>x7émr)}—>R

¢ a funcao dada por
1 .
sen(z)’

csc(x) =
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Lemos essas fungoes, respectivamente, como tangente, cotangente,
secante e co-secante.

As condigoes impostas aos dominios sdo necessarias por conta dos
zeros de seno e co-seno.

SECAO 58
( Integral de Riemann

S&leorg Friedrich Bernhard Riemann é o criador daquilo hoje co-
nhecido como integral de Riemann. Os trabalhos deste mateméatico
alemao sobre séries de Fourier inspiraram Georg Cantor a desenvolver
as primeiras ideias sobre teoria de conjuntos, as quais foram também
influenciadas pela obra de Bolzano.

Relembrando conceitos ja vistos na Se¢ao 39, um intervalo fechado
[a,b] é o conjunto

[a,b) ={z € R |a <z <D}

Se a # b, dizemos que [a,b] é ndo degenerado. Se a = b, [a,b] é
degenerado.

Ja um intervalo aberto (a,b) é o conjunto

(a,b) ={r € R|a<x <b}.

Uma particao P de [a,b] em n intervalos fechados é o conjunto
P ={[a;,a;41] € p([a,b]) | i € w A0 <i<n—1A
[ag, a1] U [ax, ag] U - - - U [an—1, an] = [a, bl},

sendo que cada elemento de P é um intervalo fechado nao de-
generado.

Usualmente P ¢é referida simplesmente como particao de [a,b].

Ou seja, uma particdo P de um intervalo fechado [a,b] é um con-
junto de subconjuntos de [a,b] (observar que o conjunto universo
usado no emprego do Esquema da Separagao é p([a,b])) tal que
seus elementos sao intervalos fechados [a;, a;11] que satisfazem a duas
condigoes:
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I: a unido arbitraria de todos os elementos de P é o intervalo
fechado [a, b] e

I1: aintersegao entre dois elementos quaisquer de P, distintos entre
si, é vazia ou um singleton {a;1}.

No caso particular em que o intervalo fechado [a, b] é degenerado,
obviamente ele admite uma tunica particao. Nas demais situagoes
h& uma infinidade de possiveis particbes para um mesmo intervalo
fechado nao degenerado.

Aqui cabe observar algo importante. O contexto desta Sec¢ao é o
conceito de integral de Riemann, a ser dado adiante. Neste sentido, o
intervalo fechado [a, b] é chamado de dominio de integracio, enquanto
P ¢é a particio do dominio de integracio. Ou seja, particdo de um
dominio de integracao nada tem a ver com particao de um conjunto
no sentido apresentado na Defini¢ao 3.16, Se¢ao 26. Com efeito, dois
elementos distintos de uma particao P de um dominio de integragao
[a,b] podem ter intersegdo nao vazia, como se percebe no exemplo
abaixo. No contexto da Defini¢ao 3.16 dois elementos distintos de
uma particao sempre tém intersecao vazia.

EXEMPLO 6.9. Uma possivel particio de [—2,7] é
P={[-2,-1],[-1,2],[2,6],[6,7]}
Com efeito, n = 4, onde
agp=—2, a1 =—-1,a,=2, a3=6 eay, =7,
além disso,
[—2,—-1]U[-1,2]U[2,6]U[6,7] = [-2, 7],

lembrando que unido finitaria € associativa. Observar também
que, por exemplo, [—2,—1] N [6,7] = &, enquanto [—2,—1] N
[—1,2] € o singleton {—1}. Comentdrio andlogo vale para quais-
quer elementos tomados dois a dois a partir de P.

Denotamos por Az; o real a;1; — a;, onde 0 < ¢ < n — 1. Neste
sentido, cada intervalo fechado [a;, a;11] pertencente a partigao P de
[a,b] é um conjunto de nimeros reais, enquanto

Azx; = Aij41 — G4

¢ chamada de medida do intervalo [a;, a;41]. Intuitivamente falando,
essa medida corresponde ao ‘comprimento’ do intervalo fechado. Em
particular, todo intervalo fechado degenerado tem medida zero.
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Sobre o conceito de medida, ver Secao 103. Mas, para os atuais
propositos, essa noc¢ao intuitiva de medida é suficiente.

A norma de uma particao P é definida como
| P l|= max{Ax:},
onde max{Az;} denota o real Az; tal que
Azx; > Az;

para todo i de modo que 0 < i <n — 1. Ou seja, max{Axz;} é o
mdximo valor entre todos os Ax;.

EXEMPLO 6.10. Na particio P do EXEMPLO anterior temos
| Pl =4

Seja f uma funcao real definida sobre um intervalo nao degene-
rado [a, b]. A integral de Riemann (ou, simplesmente, a integral)
de f em relagdo a = em [a, b] é dada por

[ o= tim 3 70,

sendo Az; = a;41 — a; € 2z € (a;,Gi11)-

ty Aqui a particao do intervalo [a,b] é
definida por trés intervalos fechados.

\
\,

\ x

f(z1) € a altura do

3\

retangulo do meio.

Chamamos o intervalo fechado [a,b] de dominio de integragao da
integral [° f(z)dz, enquanto o ponto a é chamado de limite inferior
de integracao, e b é¢ chamado de limite superior de integracao.

O somatério

é chamado de soma de Riemann.

Na imagem acima é sugerida uma soma de Riemann
f(z0)(a1 — ao) + f(21)(a2 — a1) + f(z3)(as — az),
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onde ap = a ¢ az = b.

Logo, a soma de Riemann ¢ uma fungao da particao P e da escolha
de cada z;. Cada particao e cada escolha de z;, para cada i, corres-
ponde a uma soma de Riemann. Por exemplo, para a mesma funcao
sugerida na imagem acima e para o mesmo dominio de integragao
[a, b] podemos ter a seguinte soma de Riemann sugerida na préxima
imagem:

f(20)(a1 — ao) + f(z1)(az — a1) + f(23)(asz — az2)+
f(z4)(aq — a3) + f(z5)(as — aq),

onde ap = a e a5 = b.

ty Aqui a particao do intervalo [a,b] é
definida por cinco intervalos.

> ‘

O\

\

No caso particular em que f(x) > 0 para todo x pertencente
ao intervalo [a,b] (como sugerido nas imagens acima), cada termo
f(zi)Az; corresponde a area de um retangulo com base de medida
Ax; e altura de medida f(z;). Ainda neste caso,

/ab f(z)dx

corresponde & area da regidao de R? compreendida abaixo de f(x),
acima do eixo x e ladeada pelas retas verticais x = a e x = b, como
sugerido na imagem abaixo.

+y

Com efeito, a integral
b
| f@)da

PAGINA 243




MATEMATICA PANDEMICA PARTE6 SECAO 58

¢ o limite da soma de Riemann
Z flz) A,

com a norma da particao P tendendo a zero.

Mas, se 0 maximo entre os Azx; (ou seja, a norma de P) se torna
arbitrariamente pequeno (ou seja, | P || € (0 — 4,0 + 4)), entdo
o numero n de elementos da particio P se torna arbitrariamente
grande (ou seja, n > ¢ para qualquer € estritamente positivo.).

Observar que, enquanto cada Ax; é uma medida de um segmento
de reta [a;, a;41], 7 f(x)dz também é uma medida, pelo menos para
o caso particular em que f(z) > 0 para todo = € [a,b]. Mas, desta
vez, trata-se da medida de uma regido de R2.

Medidas de segmentos de reta sdo também conhecidas como com-
primentos, enquanto medidas de regides de R? sdo chamadas de
areas.

Com relacao as retas verticais acima mencionadas, elas correspon-
dem aos conjuntos
2
{(a,y) eR* |y € R}

e
{(b,y) eR? |y € R},

onde b > a.

A y ,
//
\\J\_/J/
Se
f(z) <0,

para todo x pertencente ao dominio de integracao [a, b], entao

/ab f(z)dz

¢ um real negativo tal que
b
/ f(z)dx
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¢ a area da regiao de R? delimitada por f(z), pelo eixo x e pelas
retasx =aex =0b.

Assim como derivada é um caso particular de limite, integral de
Riemann também é. Uma vez que limites podem existir ou nao, o
mesmo ocorre com integrais. Se f admite integral em |[a, b], dizemos
que f é integrdavel em [a, b].

SEGAO 59
( Teoremas basicos

NBeguem alguns resultados estratégicos.

TEOREMA 6.7. Seja f : [a,b] — R uma fungio integravel tal
que f(x) > 0, para todo x pertencente a [a,b]. Entdo,

/ab f(z)dz > 0.

DEMONSTRAGAO: Se [a, b] for um intervalo nao degenerado,

entao )
/ f(z)dx = lim Zf 2;)Ax;.

| P||—=0
Porém, cada Ax; é positivo. Alem disso, por hipotese, cada
f(z;) é positivo. Uma vez que o somatério de parcelas positi-
vas é uma soma positiva, entao o limite da soma de Riemann
é positivo.

TEOREMA 6.8. Seja f : [a,b] — R uma funcao tal que

sendo a < b. Entdo,

DEMONSTRACAO:

b
/cdm: lim ZcAmi: lim CZAI’Z

I1Pll=0 = I1Pl—0
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lim ¢ lim » Az;= lim ¢ lim (b—a)=

IPlI—=0  [IP—=0% IPl—0  [P[—0
c(b—a).
Observar que, na ultima igualdade acima, foi usado o Teo-
rema 5.9 sobre limite de fungdo constante.

EXEMPLO 6.11. I:
5
/ Tde = 7(5 — (—2)) = 7(5 + 2) = 49;
=

II:

/5 _7dx = —7(5 — (=2)) = —7(5 + 2) = —49.

-2

Integral de Riemann nao é um conceito elegante, como ocorre com
integral de Lebesque. Para detalhes sobre integragdo de Lebesgue,
ver [29]. A obra citada exige como requisitos apenas conhecimentos
béasicos sobre limites, séries e derivadas de fungoes reais.

Por conta da falta de elegancia de integrais de Riemann, dois casos
especiais devem ser considerados para concluir a definigao:

I: aqueles em que o limite inferior de integragdo é maior do que o
limite superior de integracgao e

I1: aqueles nos quais o limite inferior de integracao é idéntico ao
limite superior de integracgao.

Para lidar com essas situagoes, a solucao usual é incluir as férmulas
a seguir para finalizar a definicao de integral de Riemann:

[ t@yir =~ [ fwyas,
/aa f(z)dz = 0.

EXEMPLO 6.12. Uma vez que fEQ Tdx = 49, entdo

-2
/ Tdx = —49.
5

Ou seja, a permutacao de limites de integracao implica na troca de
sinal de uma integral de Riemann. Além disso, a integral de Riemann
de uma fungao real em um intervalo fechado degenerado ¢é zero.
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Observar que toda funcao é integravel em um intervalo degenerado.

EXEMPLO 6.13. A funcao de Dirichlet g : R — R dada por

(z) = 1 sex € real racional
g 0 sex € real irracional

ndo € integrdvel se o dominio de integracao [a, b for um intervalo

nao degenerado. ﬁ] Consegue provar isso?

Apesar da funcao de Dirichlet nao ser integravel no sentido de
Riemann, ela ¢ integravel a la Lebesgue. Logo, além de integrais de
Lebesgue serem mais elegantes, elas conseguem dar conta de situa-
¢Oes nao trataveis via integracao de Riemann.

TEOREMA 6.9. Seja f uma fungio continua em |a,b]. Logo,
existe z pertencente a (a,b) tal que

[ f@) = $G)o - o)

O resultado acima é conhecido como o Teorema do Valor Médio
para Integrais. Sua demonstracao exige a aplicagdo de outros teore-
mas aqui ignorados, como o Teorema do Valor Extremo e o Teorema
do Valor Intermedidrio, os quais consistem em um aprofundamento
no estudo de fungoes continuas. Por esse motivo omitimos aqui a
sua prova. No entanto, Teorema 6.9 é bastante intuitivo, como se
mostra a seguir.

EXEmMPLO 6.14. 1©: Seja f : R — R tal que f(x) = ¢; logo,
qualquer z pertencente a (a,b) satisfaz o teorema acima;

1: Seja g : R — R tal que g(z) = 2x; logo,
3
/ g(z)dz = 9;
0

com efeito, essa integral ¢ a drea de um triangulo com base
de medida 3 e altura 6; logo,
f(1,5)-(3—0)=3-3=9

garante que z = 1,5 satisfaz o Teorema do Valor Médio para
Integrais.

No caso particular em que f(z) > 0 para todo x pertencente ao
dominio de integracao [a, b], o Teorema do Valor Médio para Integrais
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afirma que existe retangulo cuja area ¢ igual a integral

[ f@as,

de modo que a base do retangulo mede b — a e a altura mede f(z),
para algum z pertencente a (a,b), desde que f seja continua em [a, b].

TEOREMA 6.10. Sejam f e g fungdes integraveis em [a, b]. Logo,
I:

/ab(f + g)(z)dx = /abf(x)dx + /abg(x)dx;

II:
b

/ab(f—g)(x)dx:/abf(x)dx—/a g(z)dz;
III:

bcf(x)d:c =c b f(x)dx,
/ /

a
onde ¢ € uma constante real.

DEMONSTRAGAO: Provamos aqui apenas o item I, uma vez
que os demais sao demonstrados de maneira analoga. Co-
mecando com a definicdo de integral de Riemann, temos

que
Lb(f = 9)($)dx = HIIDIHIEOZ(f +g)(zz)A$2 _
Jm > (f(z) + (=) Az = lim 3 (F(z) Azi + g(z)Axi) =
”}}”Igo <Z f(z:)Az; + Zg(zi)AxZ) =
||113i||n—1>0 Z f(Zz)sz + HIIDIHH—IA) Z g(zi)Aq;i =

/ab f(x)dx + /abg(:)s)dx.

TEOREMA 6.11. Seja f uma funcao integrdvel em quaisquer
intervalos fechados de R. Logo,

/:f(a:)dx = /abf(x)dx + /bcf(l’)dl’
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A prova deste ultimo teorema é muito simples, bastando usar a
definicio de integral de Riemann e teoremas sobre limites e so-
matorios. No entanto, é uma prova que consome bastante tempo.
Com efeito, devemos considerar todas as possibilidades envolvendo
os limites de integracao a, b e c:

a<b<c a<c<b b<c<a,
b<a<c c<b<aec<a<hb.

Além disso, deve ser levado em conta que as imagens de f podem
mudar de sinal entre limites de integragao ou nos proprios.

@l Sugerimos que o leitor prove pelo menos para dois ou trés
casos.

SECAO 60
( Teorema Fundamental do Calculo

N teorema a seguir é um dos resultados de maior impacto social
na historia da humanidade, com implicacbes em matematica, fisica,
engenharias, psicologia, medicina, ciéncias biologicas, artes audio-
visuais, estatistica, ciéncia da computagao, paleontologia, arqueolo-
gia, musica estocastica, entre outras areas do conhecimento.

Pode nao ser algo comparavel com a invengao da roda ou o dominio
do fogo. Mas é um exemplo marcante das conquistas da ciéncia.

TEOREMA 6.12 (TEOREMA FUNDAMENTAL DO CALCULO).
Seja f uma fungdo real continua em [a,b]. Logo:
I:
G(z) = / f(&)dt é uma primitiva de f(x);

/b f(z)dz = F(b) — F(a), sendo F(x) uma primitiva de f(z).

DEMONSTRAGAO: (1) Devemos provar que

d
—Gla) = /().
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Logo, calculemos - G(z).

d Gz +h) - G(z)
a5 = i h a
lim —(G(z + ) — G(z)) =

;133%;11 (/amf(t)dt _ /azf(t)dt> _
;lfi%li (/;Mf(t)dH /:f(t)dt>

. 1 rzth d

hlgéﬁ/x f(t)dt =
o1

sendo z € (z,z + h) ou z € (z + h,x).

Observando as quatro linhas de contas acima, justificamos
cada uma a seguir.

Na primeira linha foi usada a defini¢ao de funcao derivada.

Na segunda foi empregada a definicdo de G (dada como
hipotese).

Na terceira linha usamos a definicdo de integral de Rie-
mann (para o caso de permutagao de limites de integragao),
bem como o Teorema 6.11, o qual permite escrever certas
somas de integrais como uma tnica integral.

Finalmente, a quarta linha faz uso do Teorema do Valor
Médio para Integrais 6.9.

Logo, a transitividade da igualdade nos diz que

d .
- G(2) = lim f(2).

No entanto,

lim f(z) = lim f(z2),

h—0 Z—=T
uma vez que z estd entre z e x + h (ou entre z + h e z, se
h <0).

Como f é continua em [a, b], entao

lim /(2) = £(@).
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Logo,

d
~G(2) = f(a),
encerrando a demonstracao da parte 1.

(11) Se F' é uma primitiva de f, entdao F(z) = G(z) + C.
Logo,
F(a) = G(a) + C.
Mas G(a) = 0. Logo, C' = F(a). Logo,
F(b) = G(b) + F(a).
Mas G(b) = J° f(t)dt. Logo,

[ #teyt = ) - Fla),

encerrando a prova da parte II.

b
Denotamos F'(b) — F(a) por F(z)

a

O Teorema Fundamental do Célculo 6.12 estabelece:

I: uma inesperada relagao entre integral de Riemann e derivada.
Afinal, derivada é o limite de uma razao, enquanto integral é o
limite de um somatério;

II: um critério simples para o calculo de integrais. Com efeito,
ha varios teoremas que tornam o calculo de derivadas bastante
simples. Logo, determinar primitivas, como ocorre no item 11 do
Teorema Fundamental do Céalculo, ¢ algo muito mais simples do
que calcular limite de uma soma de Riemann.

O fato de haver teoremas para derivadas de produtos torna o Teo-
rema 6.12 um resultado muito bem-vindo, uma vez que nao ha teore-
mas nao triviais sobre integral de produto entre fung¢oes. No entanto,
os impactos mais significativos deste resultado sao apreciados mais
adiante.

O Teorema Fundamental do Célculo nao foi uma facanha con-
quistada ‘do dia pra noite’. James Gregory enunciou e provou uma
versao rudimentar deste resultado, utilizando argumentos de carater
essencialmente geométricos. Isaac Barrow demonstrou, a seguir, uma
versao mais ampla. Por fim, Isaac Newton, aluno de Barrow, refinou
o enunciado e a prova para uma versao mais proxima do que hoje
se entende sobre o tema. Mas a forma como hoje se apresenta tal
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teorema, somente resultados conquistados no século 20 sao capazes
de justifica-lo.

EXEMPLO 6.15. I:

5 4
/ ridx = (x + C’)
2 4

54 24 5t ot
Sio-(Z40)=2-%,
el

II:
b

b
/ cdr = (cx + C)

=cb+C—(ca+C)=c(b—a)

(no Teorema 6.8 o mesmo resultado foi provado indepen-
dentemente do Teorema Fundamental do Cdlculo);

IIT:
2

/12 sen(x)dr = — cos(x) 1
—c08(2) — (—cos(1)) = cos(1) — cos(2);

3 3
/ (32% — 27)dx = (Z’):p — x2>
1 3 1

(3(3)3 B 32> _ (3(;)3 _ 12> — 33213,

Iv:
3

Nos dois primeiros itens do EXEMPLO acima destacamos a cons-
tante C da primitiva da funcao integrada em relagao x, no dominio de
integracao dado. No entanto, uma vez que uma integral de Riemann
é uma diferenca entre F'(b) e F'(a), claramente essa constante C' nao
desempenha papel algum. Por conta disso que, nos dois ultimos itens
do EXEMPLO, omitimos qualquer consideracao sobre tal constante.

A seguir relembramos fungoes reais impar e par.

DEFINICAO 6.4. Seja f: R — R wma func¢ao. Dizemos que f
¢ impar sss para todo x € R temos

f(=z) = —f(z).
Dizemos que [ € par sss para todo x € R temos
f(==z) = f(z).
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ExEmMPLO 6.16. 1. f:R — R, tal que

f(z) = a?,
¢ impar; com efeito, (—x)® = —x3, o que implica em f(—x) =
—f(z).
m: g: R — R, tal que
g(x) = a*,
¢ par; com efeito, (—z)* = x*, o que implica em g(—xz) =
g(x).
r: h: R — R, tal que

h(z) = 23 + 22,

nao € par e nem impar.

TEOREMA 6.13. Seja f uma funcao real integravel impar, com
dominio R. Logo,
| @y =0,

para qualquer real a.

EXEMPLO 6.17. I:

II:

TEOREMA 6.14. Seja f uma fungdo real integrdvel par, com
dominio R. Logo,
| @z =2 [ fa)da,
—a 0

para qualquer real a.

As provas dos dois tltimos teoremas podem ser feitas sem dificul-
dade a partir da definicdo de integral de Riemann. Por conta dos
limites de integracao serem simétricos relativamente a zero, basta as-
sumir partigoes de [—a, a] que sejam simétricas em relagao a zero. Ou
seja, nem sempre o Teorema Fundamental do Célculo é um agente
facilitador para a demonstragao de teoremas.
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EXEMPLO 6.18. Como calcular a drea A da regiGo R de R?
delimitada pelas fungoes f: R — R e g: R — R tais que

f(z) =2’
(em vermelho, na imagem abaizo) e
g9(z) =2z
(em azul)?
Y
4 4
3 4
2 4
1 4
05 05 | 15 >
—il
Temos que
f={(z,y) eR* |y =2}
e
g={(z.y) eR* |y =2z}.
Logo,

fNg= {(070)7 (274)}7

uma vez que x> =2z sssx =0 ou x = 2.

A Sez c [0,2], entao g(x) > f(x). Logo,
2 2 2 2
_ . _ _ 25
A—/O g(x)dx /0 flz)dz = . 2xdx /0 rodr =

2 3,2 3 3
2 z 2 2 2 0
_ T =220 - [ - L) =
i Rty )<3 3)
4 8_12 8 _4
3 3 3 3
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Ou seja, no problema acima calculamos uma area a partir da dife-
renga entre duas areas. Observar, no EXEMPLO acima, que

A= [(o(a) - f(a))d

por conta do Teorema 6.10.

QUESTAO: E interessante notar que a drea A da regido R exempli-
ficada acima é invariante sob a acao de translagoes. Translagoes de
uma regiao de R? podem ser feitas para a direita ou para a esquerda,
para cima ou para baixo, ou por combinacoes de deslocamentos ho-
rizontais com verticais. Neste sentido, translagoes horizontais sao
definidas por uma operacdo r — «, enquanto translagoes verticais
sao dadas por uma operacao y + [3.

Logo, para representarmos uma translacao qualquer da regiao da
QUESTAO acima, basta fazer

fl@)=(@-a)+p

g(z) =2(x — a) + .

Se a« = 8 =0, entdao f(r) =2 e g(xr) = 2z delimitam uma regido
R de R? cuja 4rea é %, conforme ja discutido.

Se a > 0, temos uma nova regiao a direita de R. Se a < 0, temos
uma nova regiao a esquerda de R. Se § > 0, temos uma nova regiao

acima de R. Se 5 < 0, temos uma nova regiao abaixo de R.

Os valores de a e 3 podem ser interpretados como translagoes de
R ao longo de R% Valores nao nulos de a produzem translacoes
horizontais, enquanto valores nao nulos de § produzem translacoes
verticais. Seja qual for a translagao, a area da regiao delimitada por
f e g deve ser invariante, ou seja

(r—a)P’+B=2r—-a)+B=>(r=aVr=2+a)

4

A2+a(2(x —a)+B—-((z—a)*+B))dz = 3

ﬁ' Recomendamos que o leitor faga as contas. Recomendamos
também que faca representacoes visuais do problema, para desen-
volver as intuicoes correspondentes & QUESTAO. Uma maneira rapi-
da de fazer isso é atribuindo valores para « e 3 e criar representagoes
graficas através do servigo gratuito em https://www.geogebra.org/.
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Principios de invariancia sao um dos pilares da matematica, geral-
mente enunciados através da identidade =. Mas esta é uma questao
de grande impacto epistemologico que escapa dos nossos propositos.

SEGAO 61
( Logaritmo natural

=xlesta Secao mostramos como usar integral de Riemann para definir
logaritmo natural. Gracgas a isso seremos capazes de qualificar pos-
teriormente o que sao logaritmos.

DEFINIGAO 6.5. Uma fung¢ao f : © € R — R € localmente
crescente no ponto ¢ € x sss existe intervalo aberto I tal que
cel, I Cux e, para quaisquer a e b pertencentes a I,

a>b= f(a) > f(b).

Uma funcao f : © C R — R € localmente decrescente no
ponto c sss existe intervalo aberto I tal que c € I, I C x e, para
quaisquer a e b pertencentes a I,

a>b= f(a) < f(b).

ExeEmpPLO 6.19. 1. f:R — R, tal que
fla) =2,
¢ localmente crescente em qualquer ponto ¢ de R; com efeito,

se a > b, entdo a® > b3, independentemente de qualquer
intervalo aberto de reais onde a, b e ¢ pertencam; logo,

fa) > f(b).
m: g: R — R, tal que
g(z) = —6x,
¢ localmente decrescente em qualquer ponto ¢ de R; com
efeito, se a > b, entdo —6a < —6b; logo;
fla) < f(b),
independentemente de qualquer intervalo aberto de reais onde
a, b e c pertencam.

PAGINA 256

SUMARIO

INDICE
REDE



MATEMATICA PANDEMICA PARTE6 SECAOG61

II: ﬁ' h:R — R, tal que
h(z) = 22,
é localmente crescente em qualquer real maior do que 0 e
localmente decrescente em qualquer real menor do que 0; no
entanto, ndo € localmente crescente, nem localmente decres-
cente, em 0.

Fungoes reais f localmente crescentes (localmente decrescentes)
em qualquer ponto do dominio de f sao chamadas de globalmente
crescentes (globalmente decrescentes).

Funcgoes globalmente crescentes sdo também chamadas de cres-
centes. Comentario analogo para as globalmente descrescentes. Ob-
viamente, qualquer fungao crescente (decrescente) é injetora. Com
efeito, se a < b = f(a) < f(b), no caso de f crescente, entao
a#b= f(a) # f(b). Prova semelhante para as decrescentes.

TEOREMA 6.15. Uma funcio f : d C R — R € globalmente
crescente se f'(x) > 0 para todo x pertencente a d.

DEMONSTRACAO: Sabemos, pelo Teorema 5.24, que

d _ f(x) — f(a)
dxf o—a ﬂlcllg T—a
para qualquer a do dominio de f, se f for diferenciavel.
Considere uma vizinhanga de a definida por (a — 6, a + 9).
Sex € (a—d,a+9)ex+#a,entdo x> aoux < a. Se
d

% T=a
ez > a, entdo f(x) > f(a). Se

>0

d

— >0

d:vf v=a

ex < a,entdo f(z) < f(a). Em qualquer uma das situagoes
f € localmente crescente no ponto a.

TEOREMA 6.16. Uma funcao f : d C R — R ¢é globalmente
decrescente se f'(x) < 0 para todo x pertencente a d.

DEMONSTRAQAO: Andloga & prova anterior.
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Muitos outros teoremas envolvendo fungoes crescentes e decres-
centes com derivadas podem ser enunciados e provados. Mas o que
temos acima é suficiente para os nossos propoésitos.

DEFINIGAO 6.6. Logaritmo natural é uma fungdo
In:{zeR|z>0} >R

tal que
z 1

In(x) :/1 Edt'

Em outras palavras, logaritmo natural é uma funcao definida por
uma integral.

EXEMPLO 6.20. O logaritmo natural de 3 é a drea da regido
de R? abaizo de %, acima do eixo t e ladeada pelas retast =1 e

=3.

5 .

Y

—— Funcdo %, a qual € integrada

O préximo teorema mostra que nem sempre logaritmo natural as-
sume valores reais positivos.

TEOREMA 6.17. Seln € a funcao logaritmo natural da Defini¢ao
0.0, entao

I In(1) =0;
1: In(z) >0 sex > 1;
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e In(z) <0 se0 <z < 1.

DEMONSTRAGAO: I: Defini¢ao 6.6 garante que

11
In(1) = / Zdt.
10
A definicao de integral de Riemann, para o caso em

que o limite superior de integragao ¢ idéntico ao limite
inferior, garante que

1]
/fdt:O.
1t

I1: Se z > 1, entdo o dominio de integragao de

z ]
/fdt
1t

é o intervalo ndo degenerado [1, z]. Mas, neste intervalo,

a fungao integrada f(t) = % assume somente imagens

estritamente positivas. Logo,

z ]
/ —dt > 0,
1t

como consequéncia imediata do Teorema 6.7.

111: Se 0 < x < 1, entdao o dominio de integracao de
11
—dt
z t

é o intervalo nao degenerado [z,1]. Mas, neste inter-
valo, a funcao % assume imagens estritamente positivas.

Logo,
11
[ qdr>o.
x

z 1
In(x) :/ —dt.
1t

Logo, a definicao de integral de Riemann garante que

s 1
/fdt<0.
1t

Isso conclui a prova dos trés itens.

No entanto,

TEOREMA 6.18. A funcao In € injetora.
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DEMONSTRAGAO: Temos que

d d (=1 1

& ) =2 / Sdt = -,

dx n(z) de J1 t T
por conta do item I do Teorema Fundamental do Célculo.
Logo,

d
% hl(x) > 0,

uma vez que o dominio de In é o conjunto dos reais estrita-
mente positivos. Isso implica que In é crescente, de acordo
com Teorema 6.15. Uma vez que qualquer funcao crescente
¢ injetora, entao In ¢ injetora.

TEOREMA 6.19. A funcao In é sobrejetora.

DEMONSTRAQAO: Apresentamos apenas um esbo¢o da prova.

Por um lado, se x é uma cépia real de um inteiro maior
do que 1, entao
1 1 1
ln(:v)>2—|—3+ +x'
Para perceber isso, basta verificar que o somatorio do lado
direito da desigualdade acima é uma soma de Riemann no
intervalo [1, z], onde cada elemento da partigdo do dominio

de integracao [1,z] de In(x) tem medida 1.

Por outro lado, a série harmonica 3 %, estendida para os
reais, ¢ divergente, de acordo com o Teorema 5.32. Logo,

lim In(z) = oo,

uma vez que In(z) é estritamente positivo para todo = a
direita de 1.

Além disso, a fungao % usada para definir logaritmo na-

tural é simétrica em relacao a reta y = t. Logo,

xll>r(r)1+ In(z) = —o0

(lembrar que In(x) < 0 para reais = no intervalo aberto
(0,1)).

Para finalizar, In é diferenciavel, o que implica que é con-
tinua (Teorema 5.25). Logo, para qualquer y real existe z
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tal que In(x) = y, uma vez que as imagens In(z) da fun-
¢ao In percorrem todos os reais, de —oo a oo (i.e., todos os
nimeros reais, sejam negativos ou positivos).

TEOREMA 6.20. A fun¢do In admite inversa.

DEMONSTRAGAO: Ver Teoremas 6.18 e 6.19, os quais impli-
cam que In é bijetora, bem como Teorema 4.21: toda funcao
bijetora admite inversa.

— SEGAO 62
A inversa de In

=xla Secdo 61 provamos que logaritmo natural admite inversa. Por
outro lado, exponencial exp(z) é definida como solugdo de uma equa-
¢ao diferencial sob uma condi¢ao de contorno. No préximo teorema
mostramos que logaritmo natural e exponencial sao inversas uma da
outra. Uma vez que o dominio de logaritmo natural é o conjunto de
todos os reais estritamente positivos, o préximo resultado permite
inferir que exponencial de qualquer real x jamais é negativo.

TEOREMA 6.21. A inversa de In € a fungdo exponencial exp.

DEMONSTRAGAO: Sejaln:{z € R |z > 0} — R tal que
Wl
In(x) = [ =dt.
1t
Para fins de abreviagao, chamemos In(z) de y(z). Seja
g:R—={zeR|z>0}

a inversa de y, cuja existéncia é garantida pelo Teorema
6.20. Logo, para qualquer x real,

y(g(x)) = =,
de acordo com Definicao 4.15.

Logo,
— (y(9(@) = .
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De acordo com o Teorema 6.3 (lembrar também que
d —i

—In(z) =27,

dx
como mostrado na prova do Teorema 6.18), temos

Logo, ¢'(z) = g(z). Uma vez que In(1) = 0, logo, g(0) = 1.
Mas esta é exatamente a definicao de func¢ao exponencial
dada na Secao 56. Logo, g(z) = exp(z).

— SEGAO 63
Aplicacao elementar

5.4 S
(1 .
& [E<ntre os elementos que ocorrem na natureza, Polonium (Po-

16nio, em portugués) é o mais radioativo. Existem 42 isétopos conhe-
cidos deste elemento descoberto em 1898 pelo casal Marie e Pierre
Curie. Polonium-210 (abreviado como 2'°Po), por exemplo, tem
meia-vida de 138,376 dias (meia-vida de um isétopo é o tempo ne-
cessario para a sua massa reduzir a metade). Em contato com o ar,
a radiacao deste isétopo ¢ visivel a olho nu, emitindo uma luminosi-
dade azulada. Quanto tempo demora para que um quilograma de
20Pg seja reduzido a um grama?

Neste caso, podemos modelar matematicamente o fenéomeno de
decaimento radioativo através do emprego de funcoes. Se mapearmos
massa m através de uma fungao real m(t) dependente de tempo ¢, o
modelo usual assume que

—m = km,

dt
sendo k uma constante de proporcionalidade cujo valor depende do
material em processo de decaimento. KEssa proposta se traduz da
seguinte maneira:

A taza de variacao de massa em relacio ao tempo
€ proporcional a massa.
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Em outras palavras, quanto maior a massa, maior a taxa de varia-
¢ao da massa em relagao ao tempo.
Logo,
m(t) = cexp(kt),
onde ¢ é uma constante real que define uma condi¢do de contorno.
Com efeito, a fungdo acima satisfaz a equagao diferencial
d

%m = km.

Para o caso em que t = 0, temos m(0) = ¢. Logo, ¢ pode ser
interpretado como massa inicial mg. Logo,

m(t) = mgexp(kt).

Uma vez que a meia-vida do isétopo em questao é de apenas
138,376 dias, logo

% = mg exp(138, 376k).

Portanto, exp(138, 376k) = 0, 5. Logo, In(exp(138,376k)) = In(0, 5),
o que implica que 138,376k = —0,693147. Finalmente,
k = —0,00500916d ",
sendo que d denota ‘dias’ e d~! denota ‘por dia’.
O valor da constante de proporcionalidade k é negativo justamente
porque, no problema em questao, a taxa de variagao
dm
dt
é negativa, sendo m(t) sempre positivo. Ou seja, estd ocorrendo

perda de massa ao longo do tempo.

Uma vez determinada a constante de proporcionalidade £ do mode-
lo usual, para descrever decaimento radioativo, podemos responder
a questao proposta.

Temos que
1 = 1000 exp(—0,00500916¢),

uma vez que queremos determinar o tempo ¢ consumido (em dias)
para transformar mil gramas de 2!°Po em um grama.

Isso implica em

exp(—0,00500916¢) = 0, 001.
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Logo,
In(exp(—0,00500916t)) = In(0,001) = —6,90775.
Isso implica que
—0,00500916t = —6,90775.

Logo,
= 1379, 02d,

o que corresponde a 3, 77556 anos (trés anos, nove meses e dez dias).

Em menos de quatro anos um quilograma de Polonium-210 é re-
duzido a um grama.

Observar que um grama de Polonium-210 é suficiente para matar
cinquenta milhoes de pessoas, e adoecer outras cinquenta milhoes,
por envenenamento radioativo [36].

&3 Sabendo que a meia-vida de “C (is6topo Carbono 14) é de 5730
anos, qual é a massa final de dois gramas deste isétopo apds oitenta
milhdes de anos? Para resolver este problema empregue o modelo
usual de decaimento radioativo, o qual assume que a taxa de variagao
de massa em relagao a passagem de tempo é proporcional a massa.

O exercicio acima é algo que pode ser divertido para re-
flexdes. Por um lado, se o leitor encarar a questao de um ponto de
vista puramente matematico, percebera que sera necessario calcu-
lar a exponencial de um valor real com ordem de grandeza 103. No
entanto, calculadoras cientificas usualmente nao contam com capaci-
dade de processamento para esse tipo de conta. Se o leitor tentar
empregar uma calculadora cientifica tipica, nao serd capaz de obter
uma resposta para, digamos, exponencial de 9000. Esta, portanto,
é uma 6tima oportunidade para a natureza humana demonstrar sua
capacidade criativa. Com efeito, 9000 é a adicao de 90 com 90, com
cem ocorréncias da parcela 90. Calculadoras cientificas conseguem
processar a exponencial de 90. Uma vez que a exponencial de uma
soma é o produto de exponenciais (Teorema 6.5), agora o problema
passa a ser facil de resolver, numa parceria entre tecnologia e espirito
humano.

Por outro lado, o exercicio proposto é um problema fisico.
Problemas de carater fisico ndo podem ser resolvidos levando em
conta apenas aspectos matematicos. Com efeito, processos de da-
tacao por Carbono-14 nao sao confiaveis para periodos tao longos
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quanto os oitenta milhoes de anos sugeridos. Logo, rogamos ao leitor
que pense com bastante carinho sobre a questao levantada. Ciéncia
nao se sustenta por manuais técnicos que ditam normas a serem
incondicionalmente cumpridas. Ciéncia é uma atividade de profunda
responsabilidade intelectual.

SECAO 64
( Um olhar sobre o paraiso

Deja p um numero real maior do que zero. Logo,

d 1 1 d

@ln(px) = ﬁp == ﬁln(x).

Usamos acima derivada de funcdo composta (Teorema 6.3), além

do fato de que
d 1

%ln(:v) =z,

conforme demonstracao do Teorema 6.18.

Isso significa que ambas as fungoes In(pz) e In(z) tém a mesma
derivada

SR

Logo,
In(pz) = In(x) + C,
onde C' é uma constante real.

Se z = 1, temos In(p) = In(1) +C. Logo, C' = In(p). Consequente-
mente,

In(pz) = In(z) + In(p).

Ou seja, foi provado acima que o logaritmo natural de um produto
px entre fatores reais estritamente positivos p e z é igual a adicado
do logaritmo natural de p com o logaritmo natural de x. Em jargao
popular (mais semelhante a um bordao popular nos dias de hoje),
logaritmo natural do produto é a soma de logaritmos naturais.

PAGINA 265

SUMARIO

INDICE
REDE



MATEMATICA PANDEMICA PARTE6 SECAO 64

Por outro lado,

Tu(3) = e =27 = 2= L oh)

T 2 T T

Em outras palavras, ambas as funcoes In (%) e —In(x) tém a

mesma derivada
=1

X

Logo,
In (1> = —In(z) + C.

b
Se x =1, entao C' = 0. Portanto,

In (i) — ),
In (i) —In <x;) ,

" (i) — ) 4- iy (;) — ) — T

Ou seja, logaritmo natural de uma razdao é a diferenca de logaritmos
naturais.

Uma vez que

entao

Nos exemplos que seguem o Teorema 6.5 mostramos que exponen-
cial da soma é o produto de exponenciais das parcelas da soma. Aqui,
por conta do fato de logaritmo natural ser a inversa da exponencial,
mostramos que o logaritmo natural de um produto ¢ a soma dos lo-
garitmos naturais dos fatores desse produto. Além disso, logaritmo
natural de uma razao é a diferenca entre os logaritmos naturais dos
termos da razao.

Considere agora a equacgao diferencial
dy
B
a qual é exatamente a mesma que foi utilizada na solu¢ao do decai-
mento radioativo de 2'°Po, na Secao 63.

ky,
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Logo,
ldy
Y dt

Para que possamos passar da forma diferencial acima para uma
forma integral (isso por conta do Teorema Fundamental do Célculo),
basta percebermos que

yr 1 1 Ayz
—dy = i A = lim At; =
/y ||P§I|Iio Z i || P]|—0 Z zi At;

o Y
t t
/ rl dydt " kdt,
to y dt to

sendo que P, e P, denotam partigoes nos eixos y e t, respectivamente.

Lembrar que estamos sempre assumindo que y = y(t), ou seja, y é
uma fungdo de t (ou seja, os termos do dominio de y sdo chamados
de t).

@ Alguns autores justificam a passagem da forma diferencial
para a integral de maneira muito mais breve, porém falaciosa:

dy
SO
at ~ Y
implica em
1
—dy = kdt
Y

que, por sua vez, implica em

yr 1 tp
/ Som— I
yo Y to

A passagem da primeira para a segunda férmula (antes de ‘concluir’
a forma integral) sugere que d ¢ uma razao entre reais dy e dt. No
entanto,

dy
dt
nao é uma razao entre nimeros reais!

Logo, esta estratégia (comumente empregada em textos de fisica
tedrica e engenharia, na qual %/ 2§ tratada como uma razio), apesar
de funcionar como regra mnemomca nao consiste em justificativa no
contexto de calculo diferencial e integral padrao.
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Alguns autores chegam a se referir a dy e dt como infinitesi-
mais, sendo que no célculo padrao ndo hé infinitesimais (ver Secao
52 sobre o tema). O conceito de infinitesimal é tipico, e extrema-
mente importante, em duas outras teorias de calculo diferencial e
integral que ndo necessitam de limites para qualificar derivadas e in-
tegrais. Essas formas diferentes de calculo diferencial e integral sao
andlise nao standard [40] e andlise infinitesimal suave [4].

Agora que sabemos que

dy
27—k
at ~ Y
implica em
yr 1 tp
/ Sdy= [ kdt,
v Y to
temos que
YF lp
In(y)| =kt| ,
Yo to

por aplicagao do Teorema Fundamental do Célculo.

Logo, In(yr)—In(yg) = kAt, sendo At = tp—to. Logo, In(yr/yo) =
kAt. Portanto, yr/yo = exp(kAt), ou seja,

yr = yoexp(kt),
se assumirmos que tp =t e tg = 0. Observar que esta é exatamente
a solucdo para o problema de decaimento radioativo de 2'°Po.
Ou seja, a forma integral
yr 1 i
/ Sim— |
vo Y to

(por separagdo de varidveis, i.e., todas as ocorréncias de y estao do
mesmo lado da igualdade e todas as ocorréncias de ¢ estao do outro
lado) da equagdo diferencial

dy
dt
(a qual define a exponencial de kt com condigoes de contorno y(0) =

Yo) se mostra solivel através da definigdo de logaritmo natural via
integracao de Riemann.

ky

O problema de decaimento radioativo é revisitado sob um ponto
de vista completamente diferente na Segao 95.
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Essa discussao ilustra o papel de derivadas e integrais, anunci-
ado no primeiro paragrafo da Secao 47. Derivadas permitem mode-
lar (via equagoes diferenciais) fendmenos fisicos (como, e.g., decai-
mento radioativo). Integrais, por outro lado, viabilizam previsoes de
longo termo, as quais sao mapeadas por fungoes que sao solucoes de
equacoes diferenciais. Este é um dos papeis principais do Teorema
Fundamental do Calculo: viabilizar solugoes de equagoes diferenciais
via processo de integracgao.

Tudo isso é formulado em uma teoria de conjuntos sustentada por
apenas duas ‘colunas’: igualdade = e pertinéncia €. Portanto, aqui
radica parte do valor estético de ZF: dois conceitos apenas, = e €,
abrem portas para um vasto universo de possibilidades para estudos
e aplicacoes.

Em 1926, oito anos apds a morte de Cantor, David Hilbert afirmou:

Ninguém poderd nos expulsar do paraiso que Cantor criou
para nos.

De fato, o paraiso de Cantor ainda estd sendo conhecido, lenta-
mente, por milhares de mateméticos do mundo todo. Foi este paraiso
que inspirou Ernst Zermelo, Abraham Fraenkel, John von Neumann,
Kurt Godel e muitos outros, até os dias de hoje. Mesmo sem saber-
mos ao certo o que é possivel fazer em terras tao exoéticas, até o
presente momento ja temos uma boa noc¢ao de sua extraordinaria
beleza.

No romance Princess Naprazine, a escritora britanica Ouida afirma
que

familiaridade é um mdgico cruel com a beleza, mas gentil com
a feiura.

Em outras palavras, o belo deve resistir a familiaridade.

Nesta acepgao, ZF é bela. Ainda nao ha perspectivas de plena
familiaridade com o seu poder de alcance.

Nenhum teorema sobre teoria de conjuntos ¢ atribuido a Hilbert,
o primeiro grande defensor da teoria de conjuntos. Mas este exerceu
uma poderosa influéncia sobre muitos outros que decidiram conhecer
o paraiso concebido por Cantor. Hilbert foi possivelmente o ultimo
matematico de visao universal sobre este ramo do conhecimento. O
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tom profético de sua visao sobre o que é importante em matematica
repercute até os dias de hoje. Mas esta é outra longa historia nao
cabivel neste livro.

SECAO 65
( Pseudomatematica

Na Secao anterior exibimos um exemplo de pratica de ma quali-
dade no contexto de calculo diferencial e integral padrao, ao mostrar-
mos a nao justificabilidade da simplificacao

dy

1
L~ ky = —dy = kdt.
g =M=y

Este é um exemplo de pseudomatemdtica, uma atividade muito
comum na qual ha a tentativa de imitar procedimentos matemaéticos
sem qualquer atencao a rigor ou razao.

Até mesmo Thomas Hobbes (um dos pais da filosofia politica) foi
vitima de si mesmo, por conta de praticas mateméaticas sem qual-
quer fundamentacgao racional. Hobbes acreditava ter resolvido o in-
soliivel problema da quadratura do circulo. Essa questao deu origem
a famosa controvérsia entre Hobbes e John Wallis, a qual durou dé-
cadas, durante o século 17.

Frequentemente matematicos do mundo todo sao importunados
por pessoas que negam o Argumento da Diagnonal de Cantor ou os
Teoremas de Incompletude de Godel, entre outras sandices.

O termo ‘pseudomatematica’ foi cunhado pelo légico Augustus De
Morgan, em 1915. Nas palavras de De Morgan:

O pseudomatematico é uma pessoa que lida com a matematica
como um macaco que brinca com uma navalha. A criatura
tenta se barbear, imitando seu mestre; mas, sem qualquer

nocao sobre o angulo em que a lamina deve ser posicionada,
acaba cortando a prépria garganta.

Porém, nao ha qualquer procedimento efetivo que permita discernir
matematica de pseudomatematica. Se houvesse, possivelmente o des-
tino da matematica poderia ser entregue as maquinas. Nao podemos
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esquecer as duras criticas que Cantor recebeu por sua teoria de con-
juntos. Na visao de Kronecker, por exemplo, o que Cantor propos
nao era algo digno de atencao.

Como dizia Cantor,

A esséncia da matemadtica radica em sua liberdade.

Ou seja, pode haver raras vantagens ao ouvirmos os ingénuos.
Ainda assim, é recomendavel que o leitor sempre tome muito cuidado.

Aos curiosos, ha um excelente livro sobre pseudomatemaética, de
Underwood Dudley [14].

SECAO 66
( Quanto é a*?

\qui respondemos a uma das questoes da Introdugao.

DEFINIGAO 6.7. Numero de Euler € o nimero real e tal que
In(e) = 1.

Logo, a definigdo acima garante que e > 1 (Teorema 6.17). Existem
varias técnicas para calcular o nimero de Fuler e em sua represen-
tacao decimal usual. Uma delas faz uso do fato de que exponencial
é a inversa de logaritmo natural. Logo, exp(1) = e. Portanto,

1

1 1
6:1+1+a+a+ﬂ+”'.

O truncamento desta série, obtido pela soma das primeiras cem

mil parcelas, i.e.,
99999 1

n=0 m7
nos fornece um valor aproximado de
e~ 2,71827.
Leonhard Euler provou a irracionalidade de e. O Teorema de

Lindemann-Weierstrafl prova que e é transcendente, ou seja, nao exis-
te equacao polinomial com coeficientes reais racionais tal que e seja
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solugao desta equagao. Todo nimero real transcendente ¢é irracional,
apesar da reciproca desta ultima afirmacgao nao ser teorema.

EXEMPLO 6.21. Jd provamos anteriormente que /2 € irracio-
nal. No entanto, /2 é solucio da equacio polinomial

2 —2=0,

cujos coeficientes sio todos racionais. Logo, v/2 ndo é um nimero
real transcendente.

Numeros reais nao transcendentes sao chamados de algébricos.

EXEMPLO 6.22. 1: /2 € um real algébrico, uma vez que é
solucao da equacao

I: 2 € um real algébrico, uma vez que € solugdo da equagdo
rz—2=0.

Logo, reais algébricos podem ser racionais ou irracionais.

Nao é uma tarefa facil provar que um nimero real qualquer é ir-
racional ou transcendente. Por exemplo, até hoje nao se sabe se os
reais em, e + m ou ™ — e (entre muitos outros) sdo irracionais ou
transcendentes.

Relembrando conceitos ja vistos aqui, sejam a um namero real e
n um inteiro estritamente positivo. Logo, a™ é o produto de a por
a com n ocorréncias de a. Se m é um inteiro negativo, entao a" é o
simétrico multiplicativo de ™", desde que a seja diferente de 0. Se a
¢ um nuimero real diferente de zero, entdo a® = a" " = Z—: =1. Sea
é um numero real qualquer e n é um inteiro nao nulo, entao an =b
sss b" = a. Neste caso denotamos an como {/a. Se p e q sao inteiros
tais que ¢ # 0, entao ai = va.

A extensao de poténcias a”, de inteiros n para racionais n = 2, foi

introduzida por John Wallis, em seu livro Arithmetica Infinitorum,
de 1656.

A questao que devemos responder agora é o conceito de a”, para
x um real qualquer, de modo que a” seja consistente com os casos
ja discutidos até aqui, nos quais x é um racional. Observar que nem
sempre existe namero real y tal que y = as se a < 0.
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Sejam z um ntmero real estritamente positivo e ¢ um nimero real
racional. Logo,
d 1 . a d

%ln(x“) = Eax“_ == a%hl(x) — %aln(:v).

Isso demonstra que as fungoes reais In(z*) e aln(x) tém a mesma

derivada
a
e

se x > 0 e a é um real racional.
Logo,
In(z*) = aln(x) + C,
onde C' é uma constante real.

Se x = 1, entao C' = 0. Portanto,

In(z?) = aln(x).

Uma vez que z = exp(In(z?)) (por conta do Teorema 6.21), entao

x* = exp(aln(x)),

se x > 0 e a é um real racional.

Isso significa que uma definicdo para a®, assumindo x um real
qualquer, deve ser consistente com o teorema dado acima. Esta é a
estratégia adotada na proxima definigao.

DEFINIGAO 6.8. Sejam a um nimero real estritamente posi-
tivo e x um numero real qualquer. Entdo

a® = exp(zIn(a)).

Uma vez que In e exp sao fungoes reais ja definidas e a ultima
definicao é consistente com o teorema

(a>0Az€Q) = a" = exp(zln(a)),

entdao fomos bem sucedidos na conceituacao de a® para a > 0 e x
real. Observar que o simbolo Q foi usado aqui como notacao abusiva,
uma vez que estamos tratando com reais racionais.

EXEMPLO 6.23. I: 5Y2 = exp(v/2In(5));

1: e = exp(xIn(e)); logo, e® = exp(x); com efeito, In(e) = 1.
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O segundo item do EXEMPLO acima justifica a pratica comum de
escrever a exponencial de z simplesmente como e”, sendo e o niimero
de Euler. Além disso, é pratica comum ler e* como ‘exponencial de
x’. Logo,

TEOREMA 6.22. a® = €@ sea >0 e x é um real qualquer.

O proximo resultado, conhecido como a identidade de Euler, esta-
belece uma inesperada relagdo entre 7 (uma constante da geometria
euclidiana plana), o nimero de Euler e a unidade imaginaria i dos
complexos.

TEOREMA 6.23 (IDENTIDADE DE EULER).

e = —1.

DEMONSTRAGAO: Basta usar o teorema exp(x) = e”, esten-
dido para os complexos, em parceria com o Teorema de
Euler, demonstrado na Secao 57.

Frequentemente a Identidade de Euler é mencionada como exemplo
de profunda beleza matematica. Isso por conta de uma inesperada
e elegante conexao entre um conceito geométrico (a razdo m entre
o perimetro de uma circunferéncia e seu didmetro), um conceito
analitico (o nimero de Euler) e um conceito algébrico (a unidade
imaginaria). Apesar deste teorema nao estar enunciado em qual-
quer trabalho publicado de Leonhard Euler, parece evidente que ele
conhecia o resultado [59].

TEOREMA 6.24. Sea >0 e x é um real qualquer, entao

d
ECLI = ln(a)am.
DEMONSTRACAO:
d d .,
o win(a) _ zln(a) _ @
Toa" = In(a)e In(a)a®,

de acordo com Teoremas 6.22 e 6.3.

EXEMPLO 6.24. I:

d
L5 = In(5)5%;
dz ul( D)5
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b5wd o b

/a T Gl

por conta do Teorema Fundamental do Cdlculo e Teorema
6.24.

II:

Lembrar que a equacao diferencial
dy

A
d:L' y?

com a condi¢ao de contorno
y(O) = Yo,

admite como soluc¢ao tnica a funcao

y(x) = yoe™.

No entanto, se k = In(a) (i.e., a = €*), a ultima afirmacio ¢

equivalente a dizer que

y(@) = yoa”
¢é solugao unica da mesma equacao diferencial. Em particular, o
problema do decaimento do isétopo Polonium-210 (Segdo 63) pode
ser alternativamente modelado como

m(t) = mg0, 995003,

ulmna vez que

k = —0,00500916d "

ek =0,995003.

TEOREMA 6.25. A combinacgdo linear de solucoes quaisquer da
equagdo diferencial y' = ky também € solug¢do da mesma equagao.

DEMONSTRAGAO: Devemos provar que, se ; € 2 sao solucoes
de ¢y = ky, entao qualquer funcao definida por

C1Y1 + C2Y2
também é solucao da mesma equagao, onde ¢y e ¢y sao reais
quaisquer.
Sejam y; e yo solugoes da equacao diferencial y' = ky.
Logo

v =ky e yh = kys.
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Logo,
ayy = ciky,
onde ¢; é um real qualquer.

Por conta do Teorema 5.20 sobre derivada de constante

multiplicada por fun¢ao, temos que

(1) = k(cayn)-
Isso prova que ¢,y; é solucao da equacao diferencial ' = ky.
Analogamente, temos que

yé = kys

implica em

(cay2)" = k(caya),
onde ¢y é um real qualquer. Isso prova que coy, também é
solucao da equacao diferencial y' = ky.

Se somarmos ambos os lados de (c;y1)" = k(ci1y1) por um
mesmo termo, a nova igualdade se mantém como teorema.
Logo,

(1)’ + (c2y2)” = k(cryn) + k(caya).

Portanto, de acordo com Teorema 5.21 sobre derivada da
soma de fungoes,

(c1y1 + cay2)’ = k(eryr + cayp).
Isso prova que a combinacao linear

C1Y1 + C2Y2

de y; com 15 € solugao de y' = ky.

O ultimo teorema pode ser generalizado para uma vasta gama de
equacoes diferenciais conhecidas na literatura como equacoes diferen-
ciais lineares homogéneas. Esse resultado tem significativo impacto
no estudo de equacoes diferenciais tanto lineares quanto nao lineares,
no sentido de que resultados de algebra linear podem ser aproveita-
dos no estudo de equacoes diferenciais. Essa questao é discutida na
Parte 8. O que podemos adiantar é que o resultado acima significa
que o conjunto de solugoes da equacao diferencial

y = ky

define um espago vetorial real de uma dimensao, onde os vetores sao
funcoes reais.
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SECAO 67
( Logaritmo
SUMARIO
NBabemos que L3IoAeis
12 — erln(1) _ 0 _ REDE

Isso implica que f : R — R dada por
flz) =1

é uma funcado constante e, portanto, nao injetiva. Nao obstante,
fungoes definidas por a®, com a # 1, contam com comportamento
bem diferente.

TEOREMA 6.26. Sea >0 ea # 1, entio f : R — R, dada por
f(z) = a”,

é crescente para a > 1 e decrescente para a < 1.

DEMONSTRACAO: Temos que f(z) = a® = ¢*™@. Uma vez
que a exponencial de qualquer niimero real é estritamente
positiva, entdo a® é estritamente positiva. Além disso,

d d
%ax = %exln(a) = In(a)e”™@ = In(a)a®.
Logo, se a > 1, entao
d
—a” > 0,
dxa z=b
para todo b real (fungdo f é crescente, de acordo com Teo-
rema 6.15).
Se 0 < a < 1, entao
—a” <0,
dma x=b

para todo b real (fungdo f é decrescente, de acordo com
Teorema 6.16).

O dltimo teorema deixa claro que f(x) = a® é injetiva se a # 1.
Logo, se definirmos

f:R—=>{zxeR|z>0},
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tal que

flz) =a”
e a # 1, entdo f é bijetora e, portanto, inversivel. Este fato viabiliza
a definicdo de logaritmos.

DEFINIGAO 6.9.

log,(n) =z : a® =n,

se a emn sao numeros reais estritamente positivos e a # 1.

Lemos log,(n) como ‘logaritmo de n na base a’. Se nao houver
risco de confusdo, podemos escrever log,(n) como log, n. Logo,

log,n = Inn,

se e ¢ o numero de Euler. Neste sentido, logaritmo natural passa a
ser um caso particular de logaritmo.

TEOREMA 6.27. Para todo real a > 0 tal que a # 1,
log,a = 1.

DEMONSTRACAO: log,a = x sss a® = a. Mas a® = (@),
Uma vez que a” é injetiva para a # 1 e x = 1 é solugao
da equacdo e*™@ = g, logo essa solucdo é tnica. Logo,
log,a = 1.

TEOREMA 6.28. Sea >0,a# 1, m >0 en >0, entdo
log,(mn) = log,(m) + log,(n).

DEMONSTRAGAO: log,(m) = z sss a® = m. Logo,

zln(a) _

(& m.

Logo, zIn(a) = In(m), o que implica em
_ In(m)
~ In(a)
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Logo,

log, (mn) = In(mn) _ In(m) + In(n) _

In(a) In(a)

) _
(@) " In() (™ T8

Isso encerra a prova. Notar que usamos o teorema sobre
logaritmo natural de um produto.

@l Analogamente, é possivel provar que

log, (ZZ) = log,(m) — log,(n).

TEOREMA 6.29 (MUDANGA DE BASE). Sea >0,b> 0, a #
1, b#1 em >0, entao

log,(m) = log,(m)log(a).

DEMONSTRAGAO:
log,(m) _ In(m) In(a) _ In(a)
log,(m)  In(b) In(m)  In(b)
Logo,

= log,(a).

log,(m) = log,(m) log,(a).
Equivalentemente,

log,(m) = log,(m)/log,(a).

O ultimo resultado acima é conhecido como Teorema de Mudanca
de Base de Logaritmos.
Observar que
log, (%) = In(a®) _ In(e?(@) _ x1In(a) .
In(a) In(a) In(a)
se a# 1.

Logo, log,(z) é a inversa de a®. Por conta do Teorema 6.26, isso
implica que a funcao

log, : {reR|xz>0} =R

dada por
log, ()
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é injetiva, se a # 1.

SECAO 68
( Logaritmo como isomorfismo entre grupos

. leitor pode ignorar esta Se¢do, sem prejuizo para o restante
da leitura. A discussdo aqui apenas coloca uma perspectiva pura-
mente algébrica para logaritmos.

Na visao do policéfalo Nicolas Bourbaki, matematica é o estudo de
trés estruturas-mae:

e algébricas,
e topologicas e
e de ordem.

Grosso modo, estruturas algébricas se referem a conjuntos munidos
de operacgoes, como adi¢ao e multiplicagao entre reais. Estruturas
topologicas sao aquelas que tratam de nogoes sobre ‘vizinhanca’,
‘proximidade’. Tais conceitos podem ser formulados através de con-
juntos munidos de topologias. Finalmente, estruturas de ordem sao
conjuntos munidos de relagoes de ordem (parcial, total, entre outras).

Apesar de, hoje em dia, esta ser uma visao démodé (até porque
a teoria de conjuntos de Bourbaki conta com formulagao diferente
da teoria ZF), ela pode ser uma primeira aproximacao interessante
para uma ampla visao sobre matematica. Calculo diferencial e inte-
gral padrao, por exemplo, pode ser percebido como uma combinagao
dessas trés grandes estruturas. No entanto, resultados de calculo
diferencial e integral podem ser observados pelo prisma de uma tnica
dessas estruturas. Dai o exemplo abaixo, o qual promove uma ava-
liacao puramente algébrica sobre logaritmos.

Magmas, monoides, grupos, anéis, corpos e espacos vetoriais, entre
outros exemplos, sao estruturas algébricas bem conhecidas. Explo-
ramos brevemente grupos e sua relacao com logaritmos.

Um grupo & é uma tripla ordenada & = (g, x, e) que satisfaz os
seguintes axiomas:

G1l: g # o;

PAGINA 280

SUMARIO

INDICE
REDE



MATEMATICA PANDEMICA PARTEG6 SECAO 68

G2: *: g X g — g é uma funcao; abreviamos x(a, b) = ¢ como
axb=c;

G3: eeg;
G4: Va(ae g= (axe=e*xa=a));
G5: VavVbVe((a € ghb e ghc € g) = ((a*xb)xc = ax(b*c)));

G6: Va(a € g= F(b € gNaxb=Dbxa = e)); abreviamos b
como a~'.

Por abuso de linguagem, é usual se referir ao conjunto g como
grupo. Neste contexto, é comum autores afirmarem que um grupo é
um conjunto ¢ munido de uma operacao binaria x e de um elemento
privilegiado e, que satisfaz os axiomas acima listados. Adotamos
aqui o mesmo abuso de linguagem, de agora em diante.

Do ponto de vista intuitivo, os axiomas dizem o seguinte.
G1: todo grupo g é um conjunto nao vazio;

G2: o grupo g é munido de uma operagao binaria x fechada em g,
ou seja, para quaisquer elementos a e b de g, axb ¢ um elemento
de g; do ponto de vista da linguagem de ZF, x é tao somente
uma fun¢do com dominio g X g e co-dominio g;

G3: o elemento privilegiado e pertence ao grupo g;

G4: o elemento privilegiado e é neutro a direita e neutro a es-
querda, relativamente a operagao *;

G5: a operacao x € associativa;

G6: todo elemento a do grupo g admite um simétrico a direita e
um simétrico a esquerda, relativamente a operacao *.

De maneira mais resumida, um grupo ¢ é um conjunto nao vazio,
munido de uma operacao binaria fechada e associativa, com elemento
neutro e elementos simétricos. A fungao * de um grupo é comumente
chamada de ag¢ao do grupo.

EXEMPLO 6.25. 1. Seja
Rt={reR|r >0}
Logo, (R*,-,1) é um grupo, se - é a multiplica¢io usual
entre numeros reais; neste caso, estamos interpretando ¢
como R*, x como -, e e como 1.
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i: (R, +,0) € um grupo.

1t (w,4+,0) nao é um grupo, se + for a adigao usual entre
naturais. Com efeito, axioma G6 nao é satisfeito. Por e-
xemplo, nao ha simétrico de 2 relativamente a +.

DEFINIGAO 6.10. Sejam
&= (g,%¢e) e & = (¢, %, ¢)

grupos. Dizemos que h é um isomorfismo entre os grupos & e
& sssh:g— ¢ € uma bijecio tal que

h(ab) = h(a) ¥ h(b)

para todos a e b pertencentes a g.

Ou seja, isomorfismos entre grupos g e ¢’ sdo bijegoes f : g — ¢’ que
mantém invariantes as agoes dos grupos envolvidos. Intuitivamente
falando, tanto faz se operarmos axb e entao aplicarmos h para obter
h(axb), ou aplicarmos h sobre a e b para, somente entao, operarmos
h(a) * h(b), obtemos sempre o mesmo resultado.

Como discutido na Se¢ao 41, nenhum inteiro é racional, apesar de
racionais copiarem os inteiros. No entanto, essa copia dos inteiros en-
tre racionais pode ser mapeada pelos inteiros (ou vice-versa), através
de um isomorfismo entre dois grupos, conforme o préximo EXEMPLO.
Isso porque a linguagem usada para definir inteiros e racionais ¢ a
mesma, a saber, a linguagem de ZF.

EXEMPLO 6.26. Seja
Qz ={r € Q| r copia um inteiro}.

Logo, (Qz,+',0") é um grupo, onde +' € a adigao entre racionais
e 0 € o neutro aditivo entre racionais. Ademais, (Z,+,0) tam-
bém é um grupo, sendo que + € a adigcao entre inteiros e O € o
neutro aditivo entre inteiros. Empregamos os simbolos + e +/,
bem como 0 e 0/, para destacar que sdo conceitos distintos.

ﬁl Consideremos agora a func¢ao h : Qz — Z dada por
h(r) = s < r copia o inteiro s.

Logo, h € um isomorfismo entre os grupos (Qz,+',0") e (Z,+,0).
Cabe ao leitor mostrar os detalhes, a partir do que foi discutido
em Segoes anteriores.
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Para efeitos prdticos, isso corresponde a dizer que os inteiros,
munidos de adicao, sao algebricamente indiscerniveis dos racio-
nais que copiam os inteiros, munidos de adicao entre eles. Em
particular, do ponto de vista algébrico (onde a dlgebra é exami-
nada por propriedades de grupos), o neutro aditivo racional é
indiscernivel do neutro aditivo inteiro.

O préximo teorema oferece um exemplo de isomorfismo muito mais
interessante, uma vez que revela logaritmo como um isomorfismo
entre grupos.

TEOREMA 6.30. Sea >0 ea # 1, entao a fungdo log, define
um isomorfismo entre 0s grupos

(R*,-,l) e (R,+,0)
do EXEMPLO 6.25.

DEMONSTRAGQAO: De acordo com o Teorema 6.28,
log, (m - n) = log,(m) + log,(n).

Além disso, log, é uma bijegao log, : Rt — R.

MORAL DA HISTORIA: Do ponto de vista de teoria de grupos,
(RT,-,1) e (R,+,0) sdo indiscerniveis, justamente por serem grupos
isomorfos entre si. Em particular, 0 e 1 sao algebricamente indis-
cerniveis do ponto de vista do isomorfismo do tltimo teorema.

Uma vez que sabemos que, entre os reais, 0 # 1, o ultimo teorema
mostra que os nimeros reais sao muito mais do que simples estruturas
algébricas de grupo. ‘Filtrar’ logaritmos sob a otica de operacoes
algébricas como adi¢ao e multiplicacao entre reais, pode nos tornar
‘daltonicos’ a respeito dos reais.

SECAO 69
( Resumo da épera

“</sta sexta parte pode ser resumida como se segue.

e O objetivo do calculo diferencial e integral é o estudo e a apli-
cacao de equacoes diferenciais, as quais sao férmulas © = v onde
ha pelo menos uma ocorréncia de um operador diferencial.
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e O estudo e a aplicacao de equagoes diferenciais depende do Teo-
rema Fundamental do Calculo.

e As fungoes seno e co-seno sao definidas como solugoes de uma
equagao diferencial. O que diferencia seno de co-seno sao as
condicoes de contorno impostas a equagao diferencial usada para
defini-las.

e As interpretagbes geométricas usuais para seno e co-seno sao
teoremas de calculo diferencial e integral padrao.

e Formulas usuais de Trigonometria (o estudo de fungoes circu-
lares) dependem de célculo diferencial e integral estendido para
os complexos.

e Logaritmo natural, por defini¢cao, é uma integral de Riemann.

e Logaritmos sao definidos a partir de conceitos de calculo dife-
rencial e integral.

SECAO 70
( Notas historicas
SUMARIO
e .
ﬁ INDICE
REDE

1l istoricamente, trigonometria é estudada pelo menos desde o pe-
riodo helenistico ha mais de dois milénios, com o objetivo de apli-
cacoes em astronomia e engenharia. No entanto, do ponto de vista da
matematica hodierna, os antigos conceitos trigonométricos nao eram
formulados de maneira racional. Assumir, por exemplo, que seno de
um angulo interno de um triangulo retangulo é, por definicdo, a razao
entre a medida do cateto oposto ao angulo e a medida da hipotenusa,
nao permite calcular o seno, digamos, de um radiano. O que torna
operacional o calculo de seno da medida de um angulo ¢é, hoje em
dia, sua definicdo como solugdo de um problema de contorno. Isso
mostra que qualquer nocao de racionalidade depende de contextos
historicos.
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PLIMPTON 322: TABELA TRIGONOMETRICA BABILONICA QUE
ANTECEDE O PERIODO HELENISTICO EM PELO MENOS MIL ANOS
Fonte: Norman Wildberger.

Com relagao a logaritmos, eles foram concebidos em 1614 por John
Napier, ou seja, antes do advento do calculo diferencial e integral.
Isso ajuda a ilustrar o fato de que o desenvolvimento histérico da
matematica é um processo de dificil compreensao.

N A
A B
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PARTE 7

Geometria euclidiana

Antes de iniciarmos a geometria euclidiana, é conveniente falarmos
um pouco sobre o Programa de Suppes. Os estudos de geometria sin-
tética e até mesmo dlgebra linear na Parte 8 podem ser percebidos
como exemplos pontuais do programa mencionado.

SEgAO 71
( Predicados conjuntistas

JliEAecionando filosofia na universidade Stanford, durante os anos
1950, Patrick Suppes produziu algumas notas de aula sobre o pa-
pel de teoria de conjuntos para os fundamentos da ciéncia. Em
1962 ele distribuiu entre interessados uma extensa monografia com
maior detalhamento sobre aquelas notas, sob o titulo provisorio Set-
Theoretical Structures in Science. Em 2002, décadas de investigacoes
sobre o tema foram reunidas no livro Representation and Invariance
of Scientific Structures [54]. Em 2014 Suppes faleceu.

Nesta Secao discutimos brevemente sobre o famoso Programa de
Suppes, o qual é resumido pelo autor em um slogan:

Axiomatizar uma teoria € definir um predicado conjuntista.
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A ideia é simples. Considerando que

I: uma teoria de conjuntos qualquer permite fundamentar vastas
porcoes da matematica e

I1: essas vastas por¢oes da matematica sao empregadas para ma-
pear fenomenos do mundo real,

entao é possivel usar a linguagem e a logica de uma teoria de con-
juntos para formular teorias referentes as ciéncias reais, como fisica
e linguistica, entre outras.

Naturalmente, tal estratégia garante economia de pensamento, no
sentido de tirar proveito de tudo aquilo que teorias de conjuntos tém
a oferecer.

Inspirados no Programa de Suppes, Newton da Costa e Rolando
Chuaqui desenvolveram o conceito de Predicado de Suppes, o qual
é um assunto sofisticado demais para os propdsitos desta obra [11].
No entanto, podemos qualificar a proposta de Suppes no contexto
de ZF da seguinte maneira:

DEFINIGAO 7.1. Um predicado conjuntista 3 para uma ‘teo-
ria’ T € a sequinte abreviagio metalinguistica:
B(T) : Fz13wg - - I, Iry Frg -+ - I (T =
(X1, T+ Xy, "1, T2 ) A aziomas de T,
onde

e cada x; é um conjunto,

e cada rj é uma relagao na qual hd pelo menos uma ocorrén-
cia de algum conjunto x; em seu dominio ou co-dominio e,
finalmente,

e 0s axiomas de T sdo formulas nas quais ocorrem pelo menos
um dos termos xq, -+ , T, ou um dos termos ri, -+ ,Tm.

Obviamente, a definicio acima nao ¢é suficientemente clara, até
porque Suppes jamais se preocupou em formular rigorosamente suas
ideias. A estratégia dele, para desenvolver e veicular o slogan acima,
era sustentada por exemplos pontuais. Alguns desses exemplos sao
discutidos aqui, como teoria de grupos, aritmética, espacos vetoriais,
corpos, geometria euclidiana, espagos de probabilidades e mecanica
classica nao relativistica de particulas.
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Os termos x1,--- ,x, € T1, -+ , 1y, sao chamados de conceitos pri-
mitivos da ‘teoria’ T .

A justificativa para o uso de aspas em ‘teoria’ é a seguinte: de
acordo com a visdo acima, toda ‘teoria’ 7 é um conjunto, em par-
ticular, uma (n 4+ m)-upla ordenada. No entanto, Suppes propde seu
programa de axiomatizagao para as ciéncias formais (matematica,
légica e ciéncia da computagao), bem como as ciéncias reais (fisica,
quimica, economia, psicologia, entre outras). Por um lado, é usual
se referir a ZF como uma teoria, apesar de ZF certamente nao ser
um conjunto. Por outro, uma teoria fisica como a mecanica classica,
dificilmente é aceitdvel como um conjunto. Afinal, fazem parte da
mecanica classica certos conceitos que escapam do dominio de uma
teoria de conjuntos como ZF. Exemplos bem conhecidos sao experi-
mentos e significados intuitivos de principios fisicos. Logo, a palavra
‘teoria’ assume multiplas conotacgdes na literatura especializada, a
ponto de nao haver um consenso sobre o que é de fato uma teoria.

No contexto aqui discutido, assumimos como teoria um sistema
formal na acepcao dada por Elliott Mendelson, em seu livro [38]. A
teoria de Zermelo-Fraenkel é um caso particular de teoria, no sentido
de que qualificamos linguagem formal e logica subjacente. Logo, a
proposta de Suppes nao é cabivel para qualificar teorias. Por conta
disso, preferimos nos referir a 7 como uma ‘teoria’ (entre aspas).

Com relagao aos simbolos metalinguisticos ( e ), estes sao chama-
dos de ‘abre parénteses’ e ‘fecha parénteses’, respectivamente. Tais
simbolos cumprem o mesmo papel de ( e ). Mas é uma pratica co-
mum o emprego de ( e ) no contexto de predicados conjuntistas.

Como primeira ilustracao de predicado conjuntista, consideremos
a ‘teoria’ de grupos. Esta foi brevemente apresentada na Secao 68.
Usando a Definigao 7.1, podemos conceituar o predicado conjuntista
® ‘ser um grupo’ da seguinte maneira:

DEFINIGAO 7.2.

&(G):dgIx(G={(g,*x) Ng#DN*C (g xg)XgA
Vavb((a € g A b € g) = Fle((a,b), c) € x)A
de(e € g AVa(a € g = (((a,e),a) € x A ((e,;a),a) € *)))A
VaVbVe(x(*(a, b), c) = x(a, *(b, c)))A
Va3b(x(a,b) = e A x(b,a) = e)).
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Comparando Definigoes 7.1 e 7.2, temos o que se segue.

» O predicado P da Defini¢ao 7.1 é interpretado como o predicado
& da Definicao 7.2.

» A ‘teoria’ T da Definicao 7.1 é interpretada como a ‘teoria’ G
da Definicao 7.2.

» Conjunto x; da Defini¢ao 7.1 é interpretado como o conjunto g
da Definicao 7.2; logo, o valor de n da Defini¢ao 7.1 é 1.

» Relagdo r; da Definigao 7.1 é interpretada como a fungao x da
Definicao 7.2; logo, o valor de m da Defini¢ao 7.1 é 1.

» Os axiomas de 7 mencionados na Definicao 7.1, para a inter-
pretacao G, sao as formulas
979,
* C (9 xg)xg,
Vavb((a € g A b € g) = Fle((a,b), c) € %),
de(e € g AVa(a € g = (((a,e),a) € x A ((e,a),a) € *))),
VaVbVe(x(x(a, b), c) = x(a, *(b, c)))

Va3b(x(a,b) = e A x(b,a) =€)
da Definigao 7.2.
&(G) se lé ‘G é um grupo’. Logo, G é um grupo sss for um par or-
denado (g, *) em conjungao com a conjungao de seis formulas. Essas
seis formulas sdo os axiomas de grupo, os quais sao discutidos nos

proximos paragrafos. Por abuso de linguagem, chamamos o conjunto
g de grupo.

O axioma
972
afirma que todo grupo é um conjunto nao vazio. Isso corresponde ao
postulado G1 da Secao 68.

O axioma
*C(gxg)xg
afirma que x é uma relagao com dominio g X g e co-dominio g, exa-
tamente como se exige na Defini¢ao 7.1.

O axioma

Vavb((a € g A b € g) = Fle((a,b), c) € %),
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em conjunc¢ao com a féormula do paragrafo acima, estabelece que % é
uma fung¢ao com dominio g X g e co-dominio g. Isso corresponde ao
postulado G2 da Secao 68.

O axioma
Jde(e € gAVa(a € g = (((a,e),a) € xA((e,a),a) € *)))

corresponde aos postulados G3 e G4 da Segao 68.

Observar que, na formulacao anterior de grupo, sugerimos o termo
privilegiado e como um dos conceitos primitivos de grupo. No en-
tanto, Definicdo 7.2 deixa claro que essa manobra nao é necessaria.
Basta um axioma que garanta a existéncia de e, como foi feito agora.
Além disso, observar que, na definicdo de predicado conjuntista,
exigem-se como conceitos primitivos conjuntos e relagoes entre esses
conjuntos. No entanto, na definicdo de grupo nao ha qualquer re-
lacao na qual o termo e seja dominio ou co-dominio. Neste sentido,
é uma questao de coeréncia com a Defini¢ao 7.1 que o termo e nao
seja listado entre os conceitos primitivos de grupo.

E claro que a pratica matemdtica nem sempre funciona assim.
Muitos autores listam o termo e como um dos conceitos primitivos
de grupo, mesmo sabendo que nao héa necessidade disso. Essa pratica
ocorre simplesmente porque fica mais facil escrever o que é um grupo
quando se assume e como um conceito primitivo.

A férmula
VaVb¥e(x(x(a, b), c) = x(a,x(b, c)))

afirma que x é associativa. Isso corresponde ao postulado G5 da
Secao 68.

Finalmente, a férmula
Va3b(x(a,b) = e A x(b,a) = e))
corresponde ao postulado G6 da Secao 68.
Resumidamente,

um grupo € um conjunto munido de uma operacao bindria
fechada, associativa, com elemento neutro e elemento
simétrico.
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O texto em destaque acima é o discurso usual, o qual emprega
rigor, mas nao formalismo, como discutido na Secao 8. Declarar in-
formalmente o que é um grupo nao é erro matematico. Mas ¢é in-
competéncia matematica nao saber traduzir formalmente a afirmacgao
‘grupo ¢ um conjunto munido de uma operagao binaria fechada, as-
sociativa, com elemento neutro e elemento simétrico’. Sim, a tltima
afirmacao foi um juizo de valor. Logo, o leitor pode contestar o que
foi dito sem prejuizo ao restante da leitura.

Para efeitos praticos, comumente predicados conjuntistas, para
uma teoria como a de grupos, sao escritos da forma como se apre-
senta na Secao 68.

Quando alguém afirma que um grupo é um conjunto munido de
uma operacao binaria fechada, associativa, com elemento neutro e
elemento simétrico, esta tacitamente usando um predicado conjun-
tista para definir o que é um grupo, mesmo que nao saiba disso.
E uma situacdo andloga aquela de Monsieur Jourdain, personagem
principal da pega Le Bourgeois Gentilhomme, de Moliere. Monsieur
Jourdain fica encantado ao descobrir que passou a vida toda falando
em prosa, sem saber disso.

DEFINIGAO 7.3. Seja P um predicado conjuntista, onde

B(T) : Fx13wo - - - e, Ir Frg -+ - Ir (T =
(X1, T+ ,xp, 71,72 ) A aziomas de T,
nos moldes da Definicao 7.1. Uma interpretacao de B é qualquer
atribuicao de valores para os termos Ty, To -+ , Ty, T1,T2 4 Ty

Um modelo de P é uma interpretacao de B na qual os axiomas
de T sdo teoremas.

EXEMPLO 7.1. No EXEMPLO 6.25, o0s trés itens I, II e III Sdo
interpretacoes de grupo. Mas apenas itens 1 e 11 sao modelos de

grupo.

Mantendo este espirito de rigor no lugar de formalimo, finalmente
podemos iniciar nossos estudos sobre geometria na préxima Secao.

Neste livro utilizamos predicados conjuntistas para definir niimeros
naturais, inteiros, racionais, reais e complexos nas Sec¢oes anteriores,
ainda que o leitor possa perceber isso somente agora (lembrar de
Monsieur Jourdain!). Mas usamos a mesma técnica para formular
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plano euclidiano na Secao 76, espagos vetoriais reais na Secao 80,
corpos e espagos vetoriais quaisquer na Secao 96, espacos métricos
na Secao 86, espacos de probabilidades na Secao 102 e até mesmo
mecanica classica nao relativistica de particulas na Secao 110.

SEGAO 72
( Plano de incidéncia

s

A1E5m 1899 David Hilbert publicou um texto revoluciondrio sobre
geometria. Trata-se do histérico Grundlagen der Geometrie. Uma
tradugao para o inglés pode ser encontrada em [23]. Na tradugao
portuguesa [24] ha um blurb de Maria do Pilar Ribeiro e José da
Silva Paulo onde se 1é o seguinte:

Nao ¢ este um livro de texto de geometria elementar,
mas esta traducdo é dedicada aos nossos professores
da matéria e aos estudantes de matemdtica das nos-
sas universidades. Os tradutores tém a esperanca de
que um cuidadoso estudo dos vdrios problemas deste
livro contribuird indirectamente para implantar neles
a ideia de que, em geral, os males do ensino da geo-
metria nas nossas escolas so superficialmente residem
em deficiéncias de ordem pedagdgica, mas antes se en-
contram na falta de contacto com os problemas vivos,
actuais, da matéria que se ensina e do indispensdvel
treino para a investigacdo desses problemas.

O impacto da obra de Hilbert resultou, entre muitas outras coisas,
no livro Fundamentos da Geometria, de Benedito Castrucci [10], o
qual é uma leitura altamente recomendavel, apesar do texto contar
com muitos erros de digitacao.

O foco das obras citadas é geometria euclidiana, pelo menos numa
acepcao mais moderna do que a obra FElementos, de Euclides de
Alexandria.
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Geometria euclidiana é um ramo da geometria sintética, a qual
trata também de geometria absoluta, geometria nao-euclidiana, geo-
metria afim, geometria nao-Desarguesiana, geometria projetiva, geo-
metria nao-Paschiana, entre outras. Geometria euclidiana deve ser-
vir de fundamentacao para a geometria analitica plana, a qual é
discutida na Secao 90.

Todas as Sec¢oes desta Parte, com exce¢do da primeira, sdo uma
adaptagao do livro de Castrucci [10]. Mas hé diferencas entre nossa
versao e aquela de Castrucci, no que se refere a formulacao de certos
postulados. Em contrapartida, no livro citado a abordagem é muito
mais detalhada, apesar do autor nao qualificar qual teoria de con-
juntos é empregada. Como ja sugerido, aqui geometria euclidiana é
tratada como um predicado conjuntista (no contexto de ZF) cujos
axiomas sao divididos em cinco grupos:

I: Incidéncia;

11: Ordem;

11: Congruéncia;

1v: Continuidade;

v: Paralelismo.

Introduzimos nesta Se¢ao o primeiro grupo de postulados.

DEFINICAO 7.4. Um plano de incidéncia é um par ordenado
p=(mp)
tal que as sequintes formulas sdo teoremas.
GELl: VaVb((a € TAb € mAa # b) = Jr(r € pAa € rAb e T)).

GE2: YaVbVrVs((a e TtAbeTATr €EpAsEpAhaF#bAac
rOsAbeErns)=r=s).

GE3: Vr(r € p=Jadblae rAbETAaEbANaETANbET)).
GE4: JaFbIc(a e T ANbETANCcETAYr(rép=agrVb¢g

rVeér)).

Em um plano de incidéncia p = (7, p) chamamos os elementos de
m de pontos e os elementos de p de retas. Logo, m é o conjunto de
pontos do plano de incidéncia e p é o conjunto de retas do mesmo
plano de incidéncia. Uma vez que elementos de um conjunto nao
vazio sao conjuntos, entao pontos e retas sao conjuntos.
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Por abuso de linguagem ¢é usual se referir a m como plano.

DEFINIGAO 7.5. Seja (m,p) um plano de incidéncia. Se a é
um ponto (i.e., a € w), r é uma reta (i.e., v € p) ea € r, dizemos
que ‘o ponto a incide sobre a reta r’ ou, equivalentemente, ‘a reta
r passa pelo ponto a’.

Pontos incidentes sobre uma mesma reta em um plano de in-
cidéncia sao chamados de colineares.

Axioma GE1 diz que, para quaisquer dois pontos distintos a e b,
existe uma reta que passa por ambos. Ou seja, dois pontos distintos
sao sempre colineares.

Axioma GE2 afirma que, se dois pontos distintos a e b incidem sobre
reta r e reta s, entao r = s. Em outras palavras, pontos distintos
nao sao apenas colineares, mas também definem uma tnica reta que
passa por ambos.

Postulado GE3 diz que toda reta r admite pelo menos dois pontos
distintos incidentes sobre ela.

Finalmente, GE4 garante que existem pontos a, b e ¢ tais que ne-
nhuma reta r incide sobre os trés. Ou seja, em qualquer plano de
incidéncia devem existir pelo menos trés pontos nao colineares.

EXEMPLO 7.2. Sejam
m={1,2,3}

p=1{{1,2},{1,3},{2,3}}.
Neste caso, (m,p) € um plano de incidéncia. Com efeito, os
quatro postulados sdo teoremas para esta interpretacio. Por e-
xemplo, existem apenas trés possiveis escolhas de pares de pontos
distintos:
I: Para os pontos 1 e 2 existe a reta {1,2} incidente sobre
ambos;

11 : Para os pontos 1 e 3 existe a reta {1,3} incidente sobre
ambos;

11: Para os pontos 2 e 3 existe a reta {2,3} incidente sobre
ambos.

Logo, axioma GE1 € teorema.
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‘ ﬁ' Os demais postulados podem ser verificados pelo leitor.

ﬁ! No EXEMPLO acima foi ilustrado um plano de incidéncia

({1,2,3}, {{1,2},{1,3},{2,3}})

com apenas trés pontos e trés retas. Recomendamos que o leitor
prove que o nimero minimo de pontos em um plano de incidéncia é
3. Além disso, é um exercicio interessante a concepc¢ao de um plano
de incidéncia com quatro pontos.

O leitor deve ter observado que a formulacao dos postulados de
incidéncia é desnecessariamente complicada. Afinal, os axiomas pro-
poem ideias simples mas através de formulas muito longas. Podemos
evitar essa inconveniéncia utilizando quantificadores relativizados, a
exemplo do que foi feito na Secao 35.

DEFINIGAO 7.6. Sejam P uma férmula e o um conjunto. Logo:
V,a(P) : Va(a € p = P),
3,a(P) : Ja(a € o AP).

Importante perceber que os quantificadores relativizados usados
na Secao 35 sao casos particulares da Definicdo acima. Com efeito,
naquela Secao o conjunto ¢ é simplesmente o conjunto dos racionais
estritamente positivos.

Gragas as abreviagoes metalinguisticas acima, podemos reescrever
os quatro postulados de incidéncia de maneira muito mais facil de
ler, como se segue.

GEl: Vza¥ b(a #b= F,r(acrAber)).

GE2: YV a¥ bV, rV,s((a #bNa€erNsAberns)=r=s).

GE3: V,rdradbla #bNaerAber).

GE4: Jra3 b3 c(Vr(a €rVbErVedgr)).

Em outras palavras, relativizamos os quantificadores universal e
existencial aos conjuntos 7 e p de pontos e retas.

Os demais postulados de geometria euclidiana a serem introduzidos
nas préoximas Segoes sao todos escritos empregando quantificadores
relativizados, de acordo com a Defini¢ao 7.6
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SECAO 73
( Axiomas de ordem

ualificamos aqui o que é um ponto entre dois pontos.

DEFINIGAO 7.7. Seja p = (m, p) um plano de incidéncia. Seja
ainda
WX T T

uma relagao (ver Defini¢ao 3.11) tal que
((a,c),b) € __
¢ denotado abreviadamente por
abc
e lido como ‘o ponto b estd entre os pontos a e c’.

Dizemos que
0= <pa—>
¢ um plano quase-ordenado sss as sequintes formulas sao teore-
mas.

GEb5: V.a¥, bV .c(abc = J,r(a € rANbETACET));
GEG: V. aV bV c(abc = (a #bAa#cAb#c));
GET7: YV aV¥ bV c(abc = cba);

GE8: YV aV¥.b(a # b = Jc(abe));

GE9: Y, aV¥ bV.c(abc = (—acb A —bac)).

A sequéncia de simbolos abc é uma abreviacao metalinguistica para
a férmula

((a,¢),0) € _,

onde __ ¢ uma relagao com dominio m X 7 e codominio 7, em um
plano de incidéncia p = (7, p).

Notar que planos quase-ordenados sao definidos a partir de planos
de incidéncia.

Axioma GEb5 diz que, se um dado ponto b estd entre os pontos a e
¢, entao existe reta que passa por a, b e c.
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Postulado GE6 afirma que, se um dado ponto b esté entre os pontos
a e ¢, entao os trés pontos envolvidos sao distintos entre si, tomados
dois a dois.

Postulado GE7 estabelece que, se um dado ponto b esta entre os
pontos a e ¢, entao este mesmo ponto b esta entre c e a.

Axioma GES8 afirma que, dados dois pontos a e b distintos entre si,
entao existe ponto ¢ tal que b esta entre a e c.

Finalmente, axioma GE9 diz que, se um dado ponto b estd entre
os pontos a e ¢, entao ¢ nao esta entre a e b e, além disso, a nao esta
entre b e c.

Precisamos agora conhecer um pouco melhor os inteiros, para que
possamos exibir um modelo de plano quase-ordenado.

DEFINIGAO 7.8. Um inteiro x é multiplo de um inteiro y sss
existe inteiro z tal que x = yz.

EXEMPLO 7.3. Os inteiros 5 e —10 sao maltiplos de —5. Com
efeito, 5 = (—=1)(=5) e —10 = 2(-5).

1@1 Notar que 0 é multiplo de qualquer inteiro. Além disso, ne-
nhum inteiro diferente de 0 é multiplo de 0. Outro teorema ttil é o
seguinte: se x = yz, onde x, y e 2z sao inteiros, entao x ¢ multiplo de
ambos y e z.

DEFINICAO 7.9. Um divisor de um inteiro x € qualquer inteiro
y tal que x € maltiplo de y.

EXEMPLO 7.4. ©: Os divisores de qualquer primo x (ver De-
finig¢ao 4.2) sio apenas x e 1;

11: Os divisores de 12 sao 1, 2, 3, 4, 6 e 12.

DEFINICAO 7.10. Inteiros estritamente positivos m e n sdao
primos entre si sss o unico divisor em comum entre m e n €
1.

EXEMPLO 7.5. I1: 5 e 4 sdo primos entre si. Com efeito, o
unico divisor em comum entre eles é 1;

Im: 1 el sao primos entre si;
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II1: 2 e 2 nao sao primos entre si, uma vez que compartilham
0 mesmo divisor 2 # 1;

IV: 6 e 4 nao sao primos entre si.

Nos EXEMPLOS 7.6, 7.7, 7.8 e 7.9 a seguir exibimos e examinamos
um modelo de plano quase-ordenado.

EXEMPLO 7.6. Seja m = Z2, ou seja, cada ponto pertencente
a7 € um par ordenado (x,y) de inteiros. Sejam ainda

Tﬁé"Z{(way)GZQI(fvszyzq)\/<($#p\/y#q):‘

(x—pe maultiplo de m i m))}’
y—q n

ondem, n, p e q sao inteiros, n # 0 e |m| e |n| sao primos entre

st; €
rd = {(z,y) € Z* | y = q}.

m,n

ﬁ‘ Se definirmos p como o conjunto de todos os r onde

pq
P, ¢, m e n sao inteiros, entao (m,p) é um plano de incidéncia.

Cabe ao leitor provar.

No EXEMPLO acima cada reta pertencente a p é um conjunto nao
vazio de pares ordenados de inteiros, onde cada um desses pares
ordenados é um ponto do plano de incidéncia (7, p).

s WY condi¢do ‘|m| e |n| sdo primos entre si’ é desnecesséria,
bastando que n seja diferente de 0. Sugerimos que o leitor examine
postulado GE2 no que se refere a tal exigéncia, para fins de avaliacao,
pelo menos de um ponto de vista intuitivo.

EXEMPLO 7.7. No plano de incidéncia (m,p) do EXEMPLO
7.6 a reta r(l):é ¢ o conjunto

{(0,0), (1,1),(=1,-1),(2,2), (=2, - ) s

Ob 1,1 -1,-1 _ 1,1 -1,-1
servar que 1oy = roo = T11 1

n inteiro diferente de 0.

T, = ry, para qualquer

Outro exemplo de reta € o conjunto
Tl 2 = {(1 2) (4 7) (_27 _3)7 (77 12)7 (_57 _8> o }7

—-3-5 2 0 3,5 . .
o qual é igual a riy" ", que € igual a 7 e assim por diante.
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Notar que
1,1 ~ 3,5
7’070 ﬂ T172 = .
Finalmente, para ilustrar uma reta para o caso em que n =0,
temos

Til)’:g = {<Oa 2)? (172)’ <_1’2)’ (27 2)? (_272)7 T }

Neste caso,
30 _ .m0
12 = Tp2

para quaisquer p e m inteiros.

Observar que
2 Nrop = {(2,2)}

ris Nrys = {(1,2)}.

EXEMPLO 7.8. No plano de incidéncia (m,p) do EXEMPLO
7.6, consideremos a sequinte relacao __ :m X m — w dada por

(z,9) (@', y) (=", y")

$88
i (z,y), (2,y) e (2", y") pertencem a mesma reta e
I (z<ao<a2’va'"<az<zx)V((z=2"=2"YAN(y<y <
y' vy <y <y)).

Naturalmente,
(z,y)(', y) (", y") sss (((z,y), (=",y")), (2',y) € _.
Neste caso, ({7, p), _) é um plano quase-ordenado, onde lemos

(z,y) (', y) (", y")

como (2',y') estd entre (z,y) e (2”,y").

EXEMPLO 7.9. Sequindo EXEMPLOS 7.6, 7.7 ¢ 7.8, o ponto
(1,1) esta entre (2,2) e (—1,—1). Com efeito, os trés pontos
envolvidos pertencem a reta ré:(l) e, além disso, —1 <1 < 2.

Analogamente, (1,2) estd entre os pontos (4,7) e (—2,-3).
Neste caso, a reta que passa pelos trés é ri’:g. O mesmo ponto
(1,2) estd também entre os pontos (0,2) e (2,2), apesar da reta

4 3,0 2 3,5
que passa pelos trés ser 1y, a qual € diferente de 17’5.
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Em compensagao, o ponto (1,2) nao estd entre
(4,7) e (0,2).

Com efeito, os pontos (1,2) e (4,7) incidem sobre a reta ri’:g,

enquanto os pontos (1,2) e (0,2) incidem sobre a reta ri’g. Uma
vez que ri’gﬂrig ={(1,2)}, de acordo com EXEMPLO 7.7, entdo
estamos falando de retas distintas. Logo, (1,2), (4,7) e (0,2) sdo

pontos nao colineares neste modelo.

s A prova de que
{(m, p), ),

do EXEMPLO 7.8, garante as formulas GES~GE9 como teoremas, é
quase imediata. A demonstracdo de que GEl1~GE4 sao teoremas
nesta interpretagao é um pouco mais ardilosa.

DEFINIGAO 7.11. Sejam a e b pontos de um plano quase-orde-
nado ((m,p), ). Um segmento fechado de reta (ou segmento)
la,b] é o conjunto

la,b) ={z em|z=aVaz=>bVaxb}.
Além disso, um segmento aberto |a,b| é o conjunto
Ja,b[ = {z € 7 | azb},
onde a # b.

EXEMPLO 7.10. Seguindo os EXEMPLOS 7.6, 7.7 ¢ 7.8, o
conjunto

T = {(_27 _3)7 (17 2)7 (4a 7)’ (77 12)}
€ 0 segmento de reta
Com efeito, os pontos (1,2) e (4,7) sao os unicos entre (—2, —3)
e (7,12).

Além disso, x admite nove subconjuntos proprios que $ao seg-
mentos. Dois deles sao

{(_27 _3>7 (1) 2)7 (47 7)} € {<47 7)}

Notar também que {(4,7)} é um segmento fechado e um seg-

mento aberto. Com efeito, {(4,7)} = [(4,7)] =](1,2),(7,12)[.
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No EXEMPLO acima sao exibidos trés segmentos de reta:
e um com quatro pontos,
e um com trés pontos e
e outro com um unico ponto.
Naturalmente, no espago quase-ordenado do EXEMPLO 7.8 todo seg-

mento de reta admite no minimo um ponto. Além disso, todo seg-
mento de reta no mesmo espago é um conjunto finito.

DEFINIGAO 7.12. Se os pontos a, b e ¢ sao colineares (ver De-
Jinigao 7.5) em um plano quase-ordenado, denotamos isso por
abc.

Observar que abc é uma férmula. Obviamente,

abc = abe

é teorema. No entanto, a reciproca nao é. ﬁ' Com efeito, basta
exibir pontos a, b e ¢ colineares tais que o ponto a esteja entre b e c.

Notar também que, apesar da Defini¢ao 7.5 se referir a colinearida-
de de pontos em um plano de incidéncia, todo plano quase-ordenado
¢ um caso particular de plano de incidéncia. Logo, é consistente usar
a Defini¢do 7.5 para tratar de colinearidade de pontos em um plano
quase-ordenado.

DEFINIGAO 7.13. Um plano quase-ordenado ((m,p), ) é um
plano ordenado sss a formula abaizo € teorema.

GEL0: V,aV bV cV,r((mabc Aa & 7 Ab & rAcégrAJdrn

[a,b] = {d})) = (3e(rn[b,c] = {e}) VIf(rnla, cf = {f})))-

Postulado GE10 é o famoso Axioma de Pasch, em referéncia a
Moritz Pasch (matemadtico alemao que exerceu forte influéncia na
obra de David Hilbert). De um ponto de vista meramente intuitivo,
os pontos a, b e ¢ nao colineares, assumidos no axioma, devem definir
vértices de um tridngulo cujos lados sao os segmentos [a,b], [b,c| e
[c, a]. Neste contexto, GE10 diz o seguinte:

Se uma reta, em um plano ordenado, intersecta um dos lados
do triangulo dado por a, b e c, sem passar por qualquer vértice,
entao a mesma reta intersecta um dos outros lados.
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EXEMPLO 7.11. O plano quase-ordenado

(T, 0)s ),

do EXEMPLO 7.8, ndo € um plano ordenado. Para provar isso,
basta exibir um contraezemplo para a formula GE10.

Seja r a reta ré:(l). Sejam a, b e ¢ 0s pontos nao colineares
(1,2), (3,2) e (47),
respectivamente. Notar que nenhum deles incide sobre ré:é.

Os pontos (1,2) e (3,2) definem a reta
3,0
T1,27
a qual intersecta ré:é no ponto (2,2), conforme EXEMPLO 7.7.
Logo, todas as condicoes que antecedem a condicional de GE10
sao satisfeitas, onde o ponto d é justamente (2,2).

No entanto, a reta definida por a e c é
35
T1,27
. ~ 1,1 . . z .
cuja interse¢ao com 1oy € o conjunto vazio. Além disso, a reta
Bl b , 15 0 int - O
efinida por b e c € r35, cuja interse¢ao com o}, também € o
conjunto vazio.

Logo, a reta ré:(l) intersecta o lado [a,b] do triangulo com vér-
tices a, b e ¢, mas nao intersecta o lado [b, c] e nem o lado |a,c|,
garantindo dessa maneira que GE10 nao € teorema no plano
quase-ordenado em questao. Temos, assim, um plano quase-
ordenado que nao é um plano ordenado.

Para exibirmos um plano ordenado, pedimos ao leitor um pouco
de paciéncia. Chegaremos l4.

DEFINICAO 7.14. Sejam r uma reta de um plano ordenado e
0, b e ¢ pontos incidentes sobre r, de modo que boc, ou seja, o
esta entre b e c. Entao os conjuntos

ro={z €r—{o} | boz}

c __

ro ={z €r—{o}| cox}
sao semirretas com origem o ou, simplesmente, semirretas, se
nao houver risco de confusao.
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E‘ Em [10] é demonstrado que, para toda reta r de um plano orde-
nado, é possivel definir uma relagdo de equivaléncia sobre r —{o} que
particiona este conjunto em exatamente dois subconjuntos proprios.
Tal teorema, omitido aqui, justifica a ultima definicao, no sentido
de que os dois subconjuntos préprios de r — {0} sdo exatamente as
semirretas acima.

Lembrar que, de acordo com GE7,

box < x0b

COx <~ IOcC.

z@' O que fica evidente a partir da Definicao 7.14 sao os seguintes
teoremas.

L rPNré=g;

im: PUre=r—{o};
I cerb Abers;
wv:bgrbAcgre.
ViogrtNogre

Recomendamos ao leitor que os demonstre.

DEFINICAO 7.15. Seja a um ponto de um plano ordenado. Se
rq € uma semirreta, entao

ro U{a}

€ uma semirreta fechada.

Ou seja, semirretas fechadas sdo conjuntos cujos elementos sao
todos os pontos de uma semirreta, bem como a origem da semirreta.

SECAO 74
( Axiomas de congruéncia

£< timologicamente falando, geometria era o estudo da ‘medicao

da terra’ Entre civilizacoes egipcias e babilonicas de milhares de
anos atras, geometria era uma ciéncia fisica, cujos principios eram
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determinados experimentalmente, a partir de modos de percepgao
humana sobre o mundo onde vivemos. Neste sentido, havia a pre-
ocupacao com medigoes de comprimentos, areas, volumes e angulos,
sem qualquer qualificacdo para tais conceitos (pelo menos nos moldes
do que hoje se entende por qualificacao).

Hoje em dia, porém, a abordagem sintética para a geometria dis-
pensa quaisquer consideracoes sobre medidas, no sentido de atribuir
a objetos geométricos nimeros reais que digam quanto mede, por
exemplo, um angulo ou um segmento.

Essa mesma abordagem sintética foi posteriormente utilizada para
a formulacao de teorias fisicas, onde a Gravitacao Universal de New-
ton foi formulada por Hartry Field sem qualquer necessidade do em-
prego de nimeros. Detalhes em [15].

Nesta Se¢ao mostramos como é possivel tratar de relagoes de con-
gruéncia em geometria sem a invocacao de medidas dadas por niime-
ros reais. A ideia intuitiva é simples: medidas podem corresponder
biunivocamente a elementos de uma particao. Por exemplo, um seg-
mento de reta s tem medida m se m for o conjunto de todos os
segmentos de reta com a mesma medida de s. Para evitar a 6bvia
circularidade da ultima frase, basta introduzirmos uma relacao de
equivaléncia que cumpra o papel de particionar o conjunto de todos
os segmentos de reta, nos moldes dos Teoremas 3.10 e 3.11. Essa
relacao de equivaléncia se chama congruéncia.

Como destacado, a interpretacao pretendida para congruéncia é a
seguinte: dois segmentos sao congruentes se compartilham a mesma
medida.

No entanto, os axiomas GE11~GE14 a seguir permitem provar que
congruéncia ¢ tao somente uma relacao de equivaléncia, em situagao
analoga (mas nao equivalente!) a equipoténcia entre conjuntos, con-
forme Definicao 4.17 na Secao 33. Logo, nao ha a necessidade de
qualquer referéncia a medidas dadas por nimeros reais. Geometria
sintética é essencialmente o estudo de geometria sem medidas (dadas
por niimeros reais) e sem cooordenadas.

Geometria sintética é geometria sem nimeros.

Mais adiante mostramos como se relaciona a geometria sintética
com a geometria analitica, a qual ¢ uma geometria com nimeros.

PAcINA 305



MATEMATICA PANDEMICA PARTE7 SECAOT74

DEFINIGAO 7.16. Sejam o = ({m, p), ) um plano ordenado,
s ={x € p(n) | Ipad,b(x = [a,b])}

la=A{r € p(n) | r € uma semirreta fechada com origem a},
onde a € w, de acordo com Definicoes 7.1/ e 7.15.

Em outras palavras, s é o conjunto de todos os segmentos de o
e Ly € o conjunto de todas as semirretas fechadas com origem a.

Seja ainda = uma relacao em s, i.e.,
~CsXs.
Dizemos que = é uma relagdo de congruéncia sss as seguintes
formulas sao teoremas.
GEl1l: YV, aV, bV cV ,r3.d(d € r A[a,b] = [c,d]).
GE12: YV, aV, bV cV,a'V bV ((abc A 'V A [a,b] = [d,b] A
[b,c] = [V, ) = [a,c] = [d,]).
GE13: YV, aV, bV cV dV.eV. f(([a,b] = [c,d] Ae, f] = [c,d]) =
[a,b] = [e, f]).
GE14: YV aV bV .V, a'V bV ¢ ((mabc A —a'b'd) =
VodV.d ((d € la,b| AN d € ]d V[ A [a,b] = [a/,V] A [b,c] =
b, Na,c] = [d,d]N]a,d = [d,d]) = [d,c] = [d,])).

/C/

SR

Postulado GE11 estabelece que, dados pontos a e b e uma semir-
reta fechada com origem c, entao existe ponto d incidente sobre a
semirreta fechada tal que os segmentos [a, b] e [¢, d] sdo congruentes.

Axioma GE12 afirma que, se b estd entre a e ¢ e, além disso, b esta
entre a’ e ¢, entdo a congruéncia entre os segmentos [a,b] e [a’, V],
em conjungdo com a congruéncia entre os segmentos [b, c] e [V, ],
implica na congruéncia entre [a, c| e [d, c].

Formula GE13 sugere a transitividade da congruéncia. Obviamente
¢ necessario provar que congruéncia é simétrica, para inferir essa
transitividade. Ou seja, devemos garantir que

le, fl= [e,d] & [¢,d] = e, f]

é teorema, para interpretarmos GE13 como transitividade. Mas isso
é feito no Teorema 7.1, logo adiante.
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Com relagao ao postulado GE14, este trata de tridngulos. Afinal,
sao assumidos pontos a, b e ¢ nao colineares, o que garante que eles
sao distintos dois a dois. Comentario analogo sobre os pontos d,
b’ e ¢. Portanto, temos um tridngulo com lados [a,b], [b,c] e [a, ],
bem como um triangulo de lados [a', V], [V, ] e [d,]. Os vértices
do primeiro sdo a, b e ¢, enquanto os vértices do segundo sao a’, v’
e ¢. E justamente GE14 que cria oportunidade para falarmos sobre
angulos congruentes, algo a ser discutido mais adiante.

No contexto do paragrafo acima, sao também assumidos pontos d
e d' incidentes sobre os lados [a, b] e [, V], respectivamente, de modo
que nenhum deles é qualquer vértice. Dadas todas essas condigoes
(deste e do paragrafo anterior), GE14 diz o seguinte: a congruéncia
entre [a, b] e [a/, V'], entre [b, c| e [V, ('], entre [a, c] e [@, ¢'] e entre [a, d]
e [d,d'], implica na congruéncia entre [d, c|] e [d’, ¢]. Intuitivamente
falando, os segmentos [d, c| e [d', ] ‘atravessam o interior’ de seus
respectivos tridngulos, definindo novos triangulos com vértices a, ¢
e d e vértices b, c e d, e com lados respectivamente congruentes aos
lados dos tridngulos com vértices a’, ¢ e d' e vértices V', ¢ e d'.

TEOREMA 7.1. A relagao de congruéncia = da Defini¢io 7.16
€ de equivaléncia.

DEMONSTRAGAO: De acordo com a Definicao 3.14, devemos
provar que = é reflexiva, simétrica e transitiva. Por conta
disso, dividimos essa demonstracao em trés partes.

REFLEXIVIDADE: De acordo com GE11, se a e b definem
um segmento [a,b] e ¢ é um ponto qualquer (origem de
uma semirreta), entao existe d tal que [a,b] = [c,d].
Mas GE13 garante que

([a,b] = [e,d] A [a,b] = [c,d]) = [a,b] = [a,b],
onde substituimos [e, f] por [a, b].

Logo,
Voa¥:b([a, b] = [a,b]).

~

SIMETRIA: Foi provado no primeiro passo que [a/,0] &=
[a',b']. Supor que [a,b] = [d/,b]. Logo, GE13 garante
que

([a', ] = [a, V] A fa,b] = [d,V]) = [d, ] = [a, b].

PAcIiNA 307



MATEMATICA PANDEMICA PARTE7 SECAO T4
Portanto, [a,b] = [/, V] = [, V]
isso é equivalente a férmula

[a,b] = [d/, V] < [d, V] = [a, b].

12

[a, b]. Naturalmente

TRANSITIVIDADE: GE13 afirma que
(la, 0] = [e,d] Ale, f] = [¢,d]) = [a,b] = [e, f].
Mas foi provado acima que
le, fl = [c,d] & [c,d] = [e, f].

Logo,
([a,b] = [c,d] A[c,d] = e, f]) = [a,b] = [e, f].

Isso encerra a prova.

Se s é o conjunto de todos os segmentos de reta em um plano
ordenado (como apresentado na Defini¢do 7.16), entdo a ‘medida’ de
um segmento de reta [a, b] pode ser dada simplesmente por

{z €s|x=]a,bl}

Portanto, Teoremas 3.10 e 3.11 garantem que = particiona s em
classes de equivaléncia, as quais sao tao somente ‘medidas’, no sen-
tido acima. Neste contexto, uma ‘medida’ nao é qualquer niimero
real.

Colocamos a palavra ‘medida’ entre aspas porque o conceito de
medida, em teoria da medida, demanda o emprego de niimeros reais,
algo a ser discutido na Se¢ao 103. Ou seja, usamos o termo ‘medida’
aqui apenas em um sentido meramente intuitivo.

DEFINIGAO 7.17. Sejamr, e s, semirretas com a mesma origem
0. Se nao existe reta r tal que r, C1r AS, C 1, dizemos que

o U S,
¢ o angulo 7,5,.

Também podemos denotar o angulo r, U s, por aob, onde a e
b sao pontos incidentes sobre r, e s,, respectivamente, e ambos
diferentes de o.

ﬁ' Ou seja, um angulo é a uniao de semirretas nao colineares
que compartilham a mesma origem. A justificativa para podermos
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denotar o dngulo 7,5, por aob reside no axioma GE2. Cabe ao leitor
escrever os detalhes.

DEFINIGAO 7.18. Sejam r,, S,, M, € n, semirretas. Sejam

. —_— —_— A . —— —_— ~
ainda 7,5, € Myn, angulos. Dizemos que 7,5, € Myn, SG0 con-
gruentes, € eSCTevemos iSso como

ToS0 22 My,
588
VbV VY (b Erg A € 5o N € my Al € nyA

[0,b] 2 [u, V] A [0, ¢] & [u,c]) = [b,c] = [V, ]).

Intuitivamente falando, o segmento [b, ¢] nos da a ‘abertura’ do
angulo
ToS0s
sendo que essa ‘abertura’ é dada a partir dos ‘parametros’ b e ¢, uma
vez que b incide sobre a semirreta r, e ¢ incide sobre a semirreta s,.

Analogamente, o segmento [0, '] nos d4 a ‘abertura’ do dngulo
—_—
My My,
sendo que essa ‘abertura’ é dada a partir dos ‘parametros’ b’ e ¢, uma
vez que b’ incide sobre a semirreta m, e ¢ incide sobre a semirreta
Ny

Neste contexto, a definicao acima estabelece que angulos congru-
entes contam com ‘aberturas’ congruentes, desde que os ‘parametros
de avaliagao’ definam segmentos congruentes. Esse mesmo critério
de avaliagao de ‘abertura’ é dado pelas condigoes [0,b] = [u,l] e
[o,c] = [u,c].

Desnecessario enfatizar que nenhum angulo é congruente a qual-
quer segmento. Afinal, congruéncia entre segmentos é uma relacao
sobre o conjunto de todos os segmentos, enquanto congruéncia entre
angulos é uma relacao sobre o conjunto de todos os angulos.

DEFINIGAO 7.19. Seja r uma reta de um plano ordenado
o ={(m,p)__).

Definimos s, : 1 —r — m—1r como uma relacao em ™ —r dada
por

(a,b) € 2, sss Bp(p € r A apb).
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Na tultima definicaio m — r é o conjunto dos pontos do plano T,
exceto aqueles que pertencem a reta r. Observar que

Bp(p € r A apb) < Vp(p € r = —apb)
é teorema. Logo, Definicdo 7.19 é equivalente a

(a,b) € s, sss Vp(p € r = —apb).

TEOREMA 7.2. Para cada reta r de um plano ordenado

o= ((m,p), ),

%, € uma relacao de equivaléncia.

DEMONSTRAGAO: Devemos provar que s, é reflexiva, simétri-
ca e transitiva. Dividimos a demonstracao em trés partes.

REFLEXIVIDADE: De acordo com GE6, V,aV,p(—apa). Em
particular, se p incide sobre r e a pertence a m—r, entao
—apa. Logo, (a,a) € »,.

SIMETRIA: Sabemos que
(a,b) € s, & —apb,
se p incide sobre r. Mas, GE7 implica que
—apb < —bpa.
Uma vez que
(b,a) € s, & —bpa,
entao

(a,b) € 5, < (b,a) € ,.

TRANSITIVIDADE: ﬁl Devemos considerar trés ocorrén-
cias de pontos a, b e ¢, uma vez que precisamos provar
que

((a,b) € 5. A (b,c) € 3,.) = (a,c) € ,.

Para facilitar a demonstracao, podemos dividi-la em e-
tapas: o caso em que a, b e ¢ sdo colineares e o caso
em que nao sao. Na tultima etapa os pontos a, b e ¢ sao
vértices de um triangulo e, por conta disso, o Axioma
de Pasch (GE10) deve ser usado. Deixamos os detalhes
para o leitor.

PAcINA 310



MATEMATICA PANDEMICA PARTE7 SECAOT74

Ou seja, uma reta divide um plano ordenado em duas partes.

E] Em [10] (pagina 74) hd uma demonstracao de que, para toda
reta r, o quociente

(m—7)/7

tem exatamente duas classes de equivaléncia. Se o leitor nao recorda
o que € o quociente de um conjunto por uma relacao de equivaléncia,
ver paragrafo que segue Teorema 3.11. Se denotarmos essas classes
de equivaléncia por ay, e as,, temos que

(m —7)/5 = {on,, as,},

onde a4, e as, sao chamados de semiplanos.

Ou seja, qualquer reta r divide um plano ordenado em dois semi-
planos, os quais nao tém intersecao entre si e tais que a uniao desses
semiplanos produz o conjunto ™ — r.

Gragcas a esse ultimo resultado, podemos encerrar esta Se¢do com
a proxima definigao.

DEFINIGAO 7.20. Seja o, o conjunto de semiplanos definidos
por uma reta r em um plano ordenado o = ((m,p), ). Seja
ainda

lo=A{r € p(n) | r € uma semirreta com origem o},
onde o € w, de acordo com Definicoes 7.1/ e 7.15. Um plano
absoluto € um par ordenado
(0,)
onde GE11, GE12, GE13, GE14 e a formula abaizo sdo teoremas.
GE15/:\Vﬂoy\wo'vioa‘v’iobvio,a’VprVarﬁ(a’ Ccr = Y € ly
ANab=adl N Cp)).

Do ponto de vista intuitivo, axioma GE15 diz o que se segue. Dados

I: um angulo ab definido por semirretas a e b com a mesma origem
07

II: uma reta r que divide o plano m em dois semiplanos e

III: uma semirreta a’, com origem o', que esteja contida na reta r,
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entao, para cada semiplano [, existe uma tUnica semirreta b com
origem o', contida em 3, de modo que o angulo 't/ é congruente ao
angulo ab.

@ Ao leitor interessado, este tltimo axioma corresponde ao pos-
tulado C5 em [10], paginas 124 e 125. Naquele texto hd um erro no
enunciado.

SEQAO 75
( Axioma de continuidade

F&zara que possamos enunciar o proximo postulado de geometria
euclidiana, precisamos ser capazes de ordenar pontos de uma reta,
em um plano ordenado. Em seguida seremos capazes de qualificar
o que é um eizo, o qual é uma reta munida de orientacao, também
conhecida como reta orientada.

DEFINIGAO 7.21. Seja r uma reta em um plano ordenado
o= {(m,p)__).

Seja ainda

ly={s € p(7) | s € uma semirreta Ns C r}.

O conjunto =, € uma relagao em |y dada como se seque:
a=,b sss aCbVvbCa.

Lemos a =, b como ‘a semirreta a tem a mesma orientacao da
semirreta b’

Usamos a notagao | (para designar o conjunto de todas as semir-
retas contidas na reta r) para nao confundir com o conjunto |, das
semirretas com origem r (onde 7 é um ponto).

TEOREMA 7.3. A relagio =, na Definicio 7.21 € de equiva-
léncia.

DEMONSTRAGAO: Devemos provar que =,, no conjunto |
das semirretas contidas em 7, é reflexiva, simétrica e tran-
sitiva. Por conta disso, dividimos a prova em trés partes.
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REFLEXIVIDADE: Uma vez que todo conjunto é subcon-
junto de si mesmo, em particular, se a é uma semirreta
contida em 7, entdo a C a. Logo, a =, a.

SIMETRIA: Temos que a =, bsssa C bV b C a. No
entanto, (a CbVbCa) < (bCaVaCb) é teorema.
Logo, a =, b sss b =, a.

TRANSITIVIDADE: Temos que

a=,bsss aCbVbCa

b=,csss bCcVecCec.

Dessa maneira, ha quatro possibilidades que devem ser
avaliadas.

(i) Sea Cbeb Cc, entdo é imediato que a C ¢, o que
implica em a =, ¢ (i.e., transitividade para a primeira
possibilidade).

(ii) Se a C b e ¢ C b (ou seja, duas semirretas a e ¢ estao
contidas em uma mesma semirreta b), entao

aCcVecCa

(ﬁl recomendamos que o leitor prove isso).

Seja qual for o caso, a ultima férmula é equivalente a
a =, c (i.e., transitividade para a segunda possibili-
dade).

(iii) Se b C a e b C ¢ (ou seja, uma mesma semirreta b
estd contida em duas semirretas a e ¢), entao

aCcVecCa

(ﬁl recomendamos que o leitor prove isso).

Seja qual for o caso, a tultima férmula é equivalente a
a =, c (i.e., transitividade para a terceira possibili-
dade).

(iv) Finalmente, se b C a e ¢ C b, temos situacao
andloga ao item (i). Logo, ¢ C a, o que implica em
a =, c (i.e., transitividade para a quarta e tltima pos-
sibilidade).
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O préximo teorema garante que toda reta de um plano ordenado
admite exatamente duas possiveis orientagoes.

TEOREMA 7.4. Seja r uma reta em um plano ordenado
0= ((m,p),__).
Se
L= {s € p(m) | s € uma semirreta Ns C r}

e =, € a relagio de equivaléncia em |y dada pela Definigao
7.21, entao o quociente

loy [ =

admite apenas dois elementos.

DEMONSTRACAO: Seja a uma semirreta de |,y com origem o.
Seja ainda
a*=r—(aU{o}).

Logo, a* é uma semirreta pertencente a | (ﬁl cabe ao
leitor provar). Além disso, a N a* = &, o que implica que
a € a* e a* € a. Portanto, a e a* sdo representantes de
classes de equivaléncia diferentes, ou seja, =(a =, a*).

O proéximo passo é considerar uma semirreta b pertencente
a l) tal que b # a e b # a*. Neste caso, b necessariamente
pertence a classe de equivaléncia com representante a ou a

classe de equivaléncia com representante a*. @l Cabe ao
leitor concluir a demonstragao.

As classes de equivaléncia do ultimo teorema sdo as duas tnicas
orientacoes de qualquer reta de um plano ordenado, conforme a pré-
xima defini¢ao.

DEFINIGAO 7.22. Seja r uma reta em um plano ordenado. Se
L= {s € p(m) | s € uma semirreta Ns C r}
e =, € a relagio de equivaléncia em | dada pela Definigao
7.21, entao o quociente
oy [ =

¢ definido como

—\
{=r, 1},
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onde as classes de equivaléncia —, e ~—, sdo chamadas de ori-
entagoes da reta r. Além disso, cada par ordenado (r,—,) e
(r,~) € chamado de reta orientada ou eixo.

Em outras palavras, uma reta orientada é uma reta » munida de
uma orientagao, a qual pode ser —, ou ~«—,. Logo, toda reta de um
plano ordenado admite duas retas orientadas definiveis a partir dela.

Retas orientadas, em um plano ordenado, permitem ordenar pon-
tos de uma mesma reta, como se percebe a seguir.

DEFINICAO 7.23. Seja x uma orientacdo de uma reta r em um
plano ordenado. Se a e b sdo pontos de r tais que

I: a define semirreta r, pertencente a x,
I1: b define semirreta r, pertencente a x e
I 7 C 1y,
entao a precede b na orientacao x e denotamos isso como
a =<, b.
Se a # b, nas condi¢oes dadas acima, dizemos que a precede
estritamente b e denotamos isso como

a <z b.

TEOREMA 7.5. Sejam a e b pontos distintos de uma reta r em
um plano ordenado. Logo

a<_,besb<_ a

TEOREMA 7.6. Seja x uma orientacao de uma reta r em um
plano ordenado. Logo, <, é uma relacao de ordem total no eixo

(r,x).

@l As provas dos dois tltimos teoremas ficam a cargo do leitor.

DEFINIGAO 7.24. Seja (r, z) uma reta orientada em um plano
ordenado. Dizemos que o par ordenado (x,y) é um corte de
Dedekind de r sss

L x# TNy # I,
I xr CrANyCr,
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In: xrUy=rAxzNy=J e
v: VpVg((p €z Ng €y) = p X2 q).

O fato de cortes de Dedekind dependerem da relacao de ordem
total <., para uma dada orientacao z, justifica o emprego de par
ordenado para defini-los.

Naturalmente, todo corte de Dedekind particiona uma reta orien-
tada em dois conjuntos x e y, de modo que os pontos pertencentes a
x precedem os pontos pertencentes a .

DEFINIGAO 7.25. Seja ¢ = (0,%) um plano absoluto, onde
0= <<7T’ P>,7>
¢ um plano ordenado.

Dizemos que ¢ é um plano absoluto continuo sss a formula
abairo for teorema.

GE16:
V,rV¥aVa(((x,y) € corte de Dedekind de rA
z € orientagio der) =
As(ser AV pVrg((p<s=pex)AN(s<qg=q€EVy)))).

@l E um exercicio interessante escrever formalmente o postulado
GEIL6.

A féormula GE16 é conhecida como azioma de Dedekind, apesar
de Joseph Bertrand ter trabalhado com o mesmo assunto antes de

Richard Dedekind.

Seguindo a orientagao z de uma reta r e lembrando que (z,y) é
um corte de Dedekind de r, o postulado acima garante o seguinte:
o ponto s da reta r (a existéncia de s é garantida pelo postulado
GE16) é o ultimo de x ou o primeiro de y, relativamente a orientagao
z.

O proposito deste axioma é claro. Se, por exemplo, uma reta t
define dois semiplanos aq; e s, e, além disso, uma reta r passa
por um ponto p no semiplano ay, e por um ponto ¢ no semiplano
as, entao o postulado de continuidade dado acima garante que ha
intersecao entre as retas t e r. Tal intersecao é o ponto s. Notar que
isso nao ocorre no modelo de plano quase-ordenado do EXEMPLO
7.8.
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SECAO 76
( Axioma de paralelismo

“odemos finalmente conceituar geometria euclidiana plana.

DEFINIGAO 7.26. Um plano euclidiano é um plano absoluto

continuo
({00 ), =)

onde a formula abaizo é teorema.
GELT:
V,rV,aV,b¥p((p € rAp € aNbAaNr = SADNTr = &) = a = b).

A férmula GE17 é conhecida como Postulado das Paralelas ou axi-
oma de Playfair, em referéncia a John Playfair. Sua leitura é muito
intuitiva. Sao assumidas retas r, a e b, e um ponto p que nao incide
sobre 7, mas incide sobre a e b. Se as retas a e b forem paralelas a r
(ou seja, aNr =@ AbNr =), entdo a e b sdo a mesma reta. Em
outras palavras, dada uma reta r e um ponto p nao incidente sobre
r, existe uma Unica reta que passa por p e é paralela a r.

ﬁ&l Obviamente GE17 pode ficar com um enunciado mais curto
se for reescrito usando o quantificador 3!.

Definicao 7.26 é equivalente a seguinte férmula:

Um plano euclidiano é uma quadrupla ordenada

<7T7 p7 ) §>7
onde as formulas GE1~GE17 sao teoremas.

Neste contexto, as formulas
I: GE1l, GE2, GE3, e GE4 sao os axiomas de incidéncia,
II: GES, GE6, GE7, GES8, GE9 e GE10 sao os axiomas de ordem,

1r: GEll, GeEl2, GE13, GE14 e GE15 sao os axiomas de congruén-
cia,

IV: GE16 é o axioma de continuidade e

V: GE17 é o axioma de paralelismo.
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SECAO 77
( Modelo de plano euclidiano

N8 unicos modelos que vimos até agora, relativos a geometria
sintética, foram para plano de incidéncia (EXEMPLO 7.2) e plano
quase-ordenado (EXEMPLO 7.8), o qual é também um plano de in-
cidéncia. Nesta Secao, porém, exibimos um modelo muito conhecido
para plano euclidiano, a saber, o plano cartesiano.

Plano cartesiano é a quadrupla ordenada

<7Ta J 2 &),

~

na qual interpretamos m, p, __ e & como se segue nos proximos
paragrafos.

INTERPRETAGCAO DE 7: O conjunto w é R x R, onde R é o con-
junto dos niimeros reais, conforme Secao 39. Em outras palavras,

T =R2
Isso significa que interpretamos pontos do plano cartesiano como
pares ordenados (x,y) de nimeros reais.

INTERPRETAQAO DE p: Uma reta (g3, ¢ 0 conjunto
T(a,b,c) - {(xvy) € R2 | ar + by - C}7
onde a e b ndo sao ambos nulos.

A tripla ordenada (a,b,c) é chamada de pardmetros da reta
T(abe)- Ou seja, na tripla ordenada (a,b,c), o pardmetro real a
¢ o termo que multiplica z na equacao ax +by = ¢, enquanto b é
aquele que multiplica y, e ¢ é o parametro real que nao multiplica
nem por x e nem por y (comumente chamado de termo inde-
pendente). Lembrar que x e y sdo usados para definir os pontos
(z,y) que incidem sobre a reta r(qp,). Em outras palavras, (x,y)
incide sobre 74 p.c) $55 (2, Y) € T(ape)-

@l Notar que, se r(p) € uma reta, entao
T(a,b,c) = T(aa,ab,ac))

para qualquer « real nao nulo.

Definimos p como

p={rape € pR*) |a ERADERACERA(a£0VDb#0)}.
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Ou seja, p é o conjunto de todas as retas do plano cartesiano.
Observar que

(1;7 y) € T(ab,c) < AT s by = C.

Portanto, dados pontos distintos (z1, 1) e (z2,y2), temos como
teorema a seguinte féormula:

((z1,11) € T(a,b,c) N (w2,92) € T(a,b,c)) & axy + by = axg + by,

observando que tanto ax; + by; quanto axs 4 by, sdo iguais ao
pardmetro c. Ou seja, pontos (1,41) € (Z2,y2), distintos entre
si, sao incidentes sobre a mesma reta r sss existem a e b tais que
ary + by, = azrs + by,. Isso garante que axioma GE2 é teorema
nesta interpretacao.

Com relagao a GE1, sejam (x1,y;1) e (72,92) pontos de R? tais
que (71,y1) # (2,92). Logo, a equacio az; + by, = axa + bys
admite solugoes reais onde a e b nao sao ambos nulos. Com
efeito,

axy + byy = axs + bys & a(xy — x2) = b(y2 — 11)-

A 1ltima equacao admite solucao para ambos a e b nulos. Mas,
lembrando que (x1,y1) # (%2, y2), entdo 1 — 3 # 0 ou yo —y; #
0. Logo, também existem solugoes para a e b, onde a # 0 ou
b # 0. Isso garante que existe reta incidente sobre (z1,y;) e
(x2,y2). Logo, GE1 é teorema.

a As demonstragoes de GE3 e GE4 ficam a cargo do leitor.

INTERPRETACAO DE __: Entre os reais ha uma relacdo de ordem
total <, como discutido na Secao 39. Também ha uma relacao
de ordem parcial < dada por r < s sssr < s Ar # s. Logo,
para quaisquer reais r e s distintos entre si temos que r < s
ou s < r. No primeiro caso, podemos definir o intervalo aberto
(r,s), enquanto que, no segundo caso, podemos definir o in-
tervalo aberto (s,r). Sobre o conceito de intervalo aberto no
conjunto dos reais, ver Secao 39. Ou seja, dados reais r e s
distintos entre si, sempre existe intervalo aberto definido por r
e s, no sentido deste intervalo ser (r,s) ou (s, 7).

Nao confundir um intervalo aberto (r,s) com um ponto
(r,s) do plano cartesiano. E uma pratica comum o emprego de
uma mesma notacao para conceitos nao equivalentes entre si.
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Neste contexto, se r e s sao reais distintos, um real ¢ estd entre
r e s sss t pertence ao intervalo aberto definido por r e s. Notar
que tal definicdo implica que r # t e s # t.

Gragas a definigao acima de real ¢ entre dois reais r e s (a qual é
possivel por conta da relagao de ordem parcial < entre os reais),
podemos agora interpretar a relacdo de ordem __.

Dados os pOl’ltOS ('Ilayl) S ($27?Jz) tais que ('Ilvyl) 7é (x27y2>a
dizemos que o ponto (x.,y.) estd entre (x1,y1) € (T2,Yy2) Sss 0s
pontos (x1,41), (T2,92) € (Z., ye) incidem sobre a mesma reta e,
além disso, uma e apenas uma das férmulas abaixo é teorema:

e r, =T = Iy e Y, esta entre y; e yo.
® Y. =Yy = Yo € T, estd entre x1 e x,.
e 1. estd entre x1 e x5 € Yy, esta entre y; e yo.

Escrevemos isso como (1, y1)(Ze, Ye ) (T2, y2).

z@l As provas de GE5~GE9 sao imediatas. A demonstracao do
Axioma de Pasch (postulado GE10), porém, consome conside-
ravel esforco. Mas é um tipico exercicio de geometria analitica
plana. Deixamos essas provas como exercicios para o leitor.

ﬁ' Para facilitar a demonstracao de GE10, ¢ interessante que
o leitor prove o seguinte teorema.

TEOREMA 7.7. Se
T(ape) = 1(2,Y) € R? | az + by = c}

Paef) = {(z,y) ER* | dv +ey = f}
sao retas do plano cartesiano, entao

T(abe) NTde,r) =D € Ja(a=ad Nb=aeAc#af).

INTERPRETAGCAO DE =: A partir do momento em que definimos
o que é um ponto entre dois pontos do plano cartesiano, basta
empregar a Definigdo 7.11 (sobre segmentos fechados) para a
interpretacao deste conceito aqui.

Uma vez que sabemos o que é um segmento de reta

[(xlv yl)? (x27 y2)]7
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definimos o comprimento de [(x1,y1), (z2,y2)] como
\/(-Tl — x2)% + (11 — ¥2)2.

Feito isso, dizemos que os segmentos

[(z1,91), (22,92)] e [(23,Y3), (24, 4a)]

sao congruentes sss

V@1 =222 + (1 — 12)2 = /(w3 — 22)2 + (43 — a2

Denotamos isso como [(z1,y1), (T2, y2)] = [(x3,y3), (T4, y4)]

Essas informagoes facilitam a demonstracao das férmulas GE11,
GE12, GE13, GE14 e GE15, as quais, novamente, sao tipicos
exercicios de geometria analitica plana.

A titulo de curiosidade, no EXEMPLO 8.42 da Secao 88 prova-
mos que o comprimento de um segmento [(z1,y1), (2, y2)] é tam-
bém uma distdncia entre os pontos (z1,y1) e (w2, ys). Este fato
garante que

(71, 91), (T2, 92)] = [(z2,Y2), (1, 91)]-
Afinal

\/(ffl —22)* + (11 — 42)* = \/(932 — 1)+ (Y2 — y1)*

Jia A demonstracao de GE17 (Axioma de Playfair) é outro exer-
cicio de geometria analitica que pode ser resolvido usando o Teorema
7.7. Basta manter em mente que retas paralelas, no plano cartesiano,
sao retas com intersecao vazia.

&3 Com relagdo a cortes de Dedekind (postulado GE16), recordar
que, em R, toda sequéncia de Cauchy é convergente. Isso garante
que GE16 ¢é teorema nesta interpretacao de plano euclidiano. Se
tivéssemos interpretado 7 como Q?, GE16 nao seria teorema. Cabe
ao leitor provar isso.

Geometria euclidiana plana é o estudo do conjunto

{{m,p), ), 2,

desde que os postulados GE1~GE17 sejam teoremas de ZF.
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SECAO 78
( Resumo da épera

ssavpesar de geometria ter nascido ha milhares de anos, a partir
de modos de percepcao humana sobre espaco, obviamente o assunto
evoluiu para um elevado nivel de abstracao. Quando Euclides de
Alexandria escreveu sua grande obra FElementos, ele apenas assumiu
implicitamente certos postulados, sem efetivamente enuncia-los. E-
xemplo bem conhecido é o Axioma de Pasch, o qual sé foi explicitado
dois milénios ap6s a obra de Euclides.

O texto original de Euclides foi perdido, por conta da destru-
icao da Biblioteca de Alexandria. Nas tradugoes que sobreviveram
ha algumas ‘defini¢bes’. Uma delas diz que ‘um ponto ¢é aquilo que
nao tem partes’. Em outro momento, Euclides escreve que ‘uma reta
tem comprimento, mas nao largura’ Claramente essas afirmacoes
nao sao defini¢oes, uma vez que naquele texto nao ha qualificacao
para os conceitos de ‘aquilo’, ‘partes’, ‘comprimento’ ou ‘largura’.

Por conta disso, a grande revolucao promovida por Hilbert, em
seu Grundlagen der Geometrie, foi a proposta de que conceitos como
pontos e retas nao sao definiveis. A geometria euclidiana, nos moldes
da proposta de Hilbert, é uma teoria de cardter meramente sintatico,
desprovido de significado.

O que fizemos aqui foi adaptar as ideias de Hilbert para a lin-
guagem de ZF, a qual é uma teoria formal cuja linguagem nao conta
com qualquer contraparte semantica.

Como reza a lenda (sobre uma suposta conversa entre Hilbert e
Otto Blumenthal, em uma estagdo de trem em Berlim), se trocar-
mos as palavras ‘ponto’, ‘reta’ e ‘plano’ por ‘mesa’, ‘cadeira’ e ‘copo
de cerveja’, tudo o que interessa é que os axiomas da geometria eu-
clidiana sejam teoremas em uma dada interpretacao. Dessa maneira
podemos garantir que tal interpretacao ¢ um modelo de geometria
euclidiana.
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SECAO 79
( Notas historicas
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N registro mais antigo de estudo sisteméatico da geometria é a obra
Elementos, de Euclides de Alexandria (EvkAeidnC). Fragmentos
de coépias do texto original podem ser encontrados na Biblioteca do
Vaticano.

Durante mais de dois mil anos matematicos tentaram provar o
postulado das paralelas a partir dos demais postulados originais de
Euclides, sem sucesso. Isso por conta de uma visao intuitiva de que
o postulado das paralelas nao era ‘autoevidente’.

Foi somente no século 19 que Nikolai Lobachevsky publicou uma
prova de que tal postulado era independente dos demais. Por conta
disso, o método axiomatico utilizado por Euclides deixou de ser uma
ferramenta meramente didatica para o ensino de geometria e passou
a ser alvo de interesse matematico. A obra de Lobachevsky também
abriu portas para a percepcao de geometria como tema de estudos
independentes dos modos de percepcao humana sobre espaco. Por
fim, a contribuicao deste matematico russo serviu de inspiracao para
muitos pensadores questionarem conhecimentos tradicionais nao ape-
nas da matematica, mas também de outras areas do saber.

Por conta do impacto acima mencionado, William Kingdon Clifford
chegou a escrever que Lobachevsky foi o ‘Copérnico da geometria’,
enquanto Eric Temple Bell foi além, afirmando que Lobachevsky foi
o ‘Copérnico de todo o pensamento humano’ [3].

O asteroide 1858 Lobachevsky, a cratera lunar Lobachevsky, a
universidade russa Lobatchevsky e a cancao Lobachevsky, de Tom
Lehrer, sao algumas das homenagens pdéstumas a este grande nome
da ciéncia.
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RETRATO DE LOBACHEVSKY, FEITO POR LEV KRYUKOV.
Fonte: Wikipedia.
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PARTE 8

Algebra linear

Nesta oitava parte discutimos a respeito de nog¢oes indispensaveis
para o estudo de dlgebra linear, bem como suas relagoes com geome-
tria euclidiana e calculo diferencial e integral.

SECAO 80
( Espacos vetoriais reais

N estudo de espacos vetoriais e transformacoes lineares entre es-
pacos vetoriais é o que se chama de dlgebra linear. Para que essa
afirmacao seja compreensivel, é necessario qualificar o que sao es-
pacos vetoriais e transformagoes lineares. Comegamos com um caso
muito particular, conhecido como espaco vetorial real de dimensdo
finita. O conceito de transformacao linear é examinado mais adiante.
Espacos vetoriais diferentes de espagos vetoriais reais sao brevemente
discutidos na Secdo 96. Espacos vetoriais de dimensao infinita sao
examinados na Secao 97.

Antes, porém, é interessante motivarmos o assunto. Fazemos isso
com um exemplo histoérico.

Em 1873 James Clerk Maxwell publicou seu famoso livro A Trea-
tise on FElectricity and Magnetism (Um Tratado sobre Eletricidade
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e Magnetismo). A partir de um sistema de vinte e quatro equagoes,
Maxwell formulou uma visao unificada para campos elétricos e cam-
pos magnéticos, dando inicio aquilo hoje conhecido como eletromag-
netismo. Posteriormente Oliver Heaviside reescreveu as equagoes
originais de Maxwell empregando func¢oes definidas sobre espagos ve-
toriais. Essa estratégia reduziu as vinte e quatro equacoes originais
de Maxwell a apenas quatro.

O exemplo acima é apenas um caso muito simples e bem conhe-
cido para ilustrar o poder de sintese de espagos vetoriais. Outro
exemplo bem mais radical é o caso da mecanica quantica. Sem es-
pacos vetoriais, nao existiria hoje qualquer formulagao teérica mini-
mamente sensata para descrever os fendomenos do mundo quantico.
Consequentemente, nao existiria este arquivo PDF que o leitor esta
contemplando, como podemos verificar ao final desta Parte.

DEFINIGAO 8.1. Um espaco vetorial real V é uma quintupla
ordenada
<V7 Rv +5 U)
tal que as sequintes formulas sdo teoremas.

V1: V # g;

V2: +:V xV =V é uma fungio, onde abreviamos +(u,v)
como u + v, sendo u e v elementos de V' ;

V3: - : R xV — V € uma fungao, onde abreviamos -(«, u)
como « - u ou, simplesmente, au, sendo o um elemento de
R e u um elemento de V;

V4: 0 e V;
V5: Se u pertence a V', entao
u+ 0= u;
V6: Seu e v sao elementos de V', entao

U+ v=v+u;

V7: Sewu, v ew pertencem a V', entao

(u+v)+w=u+ (v+w);

V8: Seu pertence a V', entao existe v pertencente a V' tal que

u+v=0;
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V9: Se a pertence a R e u e v pertencem a V', entdo
a(u+v) = oau + av;
V10: Se a e 8 pertencem a R e u pertence a V, entdo
(a+ B)u = au+ Bu;
V11: Se a e 8 pertencem a R e u pertence a V, entdo
(aB)u = a(Bu);

V12: Se 1 é o neutro multiplicativo de R e u pertence a V,
entao
lu = u.

Se
V= <MR7+776>

¢ um espaco vetorial real, chamamos V' de conjunto de vetores ou
espaco de vetores.

Alguns autores, por abuso de linguagem, se referem a V' como
espago vetorial. Nao adotamos essa convencao aqui.

Os elementos de V' sdo chamados de vetores. Com relacdo a R,
este é o corpo dos reais, ja definido na Se¢ao 39. Seus elementos sao
chamados de escalares.

A fungao + ¢é chamada de adi¢do de vetores. A fungao - é chamada
de multiplicagdo de escalar por vetor. Apesar da notagao ser a
mesma, essas operacoes nao podem ser confundidas com adig¢ao e
multiplicagao entre reais.

O termo 0 é chamado de vetor nulo.

Para evitarmos sobrecarga de notagao, adotamos a seguinte con-
vengao: todos os vetores diferentes do vetor nulo sdo denotados por
letras latinas mintsculas, enquanto os escalares sao sempre denota-
dos por letras gregas minusculas. Logo, a + [ é uma adi¢ao entre
reais, enquanto u + v é uma adicao entre vetores. Analogamente,
a - f é uma multiplicagao entre escalares, enquanto « - u é uma mul-
tiplicagao entre um real o e um vetor wu.

Postulado V1 diz que todo espago de vetores tem pelo menos um
vetor. Uma vez que axioma V4 afirma que o vetor nulo é um vetor,
todo espago de vetores conta com pelo menos o vetor nulo entre seus
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elementos. Obviamente V1 é desnecessario, uma vez que V4 implica
em V1.

V2 estabelece que a adigao entre vetores é uma operagao bindria,
ou seja, é aplicavel a duas ocorréncias de vetores. Além disso, o
mesmo postulado afirma que adi¢ao entre vetores é uma operagao
fechada, i.e., vetor mais vetor é vetor.

V3 diz que escalar vezes vetor é vetor.

V5 afirma que o vetor nulo é nulo relativamente a adicao entre
vetores. Isso justifica seu nome.

V6 e V7 estabelecem, respectivamente, a comutatividade e a asso-
ciatividade da adi¢ao entre vetores.

V8 diz que todo vetor admite simétrico relativamente a adicao de
vetores (chamado de simétrico aditivo). Se u 4+ v = 0, denotamos v
por —u. Equivalentemente, u = —wv.

V9 ¢é a distributividade da adi¢ao de vetores relativamente a multi-
plicagao de escalar por vetor, enquanto V10 exige a distributividade
da adigao de escalares relativamente a multiplicacao de escalar por
vetor.

Observar atentamente a férmula V11:
(aB)u = a(Bu).

Neste caso, a8 é a multiplicagdo do real a pelo real 5. Essa mul-
tiplicagao resulta em um real v. Neste sentido

(af)u = yu.

Do lado direito da igualdade, nao obstante, temos apenas duas
ocorréncias da multiplicacao de escalar por vetor e nenhuma ocor-
réncia da multiplicacdo de real por real. Com efeito, fu é um vetor,
de acordo com postulado V3. Logo, a(fu) também é um vetor, nova-
mente usando postulado V3. Logo, V11 impoe uma estreita conexao
entre multiplicagdo de real por real, algo definido na Secao 39, e
multiplicagao de real por vetor.

Finalmente, V12 afirma que a multiplicacao do real 1 por qualquer
vetor u resulta no préprio vetor u. Mas de forma alguma esse pos-
tulado deve ser interpretado como a garantia de existéncia de um
neutro multiplicativo. Afinal, 1 denota um escalar, o qual é neutro
multiplicativo entre reais. O termo u, por sua vez, é um vetor.
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SECAO 81
( Modelos de espacos vetoriais reais

N que Definigao 8.1 coloca é o seguinte: qualquer quintupla orde-
nada
<‘/7 R7 -5 6)
na qual as formulas V1~V12 sdo teoremas, ¢ um espaco vetorial real.

Uma vez escolhidos os conjuntos V, +, - e 0, a quintupla ordenada
<V7 Ra +, 6)

é uma interpretacao de espago vetorial. Se, dada a interpretacao
(V,R,+,-,0), os axiomas VI~V12 sao teoremas de ZF, entao essa
interpretacao ¢ um modelo de espago vetorial real. Logo, ‘modelo de
espago vetorial real’ e ‘espago vetorial real’” sao sinonimos.

Colocamos a seguir algumas possiveis interpretagoes de espago ve-
torial real, avaliando se elas sao modelos de espagos vetoriais reais.

ESPACO R? USUAL I

Seja (R* R, +, -, (0,0)) uma quintupla ordenada tal que
+:R? x R? —» R?

¢ uma fungao na qual se abrevia +((a,b), (¢, d)) como (a,b)+ (¢,d) e
R xR? = R?

¢ uma fungao na qual se abrevia -(«, (a, b)) como «-(a,b) ou simples-
mente «(a,b). Além disso, essas funcoes sao definidas da seguinte
maneira:

(a,b) + (¢,d) = (a+¢,b+d)

a-(a,b) = (aa,ab).

Uma primeira critica que o leitor poderia fazer é a seguinte: se
(a,b) € R? por que nio denotar o par ordenado (a,b) por (a,f3),
uma vez que a e b sdo ntimeros reais?

Pois bem, o que estd em jogo aqui sao apenas duas operagoes:
adicao entre pares ordenados de reais e multiplicagao de real por par
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ordenado de reais. Neste contexto, usamos letras gregas minusculas
apenas para denotar os reais que multiplicam por um par ordenado
de reais. Usamos letras latinas mintisculas, nesta interpretacao par-
ticular de espaco vetorial real, para denotar os reais a e b que definem
o par ordenado (a,b).

A quintupla ordenada (R* R, +,-, (0
tagao de espago vetorial real (V,R,+, -
pretamos

,0)) é de fato uma interpre-
,0), no sentido de que inter-

e 0 espaco de vetores V como R?,

e a adicao + de vetores como adicao entre pares ordenados de
reais,

e a multiplicacdo - de escalar por vetor como a multiplicacao de
real por par ordenado de reais e

e 0 vetor nulo 0 como o par ordenado (0,0), onde 0 é o real nulo
aditivo.

Porém, a questao importante é se essa primeira interpretacao de
espaco vetorial real é um modelo de espaco vetorial real. Para que
seja o caso, é necessario que todos os axiomas de espago vetorial real
sejam teoremas de ZF nesta interpretacao. Ou seja, os doze axiomas
dados na Secao 80 devem ser examinados um a um.

Axioma V1 exige que V seja nao vazio. Essa formula é teorema na
interpretacao dada. Com efeito, existe pelo menos um par ordenado
de reais, por exemplo, (v/2 — 4v/7, 7). Logo, R? é um conjunto nao
vazio.

Postulado V2 exige que adi¢ao de vetores seja dada por uma funcao
fechada no espago de vetores. Logo, tal formula é teorema no con-
texto da interpretacao dada. Com efeito, adicdo de pares ordenados
de reais foi definida como uma func¢ao

+:R?* x R? — R

Além disso, se (a,b) e (c,d) sao pares ordenados de reais, entdo
(a,b) + (¢, d), dado por (a + ¢,b + d), é um par ordenado de reais
simplesmente porque a adi¢ao de reais é fechada nos reais (real mais
real ¢ um real).

V3 demanda que multiplicacao de real por vetor seja definida por
uma funcao fechada no espaco de vetores. Logo, V3 é teorema no
contexto da interpretacao aqui sugerida. Com efeito, a multiplicacao
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de real por par ordenado de reais foi definida por uma funcao
R xR* = R?
dada por a(a,b) = (aa, abd).

Além disso, (aa, ab) pertence a R?, uma vez que multiplicagao de
real por real é fechada nos reais.

Axioma V4 exige que o vetor nulo seja vetor. Novamente temos um
teorema, uma vez que (0,0) é um par ordenado de reais e, portanto,
(0,0) € R%

V5 afirma que qualquer vetor u somado ao vetor nulo 0 é o préprio
u. Novamente temos um teorema. Com efeito, para qualquer par
ordenado (a, b) de R? temos

(a,b) +(0,0) = (a+0,b+0) = (a,b).

Ou seja, o fato de zero real ser nulo aditivo garante que o par
ordenado (0, 0) é nulo relativamente & operagao + definida para pares
ordenados de reais.

V6 exige que adi¢ao de vetores seja comutativa. Tal formula tam-
bém é teorema de ZF para a interpretagao dada. Afinal,

(a,b) + (¢,d) = (a + ¢,b+ d),

de acordo com a defini¢ao de adigao de pares ordenados de reais. No
entanto,

(a+c,b+d)=(c+a,d+b),
uma vez que adicao de reais é comutativa. Finalmente,

(c+a,d+0b) = (c,d) + (a,b),

por conta da definicdo de adicdo de pares ordenados de reais. A
transitividade da igualdade garante, portanto, que

(a,b) + (¢,d) = (¢,d) + (a,b).

Postulado V7 demanda a associatividade da adicao de vetores.
Mas,

((a,b)+(c,d))+(e, f) = (a+c,b+d)+(e, f) = ((a+c)+e, (b+d)+f) =
(a+(cte),b+(d+[)) = (a,b)+(c+e,d+ f) = (a,b)+((c,d)+ (e, [)).

Observar que, na sequéncia de igualdades acima, foi usada a de-
finicdo de adigao de pares ordenados de reais, bem como o teorema
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que garante a associatividade da adicao de reais. Logo, V7 é teorema
para esta interpretacao.

Axioma V8 exige que todo vetor admita um simétrico relativa-
mente & operagao de adicao de vetores. Ora, se (a,b) é um termo
de R? temos que (—a, —b) também pertence a R?. Afinal, todo real
admite simétrico aditivo. Além disso,

(a,b) + (—a,=b) = (a+ (—a),b+ (=b)) = (0,0),

sendo que (0,0) é interpretado aqui como o vetor nulo. Portanto, V8
é teorema nesta interpretacgao.

V9 estabelece a distributividade da adi¢ao de vetores relativamente
a multiplicacdo de escalar por vetor. Logo, V9 é teorema. Com
efeito,

a((@,8) + (¢, d)) = aa+c,b+d) = (a(a+c),a(b+ ) =
(aa + ac,ab + ad) = (aa, ab) + (ac, ad) = a(a, b) + a(c, d).
ﬁﬁl Levando em conta que os parénteses definem quais sao as

primeiras operacoes a serem efetuadas, cabe ao leitor justificar passo
a passo essa ultima demonstragao.

Postulado V10 demanda a distributividade da adi¢cao de escalares
relativamente a multiplicacao de escalar por vetor. Notar que

(a+ B)(a,b) = ((a + B)a, (a + B)b) = (aa + Ba, ab + pb) =
(aa, ab) + (Ba, Bb) = a(a,b) + B(a,b).
Logo, V10 é teorema.
V11 afirma que (af)u = a(fu) deve ser teorema. Mas
(aB)(a,b) = ((aB)a, (aB)b) = (a(Ba), a(Bd)) =
a(fa, fb) = a(B(a,b)).

Ou seja, a associatividade da multiplicacao de reais garante que,
de fato, V11 é teorema de ZF nesta interpretacao de espago vetorial
real.

Finalmente, V12 exige que lu = wu seja teorema, para qualquer
vetor u do espago vetorial. Observar que

1(a,b) = (1(a), 1(b)) = (a, b).

Isso encerra a prova de que a interpretacao dada para espaco veto-
rial real é de fato um modelo de espaco vetorial real. Este primeiro
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exemplo aqui discutido é conhecido como espaco vetorial real R?
usual ou, simplesmente, espaco R? usual.

INTERPRETACAO QUE NAO E MODELO I

Seja (R?, R, +, -, (0, —1)) uma quintupla ordenada tal que
+:R*xR*> - R’
¢ uma fungao na qual se abrevia +((a, b), (¢,d)) como (a,b) + (c,d) e
R xR?* =5 R?

é uma fungdo na qual se abrevia -(«, (a,b)) como « - (a,b). Além
disso, essas fungoes sao definidas da seguinte maneira:

(a,b) + (c,d) = (a+c¢,b+d+1)

a-(a,b) = (aa,ab).

@' Neste caso, axioma V9 nao é teorema para esta interpretacao.
Basta assumir, por exemplo, a = 3. Além disso, V10 também nao
é teorema. Os demais postulados sdo teoremas. E obviamente re-
comendavel que o leitor verifique isso. No entanto, basta um axioma
nao ser teorema para termos um exemplo de interpretacao de espago
vetorial real que nao é modelo de espago vetorial real.

EspPACO M,,«, USUAL I

Nesta Subsecao mostramos que matrizes reais também podem ser
vetores. Antes, é necessario qualificar o que é uma matriz real.

DEFINIGAO 8.2. Sejam
lm = {172737"' 7m}

e ={1,2,3,--- ,n}.

Ou seja, 1, € o conjunto dos naturais i tais que 1 < i < m,
enquanto ¢, € o conjunto dos naturais j tais que 1 < 7 < n.
Uma matriz real de m linhas e n colunas é uma funcao

a:l, xc, = R.
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‘ Chamamos l,,, de conjunto linhas e ¢, de conjunto colunas.

ﬁ&l Ou seja, toda matriz real é uma restricao finita de uma funcao
real com dominio w X w. A reciproca desta ultima afirmagao nao é
teorema.

O fato de produto cartesiano nao ser comutativo é o que permite
discernir linhas de colunas em uma matriz real.

EXEMPLO 8.1. Se m =3 en =2, entdo
a ={((1,1),a(1,1)),((1,2),a(1,2)),((2,1),a(2,1)),
((2,2),a(2,2)),((3,1),a(3,1)),((3,2),a(3,2))}

¢ uma matriz real de trés linhas e duas colunas, desde que as
imagens a(1,1), a(1,2), a(2,1), a(2,2), a(3,1) e a(3,2) sejam
numeros reais.

Neste exemplo a é uma fun¢io com dominio {1,2,3} x {1,2}.

A notacgao usual para uma matriz real a é uma disposi¢ao retan-
gular em linhas e colunas envolvidas por um par de parénteses, de
modo que cada imagem a(i, j) é denotada por a;;. No caso do tltimo
exemplo dado acima, a matriz a é escrita simplesmente como

aixp Qa2
a1 Q22 |,
a31 432

sendo a;; = a(i,j) para1 <i<3el <j <2

TEOREMA 8.1. Sejam a : l,, X ¢, - Reb:1l, xc, = R
matrizes reais. Logo, a = b sssm = p, n = q e a;; = b;; para
quaisquer i e 7 tais que 1 <1 <m el <j < n.

DEMONSTRACAO: Matrizes reais, de acordo com Defini¢ao
8.2, sao fungodes. Ademais, fungdes sao casos particulares
de conjuntos. Portanto, basta empregar o Axioma da Ex-
tensionalidade e Teorema 3.1.

Uma vez que produto cartesiano nao é comutativo, se m # n, entao
a matriz a : [, X ¢, — R é diferente da matriz b : ¢, x [,,, =& R. Com
efeito, a matriz b tem n linhas e m colunas.
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Agora consideremos a seguinte interpretagao para espago vetorial
real.
men = <Mm><n7 R7 Py % O>7
onde

e M, ., € o conjunto de todas as matrizes reais com m linhas e n
colunas;

o +: Mwn X Mysn = My,xn € uma funcao dada por
+(a,b)i; = @y + biz;
o R X M,xn — M,,xn ¢ uma funcao dada por
(a, a)ij = aay;

e (O ¢ a matriz real de m linhas e n colunas tal que (;; = 0 para

todo i e para todo j taisque 1 <7 <mel <j<n.
ﬁl O conjunto M,,x, pode ser facilmente definido usando o Es-

quema de Separacao de ZF. Recomendamos que o leitor faga isso.

A funcdo + é conhecida como a adicao usual de matrizes reais. A
funcao - é conhecida como a multiplicacdo usual de um real o por
uma matriz real a de m linhas e n colunas. Finalmente, a matriz ()
é chamada de matriz nula, aquela cujas imagens sao todas iguais ao
zero real.

EXEMPLO 8.2. Se m =3 en =2, temos que
aip  ai2 b1 bio ay; +bn ae + bio
Az Qoo | + | bar bao | = [ a1 +ba1 aga + b |,
az1  ag2 bs1 b2 as; + bs1  ass + bz
@11 Q12 aa1; «ay2
Q- | Q21 Q22 | = | Q21 CG22
azy a3z oa3;  asa
e
0 0
O=1(0 0
0 0

ﬁl Para cada par de naturais m e n, taisque m > 1len > 1, a
quintupla ordenada

men = <Mm><n7 R? +7 ) O>
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¢ um espacgo vetorial real conhecido como M,,«,, usual. Para provar
isso, basta demonstrar que cada axioma de espaco vetorial real é teo-
rema para cada interpretagdo M., «,. Por exemplo, axiomas V6 e V7
sao consequéncias imediatas do fato de que a adicao entre reais é co-
mutativa e associativa. Com efeito, adi¢do entre matrizes é definida
a partir da adigao de reais.

Logo, nesta Subsecao exibimos uma infinidade de espagos vetoriais
reais: um para cada par de valores m e n.

ESPAQOS VETORIAIS REAIS DE FUNQ@ES I

Espacgos vetorias reais de matrizes nao sao os tnicos casos de es-
pacos vetoriais reais de fungoes. Considere, por exemplo, a seguinte
interpretacao para espago vetorial real.

S = <607R7+7 'aO>?

onde

e C% é 0 conjunto de todas as funcdes reais continuas com dominio
R;
o +:C%x (% — C° é uma funcao dada por
+(f,9)(x) = f(z) + 9(z);
o - R x(C%— C° ¢ uma funcao dada por
(a, f)(z) = af(z);
e (O ¢ a fungao real O : R — R tal que
Ofz) =0
para todo real x.

Uma vez que adi¢ao de fungdes reais continuas é uma fungao real
continua e multiplicagao de um real o por uma funcao real continua
¢ uma funcao continua, entao nao ocorre qualquer inconsisténcia na
definicao da interpretagao § dada acima.

IQ] Novamente temos um exemplo de espaco vetorial real. Basta
verificar os axiomas, um a um. Neste caso os vetores sao fungoes
reais continuas com dominio R.
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(C°R,+,-, ) é chamado de espago C* usual. Se trocarmos C° por
C*. temos o espago C* usual, onde C* é o conjunto das funcdes reais
k vezes diferenciaveis e com derivada de ordem k continua.

EsrAco R"™ USUAL I

Seja (R™, R, +,-, ) uma quintupla ordenada tal que
+:R"xR" - R"

¢ uma funcdo na qual se abrevia +((a1,as, -+ ,ay,), (b1, b, -+ ,by,))
como

((11,012,"' 7an) +<b17b27'” abn)

e
R xR"*—R"
¢ uma funcdo na qual se abrevia -(a, (a1, az,- -, a,)) como
a - (a17a27"' 7an>-

Além disso, essas fungoes sao definidas da seguinte maneira:

(alaa27"' 7an>+(b17b2a”' 7bn) = (a1+b1,&2+bg,"‘ 7an+bn)

« - <a17a27 e 7an) - (OéCLl,O(CLQ, e ,OéCLn).

;@l Se assumirmos também que () é a n-upla ordenada cujas
entradas sao todas iguais a 0, temos que

(R"R,+,-,0O)

¢ mais um exemplo de espago vetorial real, conhecido como R"™ usual.
A prova desse resultado ¢ andloga aquela feita para R? usual.

Observar que o caso particular em que n = 1 implica que
<R7 R7 =+, % O>

¢ um espago vetorial real, onde + e - sao as operacoes de adigao e
multiplicagao entre reais, respectivamente.
Naturalmente, o caso em que n = 2 corresponde a R? usual.

O caso em que n = 3 é usado em uma aplicacao de espacos vetoriais
reais em mecanica de particulas, na Secao 110.
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EspACO C* USUAL I

R = <Cooa Ra +7 *y O)

uma interpretacao de espago vetorial real, onde

Seja

I: C*® é o conjunto de todas as fungoes reais com dominio R que
admitem derivada de qualquer ordem:;

I: + :C*® x C*® — C* é uma fungao tal que
+(f,9)(z) = f(z) + g9(z);
1r: - : R x C*® — C* é uma funcao tal que

(@, f)(x) = af (2);

1v: O : R — R é a fungao identicamente nula, ou seja, O(z) =0
para todo x real.

;@h Neste caso, R é um espago vetorial real, conhecido como o
espaco C* usual.

ExXEMPLO 8.3. ﬁl Sep:R — R é uma funcao polinomial,
entdo p é um vetor de C*™ usual.

1@' As fungoes seno, co-seno e exponencial também sao ve-
tores de C*° usual.

A funcao f: R — R dada por
f(@) = |z]

nao é um vetor de C*> usual. Com efeito, basta ver o EXEMPLO
5.26 que seque a demonstracao do Teorema 5.25.

RESUMINDO I

Dessa maneira fica claro que existem espagos vetoriais reais tais
que seus vetores podem ser nimeros reais, n-uplas ordenadas de
numeros reais, matrizes reais, fungoes reais continuas e funcoes reais
diferenciaveis um nimero arbitrario de vezes. De maneira andloga
é possivel definir espacos vetoriais reais de funcgoes reais quaisquer
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(desde que compartilhem o mesmo dominio), bem como fungoes reais
que admitem derivada de ordem n.

SECAO 82
( Teoremas basicos sobre espacos vetoriais reais

“odos os espacos vetoriais reais — sejam aqueles cujos vetores sao
matrizes, nimeros reais, n-uplas ordenadas de reais ou fungoes reais
— compartilham certas propriedades algébricas em comum.

TEOREMA 8.2. Se (V,R,+,-,0) é um espago vetorial real, en-
tao o vetor nulo 0 é o unico nulo aditivo em V.

DEMONSTRACAO: Supor que existe vetor nulo 0 diferente de
0 em V. Logo,
040 =0

0+0 =0

(lembrar que adigdo de vetores é comutativa). Portanto, a
transitividade da igualdade implica que 0 =0". L

EXEMPLO 8.4. Em R? usual, (0,0) é o dnico vetor nulo adi-
tivo.

TEOREMA 8.3. Para qualquer vetor v de um espaco vetorial
real
<Vva Rv +5 6)
temos que
v+v=v=v=0.

DEMONSTRAGAO: Consequéncia do teorema anterior.

TEOREMA 8.4. Para qualquer vetor v de um espaco vetorial
real
<‘/7 Ra +, G)
temos que
0-v=0.
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DEMONSTRAGQAO: Observar que
0-v=(0+0)-v.
Mas, de acordo com axioma V10,
(040)-v=0-v+0-v.
A transitividade da igualdade garante, portanto, que
O-v=0-v+0-0.

Logo, Teorema 8.3 implica que 0 - v = 0.

EXEMPLO 8.5. Num espaco vetorial real qualquer de matrizes
reais de duas linhas e duas colunas, se

a1l a2
Q21 A22
¢ um vetor, entao

O'anam_OO
as azx) \0 0)°

TEOREMA 8.5. Se v é vetor de (V,R,+,-,0), temos que
(1) -v=—uv.

DEMONSTRAGAO: Sabemos que
0-v=(1+4(-1)) v
Logo, Teorema 8.4 implica que
(14+(-1))-v=0.
Portanto, de acordo com axioma V10,
l1-v+(-1)-v=0.

Logo, de acordo com axioma V12,

v+ (=1)-v=0.
Finalmente, postulado V8 garante que
(~1)-v = v,
sendo —v o simétrico aditivo (relativamente a adi¢do de ve-

tores) de wv.
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ExEmMPLO 8.6. Num espaco vetorial real
S = <C07R7 i 2 O>
de fungoes reais continuas, se f : R — R é um vetor dado por
f(z) = —cos(x), entao (—1) - f é um vetor g : R — R tal que
g(x) = cos(z).

TEOREMA 8.6. Para qualquer escalar o de um espaco vetorial
real
<‘/7 Ra +7 ) U)
temos que o -0 = 0.

DEMONSTRAGAO: Temos que
a-0=a-0+0)=a-0+a«a-0.
Logo, a- 0 = 0.

ExXEMPLO 8.7. Num espaco vetorial real qualquer de matrizes
reais de duas linhas e duas colunas, se a € um escalar real e

0 0
0 0
¢ o vetor nulo, entdo
(0 0) _ (0 0
“ 1o o/ "\o o

Subespacos

— SEGAO 83

N/ conceito de subespaco é 1til para criar exemplos de espagos ve-
toriais reais sem avaliar todos os postulados V1~V12 da Definicao
8.1, Sec¢ao 80.

DEFINIGAO 8.3. Seja V = (V,R,+,-,0) um espago vetorial
real. Dizemos que W = (W,R,®,®,0) é um subespago de V
588

L WCV;
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im: 0 e W;
In: (ueWAveW)= (udveWAu®v=u+v);
v: (ue WAaeR)= (aQueWAabu=a-u).

Um subespago de um espago vetorial real (VR +,-,0) é definido
por um subconjunto W do espaco de vetores V' e restricoes & e © de
+ e -, respectivamente aos dominios W x W e R x W (sobre restrigao
de fungao, ver Defini¢ao 4.12). Além disso, @ e ® sao fechadas em
W (vetor de W & vetor de W é um vetor de W, e a ® v é um vetor
de W se v é vetor de W) e o vetor nulo 0 pertence a W.

O motivo para a mudanca de notacao de + para @, e - para ©, é
claro: restrigoes de uma dada fun¢ao podem ter dominios diferentes;
logo, se for o caso, sao fungoes diferentes de acordo com o Axioma

da Extensionalidade de ZF.

TEOREMA 8.7. Se V = (V,R,+,-,0) € um espago vetorial
real, entao V é subespaco de si mesmo.

DEMONSTRAGAO: Lembrando que todo conjunto é subcon-
junto dele mesmo e, consequentemente, toda fungao é res-
tricdo dela mesma, a prova é imediata.

TEOREMA 8.8. W = ({0},R,®,®,0) € subespaco do espago
vetorial real V = (V,R,+,-,0), se & € restrigio de + ao conjunto
{0} x {0}, e ® € restrigio de - ao conjunto R x {0}.

DEMONSTRAGAO: Com efeito,
. {0} CV,
11: 0 € {0},
1: 00 =0 e,

1v: para qualquer real a, « ©® 0 =0 (Teorema 8.4).

Os subespacos V e W, mencionados nos dois ultimos teoremas, sao
chamados de subespacos triviais de V. Neste sentido, todo espago
vetorial real admite pelo menos um subespaco.

Os espacgos vetoriais reais que admitem um tnico subespago sao
aqueles nos quais o conjunto de vetores conta com um tnico ele-
mento, a saber, o vetor nulo. Portanto, qualquer espago vetorial real
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com pelo menos um vetor a mais, além do vetor nulo, admite pelo
menos dois subespagos. Mas os subespacgos relevantes sdo os nao
triviais, como ilustrado a seguir.

ExXEMPLO 8.8. Seja
V= (R%R,+,-,(0,0))
o espago vetorial real R? usual (conforme Segio 81).
Seja
R=(rR,®,0,(0,0))
definido como se seque.

. 7= {(z,y) € R? | ax + by = 0}, onde a e b sio reais ndo
simultaneamente nulos;

I @:rxr—=R2e®:R xr — R? sdo restricoes de + e -,
respectivamente.

Logo, R € subespaco nao trivial de V.
Com efeito, sejam (m,n) e (p,q) elementos de r. Logo,
am+bn =0 e ap+ bg =0,
o que tmplica em
am + ap + bn + bg = 0.

Logo,
a(m—+p)+bn+q) =0,
o que implica que (m + p,n + q) também pertence a .

Mas (m+ p,n+ q) € igual a (m,n) + (p,q) que, por sua vez,
¢ igual a (m,n) & (p,q) (afinal, ® € uma restrigio de +). Isso
significa que ® € fechada em 7.

Analogamente, se (m,n) pertence ar, entao a®(m,n) também
pertence a r. Com efeito,

a® (m,n)=a-(m,n) = (am,an).
Mas, se (m,n) pertence a r, entdo am+bn =0, o que implica
que a(am + bn) = 0; isso, por sua vez, implica que
aam + ban = 0.

Portanto, (am,an) € r. Além disso, (0,0) € r, pois a(0) +
b(0) = 0, para quaisquer reais a e b.
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ﬁ] Cada conjunto r do ultimo EXEMPLO (definido pela escolha
dos valores reais a e b) corresponde a uma reta que passa pela origem
(0,0), conforme Secao 77. Logo, o que provamos acima é que, qual-
quer reta que passa pela origem de R? define um subconjunto de
vetores de R? que, por sua vez, define um subespaco do espaco ve-
torial real R? usual. A versdo resumida e informal da demonstracao
feita no ultimo EXEMPLO segue no préximo paragrafo.

Por um lado, o vetor nulo (0, 0) pertence a qualquer reta que passa
pela origem. Por outro, se r ¢ uma reta que passa pela origem, a
adicao de pontos quaisquer da reta r resulta em um ponto na reta
r. Além disso, a multiplicacao de qualquer real o por um ponto de
r resulta num ponto de r.

Em outras palavras, R? usual admite uma infinidade de subespacos
nao triviais, um para cada escolha de reais a e b, desde que nao sejam
ambos nulos.

Os conjuntos s do préximo EXEMPLO sao retas que nao passam
pela origem (0,0). Logo, o que provamos a seguir é que nenhuma
reta que nao passa pela origem de R? define subespaco deste espaco
vetorial real.

EXEMPLO 8.9. Seja
V= (R*R,+,-(0,0))
o espago vetorial real R? usual (conforme Segio 81).
Seja
R=(s,R,&,0,(0,0))
definido como se seque.
. s={(z,y) ER? | ax+by =c}, sendoc#0 ea # 0Vb #0;

I: ®:sxs—R2e®:R xs— R? sdo restricoes de + e -,
respectivamente.

Logo, R nao é subespaco de V. Com efeito, basta verificar que
(0,0) nao pertence a s. Afinal,

a(0) + b(0) = 0,

para quaisquer reais a e b.

O préximo EXEMPLO ilustra como certos espacos vetoriais reais de
func¢des admitem infinitos subespacos.
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ExeEmMpPLO 8.10. Seja
g - <C07R7 i 2 O>
o espaco vetorial real de funcoes continuas, como discutido na
Secao 81.

Seja C* o conjunto de fungoes reais diferencidveis com dominio
R e cujas derivadas sao continuas.

Teorema 5.25 garante que
ct cc°,
i.e.,toda fungdo diferencidvel é continua.
Teorema 5.21 garante que, se f € Ct e g € C!, entdio
f+gecl!
(derivada da soma é a soma das derivadas).
Teorema 5.20 garante que, se f € C', entdio
a-fecCt
(derivada de constante vezes fungao é constante vezes a derivada
da fungao).

Logo, se
&= (" R,® 6,0),
onde @ é uma restricio de + ao dominio C* x C*, e ® é uma
restricao de - ao dominio R x Ct, entdo & € subespaco nao trivial

de §.

Ademais, se substituirmos, na discussio acima, C* por C* (con-
junto de fungoes reais diferencidveis duas vezes, com dominio R,
cujas derivadas sequndas sao continuas), entao temos novo su-
bespaco nao trivial de §.

Discussdo andloga vale para C*, o conjunto de funcoes reais k
vezes diferencidveis, com dominio R, cujas derivadas de ordem
k sdo continuas.

No ultimo EXEMPLO mostramos que fungoes reais continuamente
diferencidveis (aquelas cujas derivadas sdo continuas) definem um
subespaco do espago vetorial real usual de fungoes reais continuas
com dominio R. Também indicamos que funcgoes continuamente
diferenciaveis k vezes igualmente definem subespagos do mesmo es-
pago vetorial real.
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ﬁl Notar que

cecctlcchcct cc,
para qualquer k natural maior do que 1, sendo que f € C™ sss f
admite derivada de qualquer ordem.

Em outras palavras, existem, por exemplo, fungoes reais trés vezes
diferenciaveis, mas nao quatro.

ExeEmMpPLO 8.11. Seja f: R — R uma fungdo dada por
f(z) = Vit

Por conta da Definicio de Wallis, vzl = 25 . Por conta do
Teorema 5.51,

11 s
") = —=zx3.
fla)=3e
Aplicando novamente Teorema 5.31, temos

88 440
f(z) = gxg e f"(z)= Wl';

Se o dominio de f fosse R — {0}, a derivada quarta seria
880
fO(x) = ]1 7 31,
que € simplesmente
880 1 880 1

@ (p) — _ ooV L
fo) = 81 43 81 Jz

No entanto, f admite o zero real como um dos elementos de
seu dominio. Lembrando que zero é o unico real sem simétrico
multiplicativo, obviamente nao pode existir derivada quarta de f
no ponto zero.

Resumidamente, f é uma funcao que admite derivada terceira
mas nao derivada quarta. Neste caso,

fec?
mas

féct,
o que tmplica que

Cct c c?,

ou seja, C* é subconjunto préprio de C3.
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TEOREMA 8.9. Todo subespaco de um espaco vetorial real é
um espago vetorial real.

DEMONSTRAGAO: Seja
W= (W,R,®,0,0)
subespaco do espago vetorial real
V= (V,R,+,-,0).

Como 0 € W, entao axioma V1 é teorema na interpre-
tacao W.

Itens 111 e 1V da Defini¢ao 8.3 garantem que axiomas V2
e V3 sdo teoremas na mesma interpretacao.

Axioma V4 é trivialmente verificado.

Finalmente, axiomas V5~V12 sao teoremas na interpre-
tagdo W por conta do fato de que @ e ® sdo restrigoes de
+ e -, respectivamente.

Uma vez conhecido um espago vetorial real
V=(V,R +,-,0),
fica mais facil definir se
W= WR & 6,0)

é espago vetorial real. Basta que W seja subconjunto de V', o vetor
nulo pertenca a W e as restricoes & e ® sejam fechadas em W.

EXEMPLO 8.12. Seja
V= (R*R,+,,(0,0))
o espago vetorial real R? usual (conforme Secio 81).
Seja
R=(rR,&,0,(0,0))
definido como se seque.
7 ={(z,y) €ER?| ax +by =0}, onde a #0V b #0;

I @:rxr—=R2e®:R xr — R? sdo restricoes de + e -,
respectivamente.

Logo, R € um espago vetorial real. Ver EXEMPLO 8.8.
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ExEMPLO 8.13. Seja
M2><2 — <M2><2a Ra +7 Yy O)

o espacgo vetorial real das matrizes reais de duas linhas e duas
colunas.
Seja
N2><2 = <N2><27 Rv @7 ®7 O>
definido como se seque:

I: Noya € subconjunto de Moy tal que, uma matriz b pertence
a Naya 885 b1y = 0 e big = 0. Ou seja,

0 0
b P—
<b21 bm) ’

onde byy € byy sGo miumeros reais quaisquer.
II: @ € restricao de + ao dominio Noxo X Naya; € ® € restricao
de - ao dominio R x Nays.

1@3 Logo, Nayo € um espago vetorial real, uma vez que se trata
de subespaco de Moyo. Cabe ao leitor fazer a demonstracao.

— SECAO 84
Dependéncia e independéncia linear

¥ ertos espacos vetoriais reais podem ser univocamente determina-
dos por uma quantia finita de vetores, ainda que exista uma quantia
nao finita de vetores no mesmo espago. Estudamos isso nesta e na
proxima Segao.

DEFINIGAO 8.4. Sejam V = (V,R,+,-,0) um espago vetorial
real e

{Uh Vg, - - 71]”}
um conjunto de n vetores de V. Dizemos que um vetor v perten-
cente a V' € uma combinagao linear dos vetores de {vy,vq, -+ ,v,}
sss existem escalares reais oy, g, - -+, tais que

n
V= Z ;U;.
1=1
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Cabe ao leitor recordar que ja lidamos com combinagoes lineares
de funcgoes anteriormente, no Teorema 6.25, na discussao sobre o-
peradores diferenciais (Segdo 53) e na discussao sobre solugoes da
equagao diferencial y” + y = 0 (final da Secao 54). Ou seja, o que
fizemos anteriormente foi uma preparacao para o estudo de dlgebra
linear.

EXEMPLO 8.14. Seja
x=1{(1,0,0),(0,1,0),(0,0,1),(1,1,1)}

um conjunto de vetores de R® usual (caso particular de R™ usual,
conforme Segdo 81). Neste caso, o vetor (m,+/2,—7) é uma com-
binacao linear dos vetores de x. Com efeito,

(m,v/2,=7) = m(1,0,0) + v/2(0,1,0) + (=7)(0,0,1) + 0(1,1,1).

Observar, porém, que esta ndao € a unica possivel combinacao
linear dos vetores de x para obter (, V2, —T7). Afinal, podemos
ter também a sequinte combinagdo linear:

(m,V2,-7) =
0(1,0,0) + (V2 — 7)(0,1,0) + (=7 — )(0,0,1) + (1,1, 1).

Além disso, qualquer vetor (a,b,c) de R® usual é combinagdo
linear dos vetores de x:

(a,b,c) = a(1,0,0) + b(0, 1,0) + ¢(0,0,1) +0(1,1,1).

ExEMPLO 8.15. Seja y = {(1,0,0),(0,1,0)} um conjunto de
vetores de R? usual. Logo, o vetor (2,2,2) ndo é uma combinagao
linear dos vetores de y. Com efeito, se

(27 2, 2) - Oé(l, 0, 0) + B(O, L 0)7
entao
(27 27 2) = (a7 /87 0)7
uma contradicao.

No entanto, qualquer vetor (a,b,0) deste espago é combinagao
linear dos vetores de y. Com efeito,

(a,b,0) = a(1,0,0) + b(0, 1,0).

Z3 No EXEmPLO 8.14 (1,1,1) é combinagao linear dos demais
vetores de z. Cada vetor de x é combinacao linear dos demais.
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DEFINIGAO 8.5. Sejam V = (V,R,+,-,0) um espago vetorial
real e
{vl,vg, e ,’Un}
um conjunto de n vetores pertencentes a V.

Dizemos que x € linearmente independente sss nenhum vetor
de x € uma combinacao linear dos demais. Podemos escrever isso
como ‘v ¢ L.I", onde L.I. abrevia ‘linearmente independente’.
Caso contrario, x € linearmente dependente e escrevemos isso
como ‘x € L.D.’, onde L.D. abrevia ‘linearmente dependente’.

ExeEmpLO 8.16. Seja y = {(1,0,0),(0,1,0)} um conjunto de
vetores de R3 usual. Logo, y é L.I. Com efeito, se

(1,0,0) = «(0,1,0),
entao

(1,0,0) = (0, ,0),
uma contradicao; além disso, se

(0,1,0) = 5(1,0,0),
entao

(07 17 0) = (ﬁa 07 0)7

uma contradicdo. Portanto, nenhum dos dois vetores de y é
combinagdao linear do unico vetor que resta em y.

EXEMPLO 8.17. Seja V = (S,R,®,®, (), onde

L S={yecC>|y" +y=0}

I: @ € restricio de + (no espago C* usual) a S,

II: ® € restrigio de - (no espago C* usual) a S, e

v: (O € a fungao real identicamente nula, com dominio R.

Se yy e ys pertencem a S, entdo a combinacao linear ayy + Pyo

também pertence a S (ﬁ' demonstragao andloga a do Teorema
6.25). Ademais, O) € S. LogoV € subespaco de C* usual, o que
implica que V) € espaco vetorial real.

Lembrando que as fungoes seno e co-seno pertencem a S, temos
que {sen, cos} € L.I. neste espago. Com efeito, nio existe a tal
que sen = a.cos, nem 3 tal que cos = Bsen. Ver Secio 54.
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ﬁ] E altamente recomenddvel que o leitor prove circunstancial-
mente todas as afirmagoes feitas no ultimo EXEMPLO. As ideias u-
sadas na demonstracao do Teorema 6.25 podem ser facilmente adap-
tadas para provar que o EXEMPLO acima de fato descreve um subes-
paco nao trivial de C*° usual.

Com relagao a tese de que {sen, cos} é linearmente independente,
basta observar o que se segue. Uma vez que sen(0) = 0 e cos(0) = 1,
nao hé real 5 tal que cos(0) = fsen(0). Logo, ndo ha ( tal que

cos(z) = fsen(x)
para todo x real.

A prova de que nao existe @ de modo que sen(x) = acos(z) é
analoga.

Definicao 8.5 (sobre conjuntos de vetores linearmente indepen-
dentes) ndo é uma ferramenta muito pratica para efeitos de célcu-
los. Se um conjunto de vetores conta com n elementos, precisamos
testar cada um deles para determinar se o conjunto ¢ linearmente
independente. O proximo teorema, porém, oferece um critério mais
econdmico para determinar se um conjunto finito de vetores é L.I.

TEOREMA 8.10. Um conjunto de vetores
r = {v1,v9, U}
de um espaco vetorial real
(V.R,+,-,0)

¢ linearmente independente sss a equagdo

n
ZO!Z"UZ'ZG
=1

admite uma unica solucao, onde cada o; € um escalar.

DEMONSTRAGAO: Obviamente a equagao

n
ZO&L"’UZ‘IG
=1

sempre admite pelo menos uma solugao. Basta fazer a; = 0
para todo 7 tal que 1 < ¢ < n. Teorema 8.4 e axioma
V5 garantem isso. Esta é chamada de solucao trivial da
equacao acima.

PAcINA 351



MATEMATICA PANDEMICA PARTE8 SECAO 84

Supor que a mesma equacao admite outra solugao, além
da trivial. Isso implica que existe pelo menos um «;, diferen-
te de 0, tal que a igualdade acima ¢é teorema. Por conta da
comutatividade e da associatividade da adigdo de vetores,
podemos assumir que esse «; € o1, sem perda de generalida-
de. Logo, multiplicando ambos os lados da igualdade acima
pelo simétrico multiplicativo de a;, podemos reescrever a
mesma equacao como

n
_1 =
v+ > (ar') v =0,
i=2
uma vez que
alafl =1el-vy=n1,

de acordo com axioma V12. Logo,

n

v, = Z(—aiafl) -,

i=2
por conta do Teorema 8.5. Isso prova que v; é combinagao
linear dos demais vetores de z. Portanto, acabamos de
provar que, se a equacao em questao admite outra solugao
além da trivial, entao = é L.D.

Por outro lado, supor agora que x é L.D. Uma vez que o A-
xioma da Extensionalidade garante que a ordem dos vetores
listados em x é irrelevante, podemos assumir, sem perda de
generalidade, que v; é combinagao linear dos demais vetores
em z. Ou seja, existem (s, 83, - , B, tais que

n
U1 = Zﬁz " V.
i=2

Mas isso implica que
vy + Z(_ﬁi) -v; =0,
i=2

a qual ¢ a mesma equacgao do enunciado do Teorema, onde
a1 = 1 e os demais «; s@o iguais a — ;. Uma vez que a; # 0,
entao a equagao admite outra solucao além da trivial.

Com este ultimo passo, provamos que a equagao em questao

admite mais de uma solugao sss z é L.D. Férmulas 7 e 12 da
lista de dezessete teoremas da Se¢ao 10 concluem a prova.
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ExXEMPLO 8.18. Em C™ usual o conjunto
{sen, cos}

é L.1., como jd adiantado no EXEMPLO 8.17. Mas agora usamos
Teorema 8.10 para provar o mesmo resultado. Se

a sen(x) + [ cos(x) = 0,
para todo x real (observar que o simbolo 0 a direita da igualdade

corresponde a fungao identicamente nula), entao a« =0 e B = 0,
de acordo com Segdo 5.

EXEMPLO 8.19. Em R? usual o conjunto
{(1,1),(2,2)}
¢ L.D. Com efeito, se
Q- (171>+6' (272) = (070>a

entdo existem outras solucoes para essa equacdo, além da trivial
(o = p =0). Basta assumir, por ezemplo, « = =2 e f = 1.

TEOREMA 8.11. Seja

xr = {Ul)v%"' 7vn}
um conjunto de vetores de um espaco vetorial real
(V,R,+,-,0).

Se algum dos vetores de x for 0, entdo x é L.D.

DEMONSTRAGAO: Considere a equagao

n
Zozl- UV = 0.
i=1

Se existe j tal que v; = 0, entao, independentemente de
qualquer valor real o, temos
O./j . Uj = 6,

de acordo com Teorema 8.4. Logo, a equacao acima admite
infinitas solugoes, além da trivial. Basta assumir qualquer
a; # 0. Logo, Teorema 8.10 garante que x é L.D.

Naturalmente, a reciproca do ultimo teorema nao é teorema (E-
XEMPLO 8.19).
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SECAO 85
( Espacos vetoriais reais de dimensao finita

ualificamos aqui o conceito de base para certos espagos vetoriais
reais.

DEFINIGAO 8.6. Seja
V= (V,R,+,-,0)
um espaco vetorial real.
Um conjunto de vetores
x ={v,v9, - 0.}

gera V sss todo vetor v pertencente a V' pode ser obtido por
combinagao linear (Definicao 8.4) dos vetores de x.

EXEMPLO 8.20. Seja V = (S,R,®,®,0)), onde

L S={yeC>|y"+y=0},

I: @ € restricio de + (no espago C* usual) a S,

II: ® € restrigio de - (no espago C* usual) a S, e

v: O € a fungdo real identicamente nula, com dominio R.

O conjunto {sen, cos} gera os vetores de V, conforme final da
Secao 54. Com efeito, qualquer funcao y, onde y" +y =0, € tal
que

y(x) = acos(x) + fsen(x).

ExXEMPLO 8.21. Seja

1 0\ /0 1\ /0 0\ [0 0
x:{O0,00,I0,00}.
00/ \o o/ \oo/ \o1

Logo, © nao gera Msyo usual. Com efeito, se

a b 10 0 1 00 00
¢c dl=al0 0| +8[0 0| +~4|1 0]+5]0 0],
e f 00 00 00 0 1
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entao
a b a f
c dl=1|~v 0
e f 0 9
Logo, nenhum vetor
a b
c dJ,
e f

onde d ou e sao diferentes de 0, é combinacao linear dos vetores
de x.

EXEMPLO 8.22. O conjunto x do ultimo EXEMPLO gera o su-
bespaco de Msyo usual cujos vetores sao

a b
c 0
0 f

Com efeito, basta fazer a =a, 5 =b, y=ced = f.

EXEMPLO 8.23. O conjunto

00 0 0
y:{ 2 0f,]—m O }
00 0 0

gera o subespago de Msyo usual cujos vetores sao

0 0
c 0
0 0
Com efeito, se
0 0 0 0 0 0
c 0l=al2 Ol +p3|—7m Of,
0 0 0 0 0 0
basta fazer a = 5 e = 0.

Outra opgao € fazer a =0 e f = ==

[
= °

DEFINIGAO 8.7. Seja V = (V,R,+,-,0) um espago vetorial
real. O conjunto de vetores {vy,va, -+ ,v,} é uma base finita
(ou base) de V sss x gera V e x € linearmente independente.
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EXEMPLO 8.24. O conjunto d = {(2,2),(2,1)} € uma base de
R? usual. Provamos isso a sequir.

Por um lado, se
@(2,2) + B5(2,1) = (0,0),

entao

(20 + 26,20 + ) = (0,0),
o que implica em

20+28=0 e 2a+ 3 =0.
Portanto, 206 = 3, formula esta que é teorema apenas para 3 = 0.
Mas, se § = 0, entdo o = 0. Logo, a primeira equac¢ao acima
admite apenas a solucao trivial para garanti-la como teorema.

Portanto, Teorema 8.10 garante que d é L.I.

Por outro lado, se (a,b) é um vetor qualquer de R? usual e
(a,b) = a(2,2) + B(2,1),
entao
(a,8) = (20 + 26,20 + B).
Portanto, 2a+ 20 = a e 2a+ f = b. Mas essas duas ultimas

formulas sao teoremas somente se
a

oz:b—§ e [B=a—0b.

Afinal, para quaisquer a e b reais, temos
(a,b) = (b - g) (2,2) + (b— a)(2, 1).

Logo, d gera R? usuall.

Portanto, Definicio 8.7 garante que d é uma base de R? usual.

ExXEMPLO 8.25. O conjunto ¢ = {(2,2),(2,1),(1,1)} nao é
uma base de R? usual. Por um lado, conforme tltimo EXEM-
PLO, ¢ gera R?, uma vez que

(a,b) = a(2,2) + 5(2,1) + v(1,1)

S€

a:b—%, B=a-b e ~=0.

Porém, c é L.D. Com efeito, (2,2) =0(2,1) +2(1,1).
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EXEMPLO 8.26. O conjunto

y=1{(1,0,0),(0,1,0)}
do EXEMPLO 8.16 ndo é uma base de R® usual.
Apesar dey ser L.I., nao gera R3 usual. Com efeito, se (a,b,c) €

R3 e

(a,b,¢) = a(1,0,0) + 5(0,1,0),
entao

(a,b,c) = (a, 5,0).

Logo, nenhum vetor (a,b,c) deste espago vetorial real, tal que
c # 0, pode ser obtido por combinacao linear dos vetores de y.

Porém, y é uma base do supespaco de R® usual cujos vetores
sao da forma (a,b,0).

EXEMPLO 8.27. O conjunto x do EXEMPLO 8.21 ndo é uma
base de M3ywo usual. Isso porque x nao gera o espago vetorial real
Msy9 usual.

EXEMPLO 8.25 ilustra uma situacao na qual um conjunto de ve-
tores gera um espago vetorial real, mas nao ¢ linearmente indepen-
dente. EXEMPLO 8.26, nao obstante, exibe uma situagdo na qual
um conjunto de vetores é linearmente independente, mas nao gera o
espaco vetorial real dado. Portanto, as duas condigoes exigidas na
Defini¢ao 8.7 (sobre base) sdo independentes entre si.

Observar também que um mesmo espaco vetorial real pode admitir
mais de uma base.

EXEMPLO 8.28. Ambos os conjuntos

{(2,2),(2, 1)} e {(1,0),(0,1)}

sd@o bases de R? usual.

Em contrapartida, qualquer espaco vetorial real cujo tinico vetor é
o vetor nulo 0 nao admite base alguma, por conta do Teorema 8.11.

Gragas aos conceitos de base e bijegao (ver Definigdo 4.16), pode-
mos agora introduzir bases ordenadas, bem como coordenadas de um
vetor em certos espagos vetoriais reais. Como vemos a seguir, uma
base ordenada é uma base finita munida de uma bijecao com um
ordinal finito.
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DEFINICAO 8.8. Sejam V um espaco vetorial real e

b:{’Ul,UQ,"' 7U'n,}

uma base de V. Seja ainda f :n — b uma bijecao, onde n é um
ordinal finito e f(i) = viy1 para cada i pertencente a n. Se, para
qualquer vetor v de V tivermos

n
v = Z QA Vg,
i=1
os escalares «; definem as coordenadas

(alaa27 T 7an)

de v relativamente ao par ordenado (b, f). Chamamos (b, f) de
base ordenada de V.

E uma préatica comum escrever as coordenadas de um vetor, rela-
tivamente a uma base ordenada, na forma de n-uplas ordenadas

(ah&Qv e ,O[n).

Isso porque os vetores de qualquer base sao obviamente distintos
entre si. Apesar disso, eventualmente as coordenadas de um vetor,
relativamente a uma base ordenada, podem ser iguais entre si. Ou
seja, a coordenada a; € o escalar que multiplica por vy, a coordenada
ap é 0 escalar que multiplica por v, e assim por diante. O que define
a ordem na n-upla ordenada é a bijecdo f da base ordenada (b, f).

EXEMPLO 8.29. No EXEMPLO 8.24 foi provado que
d={(2,2),(2, 1)}
¢ uma base de R? usual.
Logo, as coordenadas do vetor (v/2,4) relativamente d base d

5o (8 _2\/?[_4).

Com efeito,

(V3,4) = 2 _2\@(2, 2) + (V2 — 4)(2,1).

Estamos assumindo que a bijecio f da base ordenada (d, f) é
dada por f:2 —d, onde f(0) =(2,2) e f(1) = (2,1).
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Se assumirmos uma base ordenada (d,g) onde g : 2 — d é
dada por g(0) = (2,1) e g(1) = (2,2), entdo as coordenadas do

mesmo vetor sao
8 — /2
<\/_ - 47 2\/_> )

relativamente a nova base ordenada.

Em contrapartida, as coordenadas do mesmo vetor relativa-

mente a base

{(1,0),(0,1)}
ordenada por h : 2 — {(1,0),(0,1)}, onde h(0) = (1,0) e h(1) =
(0,1), sdo (v/2,4). Afinal,

(vV2,4) = V2(1,0) + 4(0,1).

Comumente a bijegdo f de uma base ordenada (b, f) ndo é expli-
citada, uma vez que a prépria ordem (aq, am, -+ , ;) ja deixa clara
a bijecdo f. Neste contexto, é usual a expressao ‘coordenadas de
um vetor relativamente a uma base finita’ no lugar de ‘coordenadas
de um vetor relativamente a uma base finita ordenada’ Neste livro
adotamos essa convencao, como ocorre no proximo teorema.

TEOREMA 8.12. Se um espaco vetorial real V admite base

b:{’Ul,UQ,"' 7vn}

com n elementos (onde n é um natural), entdo as coordenadas
de qualquer vetor v de V sao unicas.

DEMONSTRAGAO: Sejam (aq, s, -+ ,q,) as coordenadas de
um vetor v qualquer de V relativamente a base b. Logo,

n
V= Z ;0;.
=1

Supor que v admite coordenadas (S, o, - , 5,) relativa-
mente a mesma base b. Logo,

n
v = Z 611]1
i=1
Portanto,

n n .
Z o;0; — Zﬁﬂ)l =0.
=1 =1
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Mas isso implica que

n

Z(Oéi — Bi)vi = 0.

i=1
Lembrando que b é linearmente independente (de acordo
com Definigdo 8.7), Teorema 8.10 garante que, para todo
i tal que 1 <7 < n, temos o; — 3; = 0. Logo, a; = f;.
Portanto, as coordenadas sao unicas.

Naturalmente, como ja alertado, na prova do ultimo teorema as-
sumimos implicitamente uma base ordenada (b, f), onde f :n — b é
uma bijegdo dada por f(i) = v;41, para todo i pertencente a n.

TEOREMA 8.13. Se um espaco vetorial real V admite base
b={v,va,- ,U,}
com n elementos, entao qualquer conjunto
c=A{wy,wy, - Wy}

de m wvetores de V, onde m > n, € linearmente dependente.

DEMONSTRACAO: Cada w; de ¢ é uma combinagao linear de
vetores de b, uma vez que b gera V. Logo,

n
wj = oivi,
=1

para cada j tal que 1 < j < m. Considere agora
Z ijj = 6
j=1

Se provarmos que esta tltima admite mais de uma solucao,
além da trivial (i.e., existe pelo menos um f; diferente de
0, tal que a equagdo acima é teorema), encerramos a prova.

De acordo com axioma V11 da Secao 80, temos
m m m
(Z @j%’l) v+ (Z 53'%'2) Vg A+ et (Z Bjajn) v, = 0.
j=1 j=1 j=1
Mas esta tultima equacao é teorema se cada somatorio

m
> Biay
j=1
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que multiplica cada v; for 0.

Logo, temos um sistema de n equagdes com m valores f3;
a serem definidos para garantir que todas as n equagoes sao
teoremas. Lembrando que m > n, isso implica que existe
pelo menos um f[; diferente de 0. Esta tltima afirmacao
pode ser demonstrada por inducao ao longo de todos os 1,

de 1 an. ﬁ' Recomendamos que o leitor conclua a prova.

TEOREMA 8.14. Se o conjunto de vetores {vy,vq, -+ ,v,} gera
um espago vetorial real e o conjunto de vetores

{w17w27 o 7wm}

do mesmo espaco ¢ L.I., entao m < n.

DEMONSTRAQAO: Notar que, na prova do Teorema 8.13, néo
foi necessario usar o fato de que {vy,vq,--- ,v,} é L.I. Foi
suficiente assumir que tal conjunto gera o espaco. Logo, o
enunciado aqui colocado é consequéncia imediata da prova
do Teorema 8.13.

TEOREMA 8.15. Se um espaco vetorial real V admite base

b:{vlav27"' 7Un}

com n elementos, entao qualquer outra base de YV tem n elemen-
tos.

DEMONSTRAGAO: Seja
C= {wlwaa o 7wm}

outra base de V. Como c¢ gera o espago e b é L.I., entao
Teorema 8.14 garante que n < m.

Analogamente, como b gera o espago e ¢ é L.I., entao
m<n. Masn <mem<mnsssm=n.

Agora que sabemos que o nimero n de elementos de uma base de
um espago vetorial real é invariante, caso exista base

b= {Ulav27"' 7”71}7

podemos finalmente introduzir nova defini¢ao, suportada pelo tltimo
teorema acima.
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DEFINIGAO 8.9. Se um espago vetorial real V admite base com
n elementos, dizemos que )V tem n dimensoes. Fscrevemos

dim(V) = n.

EXEMPLO 8.30. EXEMPLO 8.24 prova que R? usual tem duas
dimensoes.

ExEmpPLO 8.31. EXEMPLO 8.26 prova que
y=1{(1,0,0),(0,1,0)}

¢ uma base do supespaco de R® usual cujos vetores sao da forma
(a,b,0).

Logo, tal subespaco é um espago vetorial real com duas dimen-
s0€es.

EXEMPLO 8.32. SejaV = (S,R,®,®, (), onde

i S={yeC®|y" +y=0},

I: @ € restrigio de + (no espago C* usual) a S,

II: ® € restrigio de - (no espago C*° usual) a S, e

v: O € a fungdo real identicamente nula, com dominio R.

Neste caso, {sen, cos} é uma base de V, de acordo com EXEM-
PLOS 8.17 e 8.20. Logo dim(V) = 2.

EXEMPLO 8.33. O espago vetorial real (R, R, +,-,0) tem uma
dimensdo. Com efeito, {/3} é uma base de tal espaco. Afinal, a
inica solucdo da equagio a/3 =0 € a trivial, o que prova que o
conjunto {+/3} é L.I. Além disso, qualquer vetor r de R pode ser
obtido por combinagdo linear dos vetores de {+/3}. Com efeito,
ser = av/3, basta fazer

r
o= —F=

V3
Neste caso, as coordenadas de qualquer vetor r de R relativa-
mente d base {\/3} sdo simplesmente 7

Perceber que qualquer base de um espago vetorial real de uma di-
mensao, como no EXEMPLO acima, admite uma tnica base ordenada
(Definicao 8.8) correspondente a ela.
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EXEMPLO 8.34. Qualquer espago vetorial real ({0}, R, +,-,0)
tem zero dimensoes, de acordo com Teorema 8.11.

TEOREMA 8.16. Seja W = (W, R, &, ®,0) um subespago de
um espaco vetorial real V = (V, R, +,-,0). Sedim(V) = n, entdio
dim(W) < n.

@l A prova fica a cargo do leitor.

Espacos vetoriais reais com n dimensoes, onde n é um natural, sao
chamados de espacos vetoriais reais de dimensao finita. No EXEM-
PLO 8.39 e na Secao 97 discutimos sobre espagos vetoriais reais que
nao tém dimensao finita. Logo, nem todo espaco vetorial real admite
base finita. Mas, antes de examinarmos essa questao, é relevante dis-
cutirmos outros assuntos.

SECAO 86
( Espacos métricos

\pesar do estudo de espagos métricos usualmente ndo ser men-
cionado em livros de algebra linear, seu impacto sobre espagos veto-
riais é muito marcante. Por conta disso, dedicamos esta Se¢do a um
breve estudo sobre o tema.

DEFINIGAO 8.10. Um par ordenado m = (m,d) é um espago
métrico sss

M1: m # @;

M2 - DISTANCIA: d : m X m — R € uma fungdo cujas ima-
gens sio denotadas por d(a,b);

M3 - IDENTIDADE DOS INDISCERNIVEIS:
d(a,b) =0 < a = b;

M4 - SIMETRIA:
d(a,b) = d(b, a);

M5 - DESIGUALDADE TRIANGULAR:

d(a,c) < d(a,b) + d(b,c).
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Obviamente espagos métricos sao definidos por meio de um predi-
cado conjuntista, nos moldes da Se¢dao 71. Logo, no presente con-
texto, todo espago métrico é um caso muito particular de conjunto,
em ZF.

A funcao d é chamada de métrica ou funcao-distancia. Para cada
par ordenado (a,b) pertencente a m x m, dizemos que d(a,b) é a
distancia entre a e b. Os elementos a e b de m sdo chamados de
pontos do espago métrico. Em outras palavras, uma métrica é uma
funcao real, enquanto uma distancia é um nimero real.

Pontos de um espago métrico sao indiscerniveis sss a distancia
entre eles é zero. Axioma M3 assume que pontos de um espaco
métrico sdo indiscerniveis se, e somente se, forem idénticos.

M4 estabelece que a distancia entre a e b é também a distancia
entre b e a.

Finalmente, M) garante a ideia intuitiva de que ‘desvios’ em um
espaco métrico nao sao ‘atalhos’. A distadncia entre um ponto ‘de
partida’ a e um ponto de ‘chegada’ ¢ é menor ou igual a quaisquer
desvios que passem por um ponto b qualquer, antes de chegar de a
até c.

EXEMPLO 8.35. Seja (R,d) uma interpretacao de espago mé-
trico, onde d : R? — R € uma funcio dada por
d(r,s) = |r —s|.
Formulas M1 e M2 da Definicio 8.10 sao teoremas triviais.
Além disso,
r—s|l=0&r=s
€ teorema, o que itmplica que M3 € teorema.

Férmula M4 € teorema por conta de |r — s| = |s — r| para
QUALSQUET TEAIS T € S.

ﬁ' Finalmente, cabe ao leitor provar que
r—t| < |r—s|+|s—t.

A dltima implica que M5 € teorema para a interpretacao (R, d).
Logo, temos aqui um primeiro modelo de espaco métrico.

O leitor deve ter percebido que o espago métrico acima foi ampla-
mente usado nas discussoes da Secao 44 dedicada a limites de fungoes
reais. Analogamente, (Q,d) é um espago métrico se d : R> — R é
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uma fungao definida como d(r,s) = |r — s|. Este segundo exemplo
foi utilizado nas discussdes sobre sequéncias convergentes da Secao

35.

EXEMPLO 8.36. Jis ) Seja (m,d) um par ordenado, onde m #
Fed:mxm—R €a funcio dada por
] 1 sea#b
e, ) = { 0 sea=0.

Neste caso (m,d) é um espago métrico. Cabe ao leitor o onus
da prova.

O EXEMPLO acima é conhecido como espago métrico discreto. Ele
também demonstra que qualquer conjunto m nao vazio pode ser
munido de métrica.

TEOREMA 8.17. Em todo conjunto nao vazio é possivel definir
uma métrica.

DEMONSTRAGAO: EXEMPLO 8.36 prova isso.

TEOREMA 8.18. Em um espago métrico nenhuma distancia é
um real negativo.

DEMONSTRAGAO: Seja (m, d) um espago métrico. Sejam ainda
a e b pontos quaisquer do espago. Logo, de acordo com a
Desigualdade Triangular (axioma M5), temos

d(a,b) +d(b,a) > d(a,a).
Logo, o postulado de Simetria M4 implica que
d(a,b) +d(a,b) > d(a,a).
Logo, a Identidade dos Indiscerniveis M3 garante que
2d(a,b) > 0.

Portanto,
d(a,b) > 0.

O estudo de espagos métricos conta com muitos outros resultados
e aplicagoes. Exemplos ja explorados aqui sao os conceitos de limites
de funcoes reais e de sequéncias racionais. No entanto, na proxima
Secao exibimos outras aplicagoes no contexto de espacos vetoriais
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reais. Mostramos, entre outras coisas, que certos espacos vetoriais
reais podem ser munidos de métricas nao triviais (ou seja, diferentes
da métrica discreta do EXEMPLO 8.36).

SECAO 87
( Produto interno

saualificamos aqui produto interno, uma operagao binaria entre
vetores que produz escalares.

DEFINIGAO 8.11. Seja V = (V,R,+,-,0) um espago vetorial
real. Uma funcao

(}:VxV >R,

cujas imagens (, )(u,v) sao denotadas abreviadamente por (u,v),

¢ um produto interno em V se as sequintes formulas sao teore-

mas.
PIl: (u,v) = (v,u);

PI12: (u+v,w) = (u,w) + (v, w);

P13: (

p14: (u,u) >0 se u # 0.

au,v) = alu,v), onde o é um escalar;

Referimo-nos a (V,(,)) como um espago vetorial real V munido
de produto interno ().

E importante que o leitor ndo confunda pares ordenados (a,b)
com produto interno (a,b). Para que ndo exista risco de confusdo,
sempre qualificamos quando é um caso ou o outro. No caso de pro-
duto interno, lemos (a, b) como ‘produto interno entre a e b’

Axioma PI1 é chamado de simetria. O nome ‘simetria’ é preferido
no lugar de ‘comutatividade’ por conta de produto interno nao ser
uma operacao fechada no espaco de vetores, apesar de ser definida
sobre pares ordenados de vetores.

Postulados P12 e P13 sao conhecidos como bilinearidade.

Finalmente, P14 é chamado de positividade.
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Produtos internos sao casos particulares de funcionais. Funcionais
sao fungodes cujos dominios sao espagos vetoriais ou produtos carte-
sianos de um espaco vetorial por ele mesmo, tais que suas imagens
sao escalares. Neste contexto,

um produto interno em um espago vetorial real é um funcional
simétrico, bilinear e positivo.

TEOREMA 8.19. Sejam V = (V,R,+,-,0) um espago vetorial
real e
b= {U17U27'” 7Un}
uma base de V. Se

(aba?a"' 7an)+<61a/827"' 75n) —
(1 + Br, a0+ Ba, -+, am + )

7(0417 Qg, - 7an) = (7&1,7042, to 77an)7
ondey € R e (ay,ag, - ,ay,) e (b1, P2, -, Bn) sao coordenadas
de vetores quaisquer de V', relativamente a b, entao V pode ser
munido de produto interno.

DEMONSTRAGAO: Para qualquer vetor v existem n escalares
«; tais que

n
= Z ;U;.
=1

Ou seja, as coordenadas de v relativamente a base b sao
(Oéb Q- 7an)~

Consideremos a funcao (,) : V x V — R tal que

<(O[1, Qg, - 7(1/71)7 (617 527 Tt 7/6n)> - Zazﬂz
=1

Provamos a seguir que essa func¢ao define um produto in-
terno em V.

Em primeiro lugar, (,) é um funcional. Além disso, temos
((0617042, T 7an>7 (51,52, T 7571)) = Z%ﬂi = Zﬂi% =
=1 i=1
<(617 527 U 7571)7 (ala 5 PR 7an)>7
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por conta da comutatividade da multiplicacao entre reais.

Portanto, P11 é teorema.
Em segundo lugar,
<(O{1, O, - ,Oén) + (617 627 e 7571)’ (71;727 Tt 7’7n)> —

(1 + Bry a2+ By -+ s+ Br), (V1,72 Wm))-

Mas este ultimo termo é idéntico a
n

Z(Oéi + Bi)v,

i=1

o qual é igual a

> (i + Bivi) =D i+ Y By =

i=1 i=1 i=1

(1, aa,- -+, am), (V1,725 + s V)

<(/817B27 e 7671)7 (’717727 e )771))
Isso prova que P12 é teorema.
Em terceiro lugar,

(a1, 0, -+, an), (B, B2, -, Bn)) =
((aar, aag, -+ aay), (B1, B2, 5 B))-

Observar que a nao é necessariamente idéntico a qualquer
a;. Mas o tltimo termo ¢é igual a

i@aiﬁi = aiaiﬂi = of(a1, 02, ,an), (B1, B2, -+ 1 Bn))-
=1 =1

Isso prova que P13 é teorema.

Finalmente,
n n
<(a17 Qg, - - - 7an>7 (ala Qg, - - ,Oén>> = ZO&iOéi = ZO[?
i=1 i=1

Os axiomas da Defini¢ao 8.1 garantem que
(o, 9, ,a,) =0
sss cada «; € 0.
Logo, se algum «; for diferente de 0, entao

<<04170527"' 7an)7(a17a27"' 7an)> > 07

0 que prova que P14 é teorema.
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ﬁ] Notar que o produto interno sugerido na tltima demonstracao
nao é o unico possivel. A fungao (,) : V x V — R tal que

<(CK1, Qg, - - a@n)a (517 627 T >ﬁn)> = znjciaiﬁi
=1

também define um produto interno em V), se cada ¢; for um real
estritamente positivo. Cabe ao leitor demonstrar isso. No caso em
que cada ¢; é 1, temos o produto interno canénico (o mesmo da
demonstragao acima) em uma vasta gama de espagos vetoriais reais
de dimensao finita (incluindo qualquer R™ usual). Portanto, um
mesmo espago vetorial real de dimensao finita admite uma infinidade
de possiveis produtos internos.

EXEMPLO 8.37. A fungdo (,) : R? x R? = R dada por
((a,0),(c,d)) = ac + bd

é um produto interno em R? usual.

EXEMPLO 8.38. SejaV = (S,R,®,®, (), onde

L S={yecC>|y" +y=0}

I: @ € restricio de + (no espago C* usual) a S,

II: ® € restrigio de - (no espago C* usual) a S, e

v: O € a fungdao real identicamente nula, com dominio R.

O conjunto {sen,cos} € uma base de V (conforme EXEMPLO
8.32), o que implica que qualquer funcio f de S é da forma
f =asen+ [cos. Logo, se

f = asen + [ cos

g = 7y sen + 4 cos
sdo vetores de S, entdo (,): S?* — R, dada por

(f,9) = m(ay + Bd),

€ um produto interno em V. Lembrar que ™ é uma constante real
estritamente positiva.

Nem todo espaco vetorial real é de dimensao finita, como se verifica
no proximo EXEMPLO.
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EXEMPLO 8.39. SejaV = (S,R,®,®, (), onde

I: S ={y € C>®|y é polinomial com dominio [—a,a]}, sendo
a# 0,

I: @ € restrigio de + (no espago C* usual) a S x S,

II: ® € restrigio de - (no espago C*° usual) a R x S, e

v: (O € a fungao real identicamente nula, com dominio R.

Por um lado, adigdo de funcoes polinomiais é uma fungao poli-
nomaial, e multiplicacio entre um real e uma funcao polinomial
¢ uma funcao polinomial. Isso ocorre mesmo em um dominio
definido por um intervalo fechado nao degenerado [—a,al. Por
outro, a fungao identicamente nula O é polinomial (de grau 0).
Logo, de acordo com Definicao 8.3, V € subespago de C*> usual.
Portanto, de acordo com Teorema 8.9, V € espaco vetorial real.

Supor que V admite base finita

b= {p17p27 o )pn}u

onde cada p; pertencente a b € polinomial. Logo, existe natural
m tal que m € o grau do polinomio de maior grau entre todas as
fungoes de b. Portanto, se p for uma funcao polinomial de grau
mator do que m, p nao € combinacdo linear dos vetores de b, por
conta do Teorema Fundamental da Algebra (ver OBSERVAGAO
FINAL da Segio 43).

O fato de um espacgo vetorial real nao ter base finita nao impede
necessariamente a definicao de um produto interno:

EXEMPLO 8.40. No espago vetorial real V do EXEMPLO 8.39,
considere a sequinte fungdo () : S? — R, definida por

(p,q) = [ Z p(x)q(z)dx.

O produto entre fungoes polinomiais é polinomial. Além disso,
toda polinomial é integrdvel. Logo, (,) € um funcional.

Além disso,

/_ZP(IE)Q(ZL‘)d:E — /_aa q(z)p(z)dx,

o que garante que PI1 é teorema.
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Também temos que

a

p+ar) = [ (@) + @))r(@))de =

—a

/a (p(z)r(x) + q(z)r(x))dz =

| p@r@+ [ a@r@de =) + (7).
Logo, P12 ¢é teorema. Foi usado acima o Teorema 6.10.

Ademais,

a

(ap.q) = [ (ap@)a(@)dz = [ apw)a(z)ds =

—a —a

o [ plala()de = alp,q),

0 que garante que P13 ¢ teorema. Novamente foi empregado o
Teorema 6.10.

Finalmente,
(p,p) = /_ p(x)*dz >0,

0 que prova que P14 também € teorema. Foi usado o Teorema
6.7.

Logo, (,) é um produto interno.

ExEmMPLO 8.41. ﬁl No mesmo espaco vetorial real V do E-
XEMPLO 8.39, a funcio (,) : S* = R, definida por

p.0)=c [ pa)ga)da

¢ um produto interno em V, se ¢ > 0. Cabe ao leitor a prova.

ﬁ' Se, em um dado espago vetorial real nao trivial (de dimensao
finita ou nao), for possivel definir um produto interno (,), entdo é
possivel definir uma infinidade de outros produtos internos.

TEOREMA 8.20. Seja
V=(V,R +,-,0)

um espago vetorial real munido de produto interno (). Entao,
para qualquer vetor u do espago, temos

(u,0) = 0.
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DEMONSTRAGAO: De acordo com P11, (u,0) = (0,u). De
acordo com PI2 e axioma V5 da Secgao 80,

(0,u) = (0 +0,u) = (0, u) + (0, u).

Mas a equacao

(0,u) = (0,u) + (0, w)
0.

somente ¢ teorema se (0, u

— SEGCAO 88
Norma de um vetor

¥ odo espaco vetorial real munido de produto interno (,) é um
espago métrico cuja fungdo-distancia é induzida por (,). Este é o

tema principal desta Secao.

DEFINIGAO 8.12. Seja V = (V,R,+,-,0) um espago vetorial
real munido de produto interno (,). A norma de um vetor v é

o]l = y/{v,v).

TEOREMA 8.21. Seja V = (V,R,+,-,0) um espago vetorial
real munido de produto interno (,). Entdo || 0 || = 0.

DEMONSTRAQAO: Consequéncia imediata de Teorema 8.20 e
da definicado de norma.

TEOREMA 8.22. Seja V = (V,R,+,-,0) um espago vetorial
real munido de produto interno (). Entao

[ Av [ = AL - [l o,

onde \ € um escalar.

DEMONSTRAGAO: De acordo com Definicao 8.12 e axiomas
pil e P13 da Definigao 8.11,

| 2w || = /(w, M) = /A, do) =

VA (v,0) = VA2 (v, 0) = A - || v ||

PAGINA 372

SUMARIO

INDICE
REDE



MATEMATICA PANDEMICA PARTE8 SECAO 88

TEOREMA 8.23 (DESIGUALDADE DE CAUCHY-SCHWARZ). Se
V= (V,R,+,-,0)
€ um espago vetorial real, munido de produto interno
(): VXV >R,
eu e v sao vetores de V', entdo
[(w, )] < wll-floll-

DEMONSTRACAO: Se v = 0, a prova ¢ imediata, gracas ao
Teorema 8.20. Situagdo andloga para u = 0, uma vez que
produto interno é simétrico, de acordo com PI1.

Agora consideremos a situacao na qual v # 0. Neste caso,
Definicao 8.12 de norma, bem como os axiomas da Defini¢ao
8.11, garantem que

0<||ut+|?=(u+Iv,u+ ) =
(u, u + Av) + (Av,u + W) =

(u,u) + (u, Av) + (A, u) + (A, Av) =
(u, u) + 2M{u, v) + \*(v,v).

Levando em conta que essa desigualdade vale para qual-
quer A\ real, fagcamos

__<u,v>
A= 0y

uma vez que v # 0 e, portanto, (v,v) # 0.

Logo, de acordo com a desigualdade acima,

PG, u, v o v, V) =
 (u,v)?
{w, w) (v, v)
Portanto, )
(u,u) > &)

o que implica em (u, u){v,v) > (u,v)?. Logo, Defini¢ao 8.12
garante que
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Uma das consequéncias da desigualdade de Cauchy-Schwarz é a
famosa desigualdade triangular, resultado estratégico para a prova
de que normas induzidas por produtos internos também induzem
métricas.

TEOREMA 8.24 (DESIGUALDADE TRIANGULAR). Seja
YV =(V,R,+,-,0)
um espago vetorial real munido de produto interno ().
Se a e b sdo vetores de V', entdo
Fat+bl <llall+Ibl.

DEMONSTRAGAO: De acordo com Definicao 8.12 e axiomas
Pil e P12 da Definigao 8.11,
la+b|*=(a+ba+b)={aa+b)+(batbd)=
(a,a) + (a,b) + (b, a) + (b,b) =

la |+ 2{a,b) + [ 0] <

Fall?+2a, b)| + 1 b [
Mas Teorema 8.23 sobre a desigualdade de Cauchy-Schwarz
garante que este ultimo termo é menor ou igual a

Fal*+2(al-No0+I[b]7

sendo este tltimo idéntico a (|| a || + || & ||)?. Uma vez que
toda norma de qualquer vetor é maior ou igual a zero, entao

Fatbll <llall+Ibl.

O préximo teorema mostra que a norma em um espaco vetorial real
munido de produto interno pode ser usada para calcular distancias
(ver Definigao 8.10) entre vetores.

TEOREMA 8.25. Seja V = (V,R,+,-,0) um espago vetorial
real munido de produto interno (). Seja ainda d:V xV — R
uma fungdo dada por

d(u,v) = [ u—v].

Logo, (V,d) é um espago métrico.

DEMONSTRAGAO: Basta provarmos que a funcao d define uma
métrica no espago V' de vetores. Mas d é uma funcao cujas
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imagens sao reais e cujo dominio é nao vazio. Logo, axiomas
M1 e M2 de espago métrico (Defini¢ao 8.10) sdo teoremas.

Sobre M3 (Definigao 8.10), observar o seguinte.
d(u,u) = [u—ul=[0].
Logo, Teorema 8.21 garante que d(u,u) = 0.

Por outro lado, axioma P14, em parceria com Defini¢ao
8.12, garante que o vetor nulo é o tinico cuja norma é zero.

Logo, se d(u,v) =0, entdo || u — v || = 0, o que implica em
u—v = 0. Mas isso somente ocorre se u = v. Portanto, M3
é teorema.

Sobre M4, observar que

d(u,v) = | u—v | = (=1)(v —u) |,
de acordo com Teorema 8.5. No entanto, o termo a direita
da tdltima igualdade é | — 1| - || (v — w) ||, de acordo com
Teorema 8.22. Logo, d(u,v) = || v—u ||, sendo que || v—wu ||

¢ d(v,u). Portanto, M4 é teorema.

O ultimo postulado da Defini¢ao 8.10 a ser avaliado é M5.
Ou seja, precisamos provar que

fu-wl<uv-v]+]v-wl.

Para isso, basta substituir a por v — v e b por v — w no
Teorema 8.24.

EXEMPLO 8.42. Seja R? usual munido do produto interno ca-
nonico
(,):RPxR* =R
dado por {(a,b), (c,d)) = ac + bd.
Neste caso, a norma induzida pelo produto interno (, ) induz
também a sequinte métrica d : R? x R? — R:

d((a7b>’ (C, d)) = \/<(a’b) - (Ca d)? (a’b) - (Ca d)) =
Vila—eb—d), (a—c,b—d) =/(a—c)2+ (b—d)2.

Esta é a métrica euclidiana em R? usual. E também o compri-
mento do segmento de reta [(a,b), (c,d)], de acordo com Segao
77. Logo, R? usual, munido do produto interno canodnico, é o
plano cartesiano.
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EXEMPLO 8.43. Em R? usual munido do produto interno ca-
nonico (como no EXEMPLO anterior), uma circunferéncia ¢ com
centro (a,b) € o conjunto dos pontos (x,y) equidistantes de (a,b).
Logo,

c={(w,y) €| J(x—a) + (y— b2 =7},
sendo r > 0 a distancia que define o raio da circunferéncia c.

Notar que a definicio da circunferéncia ¢ em R? usual foi feita
por aplicacao do Esquema de Separacao.

EXEMPLO 8.44. Considere o espago vetorial real (R, R, +, -, 0)
usual. Neste caso, a multiplicagio entre reais (0s quais sao ve-
tores, além de escalares) é o produto interno candnico de tal es-
paco. Simetria, por exemplo, é consequéncia da comutatividade
da multiplicagcao entre reais.

A norma induzida pelo produto interno candnico neste espaco
induz também a sequinte métrica

d:RxR—R
dada por

d(r,s):\/<7’—s,7’—s>:\/(r—s)Qzlr—sL

Desnecessdrio dizer que esta é exatamente a mesma métrica u-
sada na definicio de limite de fungdo real na Secao 44. Observar
que d(r,s) = |r — s| é a métrica euclidiana na reta dos reais.

EXEMPLO 8.45. No espaco vetorial real V do EXEMPLO 8.39,
considere a sequinte fungio () : S* — R, definida por

(p,q) = /a p(z)q(z)dx.

Foi demonstrado no EXEMPLO 8.40 que (,) é um produto in-
terno. Logo, é possivel calcular a distincia, induzida por (),
entre as sequintes funcoes:

p:[—a,a] =R dada por p(z)=2*

q:|—a,a] > R dada por q(z)=2z.

ﬁl Recomendamos que o leitor faca as contas.
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ﬁl Outro exercicio interessante é definir um espaco vetorial real
de matrizes, bem como um produto interno neste espaco. Em seguida,
mostrar como calcular a distancia entre matrizes deste espaco a par-
tir da métrica induzida pelo produto interno escolhido.

Uma vez que um mesmo espaco vetorial real pode ser munido de
uma infinidade de produtos internos, cada um deles induz uma nova
métrica no mesmo espago.

A seguir comegamos a nos aproximar de geometria analitica.

SECAO 89
( Ortogonalidade

rtogonalidade ¢ um conceito algébrico, como se percebe na proxi-
ma defini¢do. Perpendicularismo, porém, é um conceito geométrico
a ser discutido na préxima Secao.

DEFINICAO 8.13. Vetores u e v de um espago vetorial real mu-
nido de produto interno () sao ortogonais entre si sss

(u,v) = 0.
Um conjunto de vetores {vy, vy, -+ ,v,} € ortogonal sss v; €

ortogonal a vj para quaisquer i e j tais que i # j, 1 < i <n e
I1<j<n.

Uma vez que produto interno é simétrico, se u e v sao vetores
ortogonais entre si, entdo v e u sao ortogonais entre si. Logo, ¢ usual
dizer que u é ortogonal a v, se (u,v) = 0.

TEOREMA 8.26. Seja
V=(V,R,+,-,0)

um espago vetorial real munido de produto interno ( , ). Logo,
o vetor nulo 0 € ortogonal a qualquer vetor de V.

DEMONSTRAGAO: Consequéncia imediata do Teorema 8.20 so-
bre produto interno entre vetor nulo e qualquer outro vetor
de um mesmo espaco vetorial real.
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TEOREMA 8.27. Seja V = (V,R,+,-,0) um espago vetorial
real munido de produto interno { ). Logo, qualquer conjunto

{v1,v9,- -+ ,v,} de vetores ortogonais nao nulos é linearmente
independente.
DEMONSTRAGAO: Se x = {vy,vq, -+ ,v,} é ortogonal entao,

para quaisquer v; e v; pertencentes a x, temos (v;,vj) = 0
se j # i. Considere agora a formula

n
Z Oéj?)j = 6
7=1

Se provarmos que os unicos valores «; a garantirem que a
formula acima é teorema sdo aqueles que correspondem a
solugao trivial, demonstramos que x é L.I., de acordo com
Teorema 8.10. A partir desta equagao temos

<Z OéjUj, U7;> = <6, UZ‘),
j=1

para cada v; pertencente a . Logo, axiomas P12 e P13 da
Definicao 8.11 e Teorema 8.20 garantem que

Z Oéj <Uj, Ui> = O
7=1

Uma vez que x é ortogonal, entao a igualdade acima implica
em
Oéi<1}i, Ui> =0.

No entanto, lembrando que os vetores pertencentes a x sao
nao nulos, entdo axioma P14 da Defini¢ado 8.11 garante que
(vi,v;) # 0. Logo, «a; deve ser zero para cada i tal que 1 <
1 < n. Portanto, Teorema 8.10 implica que = é linearmente
independente.

A reciproca do ultimo teorema ndo é teorema, como se ilustra no
proximo EXEMPLO.

EXEMPLO 8.46. £3 0 conjunto {(m,v/3),(v/3,7)} € linear-
mente independente em R? wusual munido do produto interno
canénico (). Cabe ao leitor provar isso. No entanto,

((m,V/3),(V3,7)) = 27v/3 £ 0.
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A contrapositiva do Teorema 8.27 garante que, em um conjunto

€r = {U17v27”' Jvn}

de vetores nao nulos, linearmente dependente, existe pelo menos um
par {v;,v;} de vetores distintos nao ortogonais entre si.

EXEMPLO 8.47. Seja V = (V.,R,+,-,0) um espago vetorial
real munido de produto interno (,). Se {u,v} € um conjunto de
vetores nao nulos de V', linearmente dependente, entdo existe o
real tal que u = av. Logo,

| = /(u,u) = /(av, av) =
Vo2 (v,v) = |afy/(v,0) = al - || v | .

Este dltimo EXEMPLO inspira a proxima definigao.

DEFINIGAO 8.14. Seja V = (V,R,+,-,0) um espago vetorial
real munido de produto interno. Dizemos que um vetor nao nulo
v de V € unitario sss

ol =1.

Vetores unitarios nada tém a ver com conjuntos unitarios.

TEOREMA 8.28. Seja V = (V,R,+,-,0) um espago vetorial
real munido de produto interno (). Logo, para qualquer vetor
nao nulo v de V' existe vetor w tal que

v=ow
e
[ w | =1.
DEMONSTRAGAO: Basta fazer a = || v ||. Com efeito, se
v=|v]| - w, entao w=| v |~!-v. Logo,

lw | = /{w,w)y = /(v L0, [0 |2 0) =
Vv 172 @) =l v |7 vy =lo |- |lv| = 1.

O ultimo teorema justifica a pratica de normalizacao de vetores em
espagos vetoriais reais munidos de produto interno. A normalizagao
de um vetor v nao nulo é feita definindo um vetor w tal que {v, w}
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éL.D.e

1

w = -,
o

A luz dos Teoremas 8.27 e 8.28 introduzimos o seguinte.

DEFINIGAO 8.15. Seja V = (V,R,+,-,0) um espaco vetorial
real munido de produto interno (). Um conjunto

x = {v,v9, - 0.}
define uma base ortonormal de V sss
I: © é uma base de V,
I: x € ortogonal e

III: cada vetor de x é unitario.

EXEMPLO 8.48. ﬁl Considere R® usual munido do produto
interno canonico

() R*xR* =R
dado por
(a,,0), (dse, f)) = ad + be +cf.
Neste caso,
{(17 O’ 0)7 (0’ 17 0)7 (O’ 07 1)}
define uma base ortonormal de R?® usual, enquanto
{(1,0,0),(0,1,0),(0,0,7)}

¢ uma base para o mesmo espaco, mas nao ortonormal.

EXEMPLO 8.49. Jis ) Seja Py = (Py, R, +,-, ) 0 espago veto-
rial real tal que

I: P, € o conjunto das funcoes reais polinomiais de grau menor
ou iqual a 2 e dominio R,

I: + € a adigdo usual de fungoes polinomiais de grau menor
ou igual a 2, ou seja, se p e q sao fungoes de Py, entdo p+q
¢ uma fungdo tal que (p+ q)(z) = p(z) + q(z),

I: - € a multiplicacao usual de real por uma fungdo polinomial
de grau menor ou igual a 2, ou seja, se p € Py e a é um
real, entdo ap € uma fungdio tal que (ap)(z) = ap(x), e
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v: O € a fungao identicamente nula com dominio R.

Cabe ao leitor provar que este é um espago vetorial real.

Logo, se p, q e r sao fungoes reais com dominio R tais que
p(x) =1, q(z) =z e r(z) = 22, entdo o conjunto

m = {p,q,r}
define uma base para Py (0 que implica que Py tem trés dimen-
soes).

Neste contexto, qualquer fungdo v : R — R de P tal que
v(r) = ax® + br + c,
tem coordenadas
(a,b,c)
relativamente a base m.
Se definirmos o produto interno () : Po X P, — R como
{ax® + bx + ¢, dx® + ex + f) = adx® + bex + cf,

entdo m € uma base ortonormal de Py relativamente a este pro-
duto interno. Recomendamos ao leitor que prove isso.

— SEGAO 90
Nocoes elementares sobre geometria analitica

S&dleometria analitica plana, grosso modo, é o estudo de uma in-
terpretacao do plano euclidiano (como apresentado na Parte 7) dada
por R? usual, o qual é munido do produto interno candénico. Detalhes
no EXEMPLO 8.42.

Geometria analitica espacial, por sua vez, ¢ uma extensao da ge-
ometria analitica plana para R?® usual, também munido de produto
interno canonico.

Geometria analitica trata de geometria analitica plana e geometria
analitica espacial.

Espacos R", para n > 3, podem ser usados para generalizar os
resultados de geometria analitica. Discutimos aqui apenas sobre o
plano cartesiano, o qual mostramos a seguir que pode ser identificado
com R? usual munido do produto interno canénico.
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‘yc d tu
(a2, ba) (1 K TR

catetos de um triangulo retdngulo com
hipotenusa medindo || (r, s) + (¢, u) ||

(c2, d2

| f
‘/'

(a1,b1)

Na imagem acima ilustramos ideias intuitivas para o préximo teo-
rema.

TEOREMA 8.29. Ortogonalidade entre vetores p e q do plano
cartesiano € equivalente a perpendicularismo entre segmentos de
reta definidos por p e q.

DEMONSTRAGAO: Um segmento de reta do plano cartesiano
corresponde a um conjunto definido por dois pontos (a;, b;)
e (ag,by), onde

(a1,b1) # (az,by),
conforme imagem acima.
O comprimento deste segmento é

d((ar, b), (az, b)) = /(a1 — az)? + (by — ba)?,

conforme EXEMPLO 8.42.

Lembrando que
d((a1,b1), (az,b2)) = || (a1, a2) — (b1, b2) |,

temos que
d((a1,b1), (az, b2)) = || (r,s) [|,

onde r =a; —b; e s = ay — by.

Ou seja, (r, s) é um vetor que corresponde a segmentos de
reta dados por pontos (ai,b;) e (ag,bs), distintos entre si,
com comprimento || (r, s) || e tais que

(CLI — a9, b1 — bQ) (?” 8)

Analogamente, pontos (¢, d;) e (¢2,ds), distintos entre si,
definem segmentos de reta de comprimento || (¢,u) ||, onde
t:cl—@eu:dl—dg.
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No entanto,
I (r,8) + (¢, w) |I* =
I rys) 17 + 1 (&) 12 + 2{(r, 5), (t,w).

Se interpretarmos || (r,s) || e || (t,u) || como compri-
mentos de catetos de um triangulo retangulo, a férmula
acima é o Teorema de Pitdgoras se {(r,s), (t,u)) = 0, onde
a hipotenusa tem comprimento || (r,s) + (¢, u) ||.

Lembrando que catetos de um triangulo retangulo sao per-
pendiculares entre si, a igualdade acima ¢ o Teorema de
Pitdgoras se os vetores (r,s) e (t,u) forem ortogonais entre
si, ou seja, ((r,s), (t,u)) =0.

Naturalmente, os vetores p e ¢ do enunciado do teorema
sao (r,s) e (t,u), respectivamente.

Apesar da demonstracao acima nao ser rigorosa (uma vez que nao
enunciamos o Teorema de Pitdgoras na Parte 7), esperamos que o
leitor perceba a relagao entre ortogonalidade e perpendicularismo,
pelo menos no contexto do plano cartesiano. Mesmo assim, tudo o
que ¢ desenvolvido nesta Secao pode ser transposto para uma quali-
ficacao rigorosa dos conceitos envolvidos.

Na Seg¢ao 77 introduzimos uma definigdo para reta no plano carte-
siano. No entanto, no contexto de algebra linear, é possivel expressar
0 mesmo conceito como um teorema.

TEOREMA 8.30. Uma reta em R? usual, munido do produto

interno canonico, é o conjunto
{(z,y) € R?* | ax + by = c},

onde a, b e ¢ sdo numeros reais tais que a e b nao sao simul-
taneamente nulos.

DEMONSTRAQAO: De acordo com os axiomas de incidéncia,
uma reta pode ser definida em R? usual por dois pontos.
Isso equivale a afirmar que uma reta pode ser definida por
um ponto e uma dire¢do, no seguinte sentido.

Seja (a,b) um vetor nao nulo de R?. Quaisquer pontos
distintos (z1,y1) e (x2, y2) de uma reta perpendicular a (a, b)
sao tais que ((xe,y2) — (z1,v1), (a,b)) = 0, de acordo com
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Teorema 8.29. Neste sentido, a reta é definida, por exemplo,
pelo ponto (x1,y;) e pela direcao
(2,92) — (21,41
perpendicular a (a,b).
Logo,
<($2 —Z1,Y2 — yl)v (aa b)> = Oa ou Seja7
a(zg —x1) + b(y2 —y1) =0, que é equivalente a
azxy + bys = axy + by;.
Portanto, dado um ponto (x1,%;), todos os pontos (x,y)
tais que
(11, y) _ (‘Tbyl)
é perpendicular a
(a,b),
sdo os pontos de uma mesma reta (a qual é perpendicular
a (a,b)).
Em outras palavras, para quaisquer (x, y) desta reta, temos
que
az + by
¢ o mesmo valor real constante.

Se chamarmos tal constante de ¢, temos que

ar + by = c.

A razao para exigirmos que a e b nao podem ser simul-
taneamente nulos é o Teorema 8.26: o vetor nulo é ortogonal
a todo e qualquer vetor do espago. Logo, (0,0) nao pode
definir uma reta no plano cartesiano.

Foi provado, portanto, que plano cartesiano e R? usual munido de
produto interno canonico sao conceitos equivalentes.

Observar que os parametros a e b, na equagao
ax + by = c,

definem a direcao da reta, a qual deve ser perpendicular a (a,b). Ja o
parametro ¢ permite localizar ‘onde esta’ a reta, conforme discutido
no proximo EXEMPLO.
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EXEMPLO 8.50. Se 7 = {(z,y) € R? | ax + by = ¢} é uma
reta, entao

I: ¢ =0 implica que r passa pela origem (0,0), pois

a(0) 4+ b(0) = 0.

11: a = 0 implica que r € uma reta horizontal, ou seja, paralela
ao eizo x ou coincidente com ele; com efeito,
c
y - b7
onde b # 0, uma vez que (a,b) # (0,0), como exige Teorema
8.30; logo, neste caso, a reta estd a um distancia
c

b

do eixo x;

11: b = 0 implica que r € uma reta vertical, ou seja, paralela
ao eizo y ou coincidente com ele; com efeito,

@

r = 5

a
onde a # 0, uma vez que (a,b) # (0,0), como exige Teorema
8.30; logo, neste caso, a reta estd a um distancia

C

a

do eixo y;

v: b # 0 implica que v é uma reta ndao vertical; com efeito,
ar ¢

= _ "4 -
b b

onde —3 € chamado de coeficiente angular de r e { € conhe-

cido como coeficiente linear de r; observar que neste caso a

reta passa pelo ponto (O, %) , entre muitos outros.

No contexto acima, uma reta r dada por
r={(z,y) €R? | ax + by = c}
¢é paralela a uma reta
s={(z,y) eR?*|dx+Vy=}
se, e somente se, existe A real tal que
(a,b) = Xd', V) e c#£ \.
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Uma reta
t={(x,y) ER* | "z + 'y ="}
¢é coincidente com r se, e somente se, existe A real tal que
(a,b) = Na", V") e c=N".
Uma reta
u = {(Z‘,y) c RQ | CL/”CL’ + b///y — C///}
é perpendicular a r se, e somente se,

((CL, b), (CL/”, b///)> —0.

ﬁl Cabe ao leitor provar as trés tultimas afirmacgoes, as quais sao
teoremas.

SEGAO 91
( Transformacoes lineares

sS4 ransformacoes lineares sao funcoes, cujos dominios e codominios
sao espacos vetoriais, que preservam a estrutura algébrica de tais
espagos. Este conceito é tornado preciso a seguir.

DEFINIGAO 8.16. Sejam
V:<‘/7R7+776> € WZ(WR7@7®76>

espagos vetoriais reais. T ¢ wma transformacao linear de V em

W sss
T :V =W éuma funcao;
i T(ut+v)=T(u) &T W),
ue: 7(a-u) =a® T(u).

Ou seja, transformacoes lineares 7 : V' — W entre espacos vetori-
ais reais sao func¢oes que fazem o seguinte:

I: A cada vetor u de V, T (u) é um vetor de W.

I1: Se 4+ é a adicao de vetores em V e @ é a adicao de vetores em
W, entao os dois processos a seguir produzem o mesmo vetor
de W:
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(i) somar vetores u e v de V' e, em seguida, calcular a imagem
T (u+ v) de u + v relativamente a funcao 7 e

(ii) calcular as imagens T (u) e T (v) de u e v pela funcao T e
somar tais imagens no espaco W, ou seja, T (u) & T (v).
1I: Se - é a multiplicacao entre escalares reais « e vetores u de V,

entao os dois processos a seguir produzem o mesmo vetor de W:

(i) multiplicar a por u, obtendo «-u, e entdo calcular a imagem

T(a-u)e

(ii) calcular a imagem 7 (u) de u e multiplicar & por T (u) no
espago W, ou seja, a © T (u).

Em particular, se (V,R,+,-,0) é um espago vetorial real, entao
f:V =V, tal que f(u) = u, é uma transformagao linear do espago
vetorial nele mesmo.

EXEMPLO 8.51. Considere o espaco vetorial real
PQ = <P27R7+7 * O>

das fungoes polinomiais de grau menor ou igual a 2, conforme
EXEMPLO 8.49. Considere agora o espaco vetorial real R® usual,
ou seja,

R? = (R* R, +,-,(0,0,0)).
Podemos definir a sequinte transformacao linear T : Py, — R3:
se

p(z) =az’ + bz +c

€ um vetor de Py, entdo

T(p) = (a,b,c).

Considerando o ultimo EXEMPLO, item 1 da Defini¢ao 8.16 é tri-
vialmente um teorema. Examinemos agora as demais exigéncias para
transformacoes lineares.

Sep:R—=Req:R— R sao fungoes tais que
p(z)=az’+bx+c e gq(x)=dz*+bzx+C,

entdo (p + ¢q) : R — R é uma funcdo polinomial de grau menor ou
igual a 2 tal que

(p+q)(z) = (az® + bz + ) + (d'2® + bz + ) =

(a+a)z?>+ (b+b)z + (c+ ).
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Neste caso,
Tp+q) =(a+d,b+b,c+),
de acordo com a definicao de 7 no EXEMPLO 8.51.
No entanto, T (p) = (a,b,c) e T(q) = (a’,V, ). Logo,
Tp)+T(q) =(a+d,b+V,c+).
Isso garante que item 11 da Defini¢ao 8.16 é teorema, uma vez que
a transitividade da igualdade implica que T (p+q) = T (p) + T (q).

Finalmente, a-p : R — R é uma funcao polinomial de grau menor
ou igual a 2 tal que

(- p)(x) = a(az® + bz + ¢) = aaz® + abx + ac,
o que implica que
T (a-p) = (aa, ad, ac).
Porém, uma vez que 7 (p) = (a, b, ¢), entao

a-T(p) =a-(ab,c)=(aa,ab, ac).

Logo, item 111 da Definicao 8.16 também ¢é teorema.

Isso conclui a demonstracao de que EXEMPLO 8.51 de fato ilustra
uma transformacao linear do espaco das fungoes polinomiais de grau
menor ou igual a 2 no espaco vetorial real R? usual.

Notar também que as coordenadas de qualquer vetor (a,b,c) de
R? usual, relativamente a base candnica {(1,0,0),(0,1,0),(0,0,1)},
sao (a,b,c). Além disso, as coordenadas de qualquer vetor

p(z) =az® + bz +c

do espaco P, relativamente a base ortonormal do EXEMPLO 8.51,
sdo igualmente (a, b, c).

EXEMPLO 8.52. Seguindo EXEMPLO 8.51, seja agora
U:pP—R?
uma fungao tal que, para cada p € Py onde
p(z) = ax® + bz + ¢,
temos

U(p) = (2a — 3¢, 0, 2b).

Neste caso, U também é uma transformagdao linear.
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Considerando este novo EXEMPLO, item I da Definicao 8.16 é tri-
vialmente um teorema. Examinemos agora as demais exigéncias para
transformacoes lineares.

Sep:R—Req:R— R sao fungoes tais que
p(z) =az® + bz +c

q(x) =dz® + ¥z + ¢,
entdo (p+ ¢) : R — R é uma fungdo polinomial de grau menor ou
igual a 2 tal que

(p+g)(z) =
(az’ + bz + z) + (2> + ¥z + ) = (a + a2z’ + (b + V)z + (c + ).
Neste caso,
Tp+q) =2(a+d)—3c+),0,2(b+1b")),
de acordo com a definicdo de 7 no EXEMPLO 8.51.

No entanto, 7 (p) = (2a — 3¢,0,2b) e T(q) = (24’ — 3¢,0,20).
Logo,

T(p) + T (q) = (2a — 3¢,0,2b) + (2a' — 3c,0,2b") =
(2a — 3¢+ 2a’ — 3,0+ 0,20+ 20') =
(2(a+d’) —3(c+),0,2(b+ V")).
Isso garante que item 11 da Defini¢do 8.16 é teorema, uma vez que
a transitividade da igualdade implica que T (p + q) = T (p) + T (q).

Finalmente, a-p : R — R é uma func¢ao polinomial de grau menor
ou igual a 2 tal que

(a-p)(x) = a(axQ =l == @) = aaz® + abr + ac,
o que implica que
T (a-p) = (2aa — 3ac, 0, 2ab).

Porém, uma vez que 7T (p) = (2a — 3¢, 0, 2b), entao
a-T(p)=a-(2a—3c0,2b) = (2aa — 3ac, 0, 2ab).

Logo, item 111 da Definicao 8.16 também é teorema.

Isso conclui a demonstracao de que EXEMPLO 8.52 também ilustra
uma transformacao linear do espaco das fungoes polinomiais de grau
menor ou igual a 2 no espaco vetorial real R? usual.
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EXEMPLO 8.53. Seguindo EXEMPLOS 8.51 e 8.52, seja agora
R:P,— R
uma fungdo tal que, para cada p € Py onde
p(z) = az® + bz +c,
temos

R(p) = (2a — 3¢, 7,2b).

ﬁ' Neste caso, R ndo é uma transformacdio linear. Com
efeito, itens 11 e 11 da Definicao 8.16 nao sao teoremas. Cabe
ao leitor justificar.

EXEMPLO 8.54. ﬁl Em R? usual, seja f: R? — R3 tal que
f(z,y,2) = (ax + By + vz,0x + ey + (z,nx + Oy + K2).
Logo, f é uma transformacdo linear de R? usual em R?® usual,

para quaisquer reais o, B, v, 0, €, (, n, 0 e k. Recomendamos
que o leitor prove isso.

TEOREMA 8.31. Sejam
V=(V,R,+,-0) e W=(W,R,®,0,0)

espagos vetoriais reais. Se T : V. — W € uma transformacao
linear, entdo

7(0) = 0.

DEMONSTRAGAO: Teorema 8.4 garante que, para qualquer ve-
torv eV, B
T(0)=T(0-wv).
Mas item 111 da Definigdo 8.16 exige que a féormula
T(a-u)=a®T(u)
seja teorema. Portanto,

TO-v)=00T ).

Uma vez que T (v) é um vetor de um espaco vetorial real,
entao Teorema 8.4 garante que

00 T(v) =0.
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EXEMPLO 8.55. Teorema 8.31 garante que a funcio R do E-
XEMPLO 8.53 nao é uma transformacdao linear. Com efeito, se
O :R =R, dada por
é o vetor nulo de Py, entdo R((O) = (0,7,0) é diferente do vetor
nulo (0,0,0) de R? usual.

Se um espaco vetorial real (V| R, +,-,0) admite base finita b, qual-
quer vetor v € V' é uma combinagao linear inica dos elementos de b
(Teorema 8.12). Gragas a isso, transformagoes lineares 7 podem ser
univocamente determinadas a partir de imagens dos elementos de b
relativamente a T, como se percebe no proximo teorema.

TEOREMA 8.32. Sejam
V=(V,R,+,-0) e W= (W,R,®,0,0)
espacos vetoriais reais €
b={vi,va, 0.}
uma base de V.

SeR :b— W é uma fungdo, entao existe uma unica transfor-
macao linear
T:V->W

tal que R € restricao de T .

DEMONSTRAGAO: Se R : b — W é uma funcao, entao

R(UZ) = w;,
para todo ¢ tal que 1 < i < n, sendo cada w; pertencente a
W.
Se b = {v1, vy, ,v,} é uma base de V, entdo cada vetor

v de V' é dado por
n
vV = Z Q;;.
i=1

Se R ¢é uma restricao de 7T, entao
T(UZ) = W,
para todo 7 tal que 1 <17 < n.
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Se T é uma transformacéo linear de ¥V em W, entao

T) =T <Zl am) _ if;ﬂam) _ Zf:lamw),

gracas aos itens II e III da Definicao 8.16. Logo, basta co-
nhecer as imagens 7T (v;) para definir as imagens de uma
transformacao linear

T:V—>W.
Ou seja, apesar de poder existir uma infinidade de fungoes
T:V->W

tais que R é restricao de T, apenas uma delas é transformacao linear.

Cada fungao R : b — W define uma e apenas uma transformacao
linear de V em W.

EXEMPLO 8.56. Seja R : {(1,0),(0,1)} — R?® uma fungao tal
que

R(1,0) = R(0,1) = (5,7,9),
onde {(1,0),(0,1)} € a base candnica de R? usual e R® é o espago
de vetores de R® usual.

Logo, existe uma tunica transformagio linear T : R? — R3 tal
que R € restricao de T . Com efeito,

T(2,y) = T(2(1,0) + y(0,1)) = T(2(1,0)) + T(y(0,1)) =
2T (1,0) +y7T(0,1) = x(5,7,9) + y(5,7,9) =
(5x, 7z, 9z) + (by, Ty, 9y) = (bx + by, Tz + Ty, 9z + 9y).

@l Recomendamos que o leitor faca uma versao do EXEMPLO
acima na qual seja trocada apenas a funcao R, substituindo-a por
uma funcgao injetiva.

Os préximos teoremas mostram que transformacoes lineares tam-
bém podem ser interpretadas como vetores.

TEOREMA 8.33. Sejam
V=(V,R+,-0) e W= (W,R,®,0,0)
espacos vetoriais reais.

A fungio T -V — W dada por T (u) = 0 ¢ uma transformacio
linear de V em W.
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DEMONSTRAGAO: Item 1 da Definicdo 8.16 é imediato.
Sobre item 11, notar que
T(u+v)=0, T(u)=0 e T(v)=0.
Logo, de acordo com axioma V5 da Definicao 8.1,
Tu+v)=T(u) &T ).
Finalmente, sobre item 111, Teorema 8.6 garante que
a®T(u) =0,
uma vez que 7 (u) = 0.
Logo, lembrando que 7T (« - u) = 6, temos que
T(a-u)=a®T(u)

também é teorema.

Provamos acima que uma fungao constante (cuja constante é um
vetor nulo), com dominio em um espago de vetores, é uma transfor-
magao linear.

A seguir mostramos que escalar vezes transformagao linear é uma
transformacao linear, desde que essa operacao seja definida a partir
da estrutura algébrica do co-dominio, o qual é um espaco de vetores.

TEOREMA 8.34. Sejam

V=(WV,R+,,0) e W= (W,R,®,3,0)

espacos vetoriais reais, o um escalar e T : V. — W uma trans-
formacao linear. Entio aL1T : V. — W, dada por

alT(u)=a6 T (u),

¢ uma transformacao linear.

DEMONSTRAGAO: Item 1 da Definicao 8.16 é trivial. Para
item II, notar que

alT(u+v)=a0T(u+v)=a0 (T(u)®T ()=
aT(u)dadT @) =alT(u) &aldT(v).

Na sequéncia acima de quatro ocorréncias da igualdade,
a primeira é justificada pela definicao de multiplicacao de
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escalar por transformacao linear, assumida no enunciado do
teorema. A segunda é decorrente da hipdtese de que T é
uma transformacao linear. A terceira é consequéncia do a-
xioma V9 da Defini¢ao 8.1. Na quarta e tltima novamente
é usada a definicao de multiplicacao de escalar por transfor-
magao linear.

Sobre item 111 da Defini¢ao 8.16, temos que
aBlTB-uw)=a0T(B u) =
a® (BOT(u)=(ah) O T( ) =
(Ba) ©T(u) =6 (a0 T(u) =50 («ET(w),

onde [ é um escalar.

ﬁ‘ Cabe ao leitor justificar cada uma das seis ultimas
ocorréncias da igualdade.

No teorema a seguir é provado que a soma de transformacoes li-
neares, definidas sobre um mesmo dominio, é também uma trans-
formagao linear, desde que essa operacao seja definida a partir da
estrutura algébrica do co-dominio, o qual é um espaco de vetores.

TEOREMA 8.35. Sejam
V=(V,R+,-0) e W= (W,R,®,0,0)
espacos vetoriais reais.

Sejam
R:V-oWeT: VW

transformacoes lineares.
Logo, RBT : V — W, definida como
RBT(u)=Ru) & T (u),

€ uma transformacdao linear.

DEMONSTRAGAO: Item 1 da Definicdo 8.16 é trivial. Para
item II, temos que
REBT(u+v)=Ru+v)®T(ut+v)=
(R(u) @ R(v)) ® (T (u) ® T (v)) =
(R(u ) ( ) ® (R(v) & T(v)) =

D
S
T(u) @ RET (v).
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Com relagao a item 111 da Definicao 8.16, observar que
RBT(a-u) =
Rla-uw)@T(a-u)=a@R(u) a7 (u)=
a® (Ru)edT(w)=a0RBABT (u),
onde o ¢ um escalar.

Logo, RH T é uma transformacao linear.

ﬁl Cabe ao leitor justificar cada um dos passos da prova.

TEOREMA 8.36. Sejam
V=(V,R +,-0) e W= (W,R,®,0,0)
espacos vetoriais reais.

Seja ¥ o conjunto de todas as transformacoes lineares de V em
W. Logo, (Z,R,H,[, ) é um espago vetorial real, onde

I: B € a adicdo de transformacoes lineares usada no Teorema
8.35,

1: 1 € a multiplicagao entre escalar e transformagdo linear
usada no Teorema 8.3/ e

1u: O :V - W € a fungio dada por O(u) = 0.

DEMONSTRAGAO: ﬁl A prova de que axiomas V1~V12 da
Definicao 8.1 sao teoremas nesta interpretacao fica muito
facilitada, gracas aos teoremas 8.33, 8.34 e 8.35.

Detalhes ficam para o leitor.

ExXEmMPLO 8.57. Continuando EXEMPLO 8.54, toda transfor-
magdo linear de R® usual em R3 usual é uma fungao f : R? — R3
tal que

f(z,y,2) = (ax + By + 72,0z + ey + (z,nx + Oy + K2),
onde a, 3, v, 0, ¢, (,n, 0 ek sdo reais.

Podemos reescrever isso na forma matricial, como se seque.

a B v 55 ar + By + vz
0 ¢ (|- |yl=|drx+ey+(z ],
n 0 kK z nr + 0y + kz
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sendo que a operacao acima € a multiplicacdo usual entre ma-
trizes reais (ver Definigao 8.17 imediatamente abaizo, para recor-
dar). Cada matriz

a By
0 ¢ C
n 0 k

corresponde a uma transformacao linear. Se todas as entradas
forem nulas, temos a transformagao linear () do ultimo teorema.
Logo, o espago vetorial real de todas as transformacoes lineares
de R? usual em R? usual tem nove dimensaoes.

Se o leitor nao recorda o conceito de multiplicacao matricial usual,
aqui vai.

DEFINIGAO 8.17. Sejam

a:ly,xc, >R

7 /
b:l,xc, >R
matrizes reais, de acordo com a Definicao 8.2.

Ou seja, o numero de colunas da matriz a coincide com o
numero de linhas da matriz b. O produto de a por b é uma
matriz

cilmxd,—R
tal que cada entrada c;; da matriz c € dada por

n
Cij = > QikDij-
k=1

EXEMPLO 8.58. Ver multiplicacao matricial do EXEMPLO 8.57.

O espaco vetorial real das transformacoes lineares de R? usual em
R? usual do EXEMPLO 8.57 é simplesmente o espaco Ms,3 usual.

E‘ A representacao matricial de transformagoes lineares entre es-
pacos vetoriais reais de dimensao finita depende das bases ordenadas
(Definicao 8.8) utilizadas para os espagos vetoriais reais envolvidos.
No EXEMPLO 8.57 utilizamos base canodnica para R? usual. Nao
avanc¢amos sobre este importante tépico aqui.
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SECAO 92
( Imagem de uma transformacao linear

g 7
“‘
<

1E&:rovamos aqui que transformacoes lineares definem subespacos de
seus contradominios.

DEFINIGAO 8.18. Sejam
V=(V,R+,-,0)

W= (W,R,&,06,0)
espagos vetoriais reais. Se T : V. — W € uma transformagao
linear, dizemos que

Im(T)={weW|IwweVAT() =w)}

¢ a imagem de T .

Ou seja, a imagem de uma transformagao linear 7 é o conjunto
dos vetores w tais que w = T (v), para algum v do dominio de T .

EXEMPLO 8.59. Considere o espaco vetorial real
7D2 — <P27R)+7 ) O>

das funcoes polinomiais de grau menor ou igual a 2, conforme
EXEMPLO 8.49. Seja D : Py — Py a funcao dada por

Dp(x)) = p(),

onde p(x) € um vetor de Ps.

Observar que D € uma transformacao linear. Com efeito, item
I da Definicio 8.16 € imediato; item 11 decorre do fato de que
derivada da soma € a soma de derivadas (Teorema 5.21); item
I é consequéncia do fato de que derivada de constante vezes
fungao € constante vezes derivada da fungio (Teorema 5.20).

Se (a,b,c) sao as coordenadas de p(x) relativamente d base
ordenada candnica de P, entio D(p(x)) é um vetor com coor-
denadas (0,2a,b). Com efeito,

d
d—(ax2+bx+c)20+2ax+b.
@
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Neste caso, Jm(D) € o conjunto das fungoes polinomiais de
grau menor ou iqual a 1.

No EXEMPLO acima a imagem da transformacao linear D define
um subespaco do contradominio de D. Isso nao ¢é coincidéncia, como
se percebe no préximo teorema.

TEOREMA 8.37. Sejam
V=(V,R,+,-,0)

W = (W,R,®,,0)
espacos vetoriais reais. Se
T:V->W

€ uma transformagdo linear, entao

(Om(T),R, &, 0',0)

é subespaco de W, onde @' e @' sdo restricoes de & e ®, respec-
tivamente.

DEMONSTRAGAO: Item 1 da Definigdo 8.3 é imediato.
[tem 11 é consequéncia do Teorema 8.31.

Sobre item 111, se w; e wy pertencem a Jm(7), entdo e-
xistem vy e vy tais que T (vy) = wy e T (v2) = wy. Mas

T(Ul + UQ) = T(U1> ©® T(UQ) = w; D wo.
Portanto, w; @ wq pertence a Jm(T).

Para finalizar, se w € Jm(7), entdo existe v € V tal que
T (v) = w. Mas

T v)=a0TW) =adw,

se o é um escalar. Logo, o ® w pertence a Jm(T).

— SECAO 93
Nicleo de uma transformacao linear

i rovamos aqui que transformacoes lineares definem subespacos de
seus dominios.
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DEFINIGAO 8.19. Sejam
V=(V,R,+,,0) e W= (W,R,®,0,0)
espagos vetoriais reais. Se
T:V—=>W

¢ uma transformacao linear, dizemos que

NT)={veV|Tw) =0}

é o nucleo de T.

Ou seja, o nucleo de uma transformacao linear 7 é o conjunto de
todos os vetores v do dominio de 7T tais que 7 (v) é o vetor nulo do
co-dominio de T .

EXEMPLO 8.60. Considere o espaco vetorial real
732 - <P27R)+a ) O>
das funcoes polinomiais de grau menor ou igual a 2, conforme
EXEMPLO 8.49. Seja D : Py — Py a funcao dada por
d
D = —
(p(2)) = ——p(2),

onde p(x) € um vetor de Py. Como visto no EXEMPLO 8.59, D
¢ uma transformacao linear.

O nicleo de D € o conjunto das fungoes reais constantes. Com
efeito, se p(x) = ¢, entdo
d
—p(x) =0
5P(@) =0,
ou seja, a derivada de qualquer funcdo constante € a fungdo iden-

ticamente nula ().

No EXEMPLO acima o nucleo da transformacao linear D define um
subespaco do dominio de D. Isso nao é coincidéncia:

TEOREMA 8.38. Sejam
V=(V,R,+,-,0)

W= (W,R,&, 6,0)

espagos vetoriais reais.
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Se T : V. — W ¢é uma transformagdo linear, entao

(NT),R, &', &,0)

é subespago de W, onde @' e @' sdo restricoes de @ e ©, respec-
tivamente.

DEMONSTRAGAO: Item 1 da Definigdo 8.3 é imediato.
[tem 11 é consequéncia do Teorema 8.31.
Sobre item 111, se v; e vy pertencem a MN(7), entao T (v;) =
T (v9) = 0. Mas
T (v +v2) =T (1) ©T(v2) =000 =0.
Logo, v1 + v pertence ao nucleo de T.

Finalmente, com relacao ao item 1v da Definigao 8.3, se
v € N(T), entdao T (v) =0. Mas

T v)=a0T(w)=a®0=0.

Logo, a - v pertence ao nucleo de 7.

Importante notar os seguintes fatos sobre os EXEMPLOS 8.59 e
8.60.

e O espacgo vetorial real das fungoes polinomiais de grau menor
ou igual a 2 tem trés dimensoes;

e O subespago Jm(D) tem duas dimensoes;
e O subespago M(D) tem uma dimensao;
e 241 =3, onde 2 = dim(Im(D)), 1 = dim(N(D)) e 3 = dim(P»).

Novamente isso nao é mera coincidéncia, como se percebe no pro-
ximo resultado.

TEOREMA 8.39 (NUCLEO E IMAGEM). Sejam
V=(V,R,+,-,0)

W= (W,R,®,0,0)
espacos vetoriais reais, onde V tem n dimensoes. Se T : V — W
€ uma transformagao linear, entao

dim(9(T)) + dim(Im(T)) = n.
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DEMONSTRAGAO: ﬁl Basta provar que, se
{01,112, o 7vp}
é uma base para M(7T) e
{T<u1)7 T(u2)a to 7T(ulJ)}
é uma base para Jm(7), entdo
{'Ul,/UQ, o 7Up7u17u27 T au’q}
é uma base para V.

Uma vez que dim(V) = n, segue que p+ g = n. Deixamos
a prova para o leitor.

[1] O teorema acima é o célebre Teorema do Nicleo e Imagem.

Uma generalizagao consideravel deste resultado, pelo menos para
certos operadores lineares, é o Teorema de Atiyah—Singer [45], o qual
se refere ao indice analitico de operadores diferenciais elipticos. Neste
contexto, indices analiticos estdao intimamente relacionados com a
dimensao de um espaco vetorial real cujos vetores sao funcgoes que
sao solugoes de uma dada equacao diferencial.

Levando em conta as discussoes nesta Secao e na anterior, se uma
transformacao linear 7 é injetiva, entao seu niicleo é o subespago
trivial do dominio de T formado apenas pelo vetor nulo do dominio.
Se T for sobrejetiva, sua imagem ¢é o subespago trivial do co-dominio
de 7 formado por todos os vetores deste co-dominio.

SEGAO 94
( Operadores lineares

N peradores lineares sao transformacoes lineares nas quais dominio
e contradominio sdo o mesmo espago de vetores.

DEFINIGAO 8.20. Seja V = (V,R,+,-,0) um espago vetorial
real. Uma transformacdo linear

T:V =V

¢ um operador linear.
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EXEMPLO 8.61. A transformacdo linear D dos EXEMPLOS 8.59
e 8.60 € um operador linear.

EXEMPLO 8.62. Seja § = (C*,R,+,-, ) o espago vetorial
real onde

e C™ ¢ o conjunto de todas as funcoes reais diferencidveis um
numero arbitrario de vezes;

o +:C® xXC>® — C™® € uma fungao dada por
+(f,9)(@) = f(z) + 9(z);
o R XC®—C™® é uma fungao dada por
(@, f)(x) = af ();

e O ¢ a fungao real O : R — R tal que O(z) = 0 para todo
real x.

ﬁ' Logo, qualquer operador diferencial (ver Se¢ao 53) definido
sobre C*> ¢ um operador linear sobre §.

Para efeitos praticos, isso significa que teoremas de algebra linear
sobre operadores lineares e espacos vetoriais reais sobre os quais eles
atuam encontram repercussao no estudo de equacoes diferenciais.

SECAO 95
( Autovalores e autovetores

e V = (V,R,+,-,0) é um espago vetorial real e
T:V->V

¢ um operador linear sobre V', um subespago

W= (W,R,®,0,0)

de V é invariante sob a acao de T se, e somente se, para qualquer
vetor w pertencente a W, temos 7T (w) pertencente a W.

Isso equivale a afirmar que a imagem da restricao de 7 a W esta
contida em W.
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Naturalmente, todo espaco vetorial real é invariante sob a agao de
qualquer operador linear definido sobre ele. Por conta disso, estamos
interessado apenas nos casos nao triviais. A proxima defini¢ao sugere
a investigacao de subespacos de uma dimensao que sejam invariantes
sob a acao de operadores lineares.

DEFINIGAO 8.21. Sejam
V=(V,R,+,-,0)
um espaco vetorial real e T : V. — V um operador linear sobre
V. Um vetor nao nulo de V' é um autovetor de T sss existe A
real tal que
T(v) =X w.

Referimo-nos ao real X como autovalor do operador linear T .

A equagdo acima é conhecida como equagao de autovalores.

Mais adiante vemos alguns exemplos de operadores lineares que
admitem autovetores (e, consequentemente, autovalores), bem como
exemplos que nao admitem. No entanto, antes disso, é util com-
preender o proximo teorema.

TEOREMA 8.40. Se um operador linear T admite autovetor v,
entao qualquer combinacao linear nao nula de v também € um
autovetor de T .

DEMONSTRACAO: Por hipotese, sabemos que existe autovalor
A de T tal que
T () =A-v,
onde - é a multiplicagdo de escalar por vetor no espago ve-
torial real em questao.

Seja w uma combinacao linear nao nula de v, ou seja,
w = «-v, onde a # 0 (lembrar que o vetor nulo jamais é
autovetor de operador linear algum). Logo,

Tw)=T(a-v)=a-TW)=a-(A-v)=
(@A) v=Aa) - v=A-(a-v).
Em outras palavras,
T(a-v) =X (a-v),

o que faz de a-v um autovetor de 7 com o mesmo autovalor.
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Ou seja, se um operador linear admite um autovalor A, existe uma
infinidade de autovetores correspondentes a .

EXEMPLO 8.63. Se T é um operador linear identidade (i.e.,
para qualquer vetor v temos T (v) = v), em um espago vetorial
real, entdo T admite um unico autovalor A\, a saber, X = 1. Isso
significa que qualquer vetor ndo nulo deste espago vetorial real é
um autovetor de T .

EXEMPLO 8.64. Seja T o operador linear em R? usual, na base
canénica {(1,0),(0,1)}, dado por

T (z,y) = (3x + 2y, 2z).

Se T admite autovalor A\, entao T (x,y) = X - (z,y), onde - é
a multiplicacao de escalar por vetor em R? usual.

Logo, devemos ter
(3x + 2y, 2x) = (A\z, \y)
que, por sua vez, € equivalente a

3r+2y =Xz e 2x = \y.

Logo,
2z (A —3)

y=~ e y=——

As duas equagoes acima garantem que v # 0 < y # 0. Logo,
para que ambas sejam teoremas, basta que

A—3 2

2 N
o que implica que X\ pode ser —1 ou 4, de acordo com Se¢cdo /3.
Os autovetores correspondentes ao autovalor —1 sdo

(x, —2z),

onde x # 0. Os autovetores correspondentes ao autovalor 4 sdo

(2y,9),
onde y # 0.
Observar que esses autovetores sao linearmente independentes.
Além disso, qualquer um deles (e.g., (1,—2) e (—=2,—1)) € base
de um subespago de uma dimensdo, invariante sob a agdo de T .
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Para que o leitor desenvolva uma visao intuitiva sobre o que esta
acontecendo no ultimo EXEMPLO, consideremos o seguinte.

Aprendemos acima que qualquer vetor (2¢,c) é autovetor do ope-
rador linear
T(x,y) = (3x + 2y, 2x),
desde que ¢ seja diferente de 0.

Em particular, (2,1) é um autovetor com autovalor 4. Neste caso,
T(2,1) = (3(2) +2(1),2(2)) = (6 +2,4) = (8,4) = 4-(2,1).

Ou seja, T(2,1) é uma combinagio linear \(2,1) de (2,1), onde
A é o autovalor 4. Além disso, (2c,c) define um subespago de R?
invariante sob a acao de 7.

O mesmo fendmeno nao ocorre com vetores que nao sao autovetores
de T (x,y). Por exemplo, T(3,1) = (11,6), sendo que (11,6) nao é
combinacao linear de (3,1).

Comentarios andlogos valem para os autovetores (¢, —2¢) com au-
tovalor —1, onde ¢ # 0.

EXEMPLO 8.65. /@l Seja R o operador linear em R? usual,
na base canonica, dado por

Logo, R nao admite qualquer autovalor.

EXEMPLO 8.66. Seja § = (C*°,R,+,-,) o espago vetorial
real onde

e C™ ¢ o conjunto de todas as funcoes reais diferencidveis um
numero arbitrario de vezes;

o +:C® X C>® — C™® € a adicao usual entre fungoes reais;

o - RXC*® — C*® € a multiplicacao usual entre real e funcao
real;

e O ¢ a fungio real O : R — R tal que O(z) = 0 para todo

real x.

z@' Logo, o operador linear D sobre C*° dado por

D(f(@)) = - f()
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admite infinitos autovalores.

Com efeito, de acordo com Secdo 63, se

d
—f@) = M),

entio f(x) = f(0)exp**. Ou seja, cada real X é um autovalor
do operador linear de derivacao. Os autovetores correspondentes
sao as fungoes f(x). Notar que autovalores diferentes correspon-
dem a autovetores linearmente independentes.

No caso do problema do decaimento radioativo de Polonium-210,
discutido na Secao 63, o modelo proposto

dm
dt

é uma equacao de autovalores.

=km

Resolver a equacao diferencial acima é equivalente a determinar os
autovetores do operador de derivagao de primeira ordem

d
dt
correspondentes ao autovalor k. Para cada valor m(0) real positivo,

m(t) = m(0) exp(kt) é autovetor correspondente a k. Neste mesmo
caso o proprio autovetor é uma funcao dependente do autovalor.

Cada elemento, substancia ou isétopo conta com sua propria meia-
vida, a qual define univocamente o valor de k. Cada meia-vida pode
ser matematicamente mapeada por um autovalor £ do operador de
derivacao sobre um espaco vetorial real de fungoes reais.

EXEMPLO 8.67. ﬁl Seja () o operador nulo sobre um espago
vetorial real qualquer, ou seja,

O) =0
para todo vetor v, onde 0 é o vetor nulo do espago dado.

Neste caso, () admite apenas o real 0 como autovalor. Com
efeito,
Ov) =0-v

para qualquer vetor v, por conta do Teorema 8.4.

Logo, qualquer vetor nao nulo v do espago € um autovetor cor-
respondente ao autovalor 0.
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Nos EXEMPLOS 8.66 e 8.67 mostramos que o zero real pode ser
autovalor de um operador linear, apesar de nenhum autovetor ser
nulo. Também mostramos que nem todo operador linear admite
autovalor, como ocorre no EXEMPLO 8.65. Mas um fendmeno comum
aos ultimos exemplos é o fato de que autovalores diferentes corres-
pondem a autovetores linearmente independentes. Isso nao é mera
coincidéncia, porém um teorema.

TEOREMA 8.41. Autovalores diferentes do mesmo operador li-
near correspondem a autovetores linearmente independentes.

DEMONSTRAGAO: A prova é feita por indugdo, para um con-
junto qualquer de n autovetores correspondentes a n auto-
valores distintos dois a dois.

O caso em que n = 1 é imediato, por conta do Teorema
8.11 e do fato de que nenhum autovetor é nulo.

ﬁ‘ A prova de que o caso para n — 1 autovetores implica
no caso para n autovetores fica a cargo do leitor. Sugestao:
usar Teorema 8.10.

Detalhes sobre o papel de autovalores de operadores lineares po-
dem ser encontrados em [35]. Por exemplo, existem métodos muito
mais econdmicos (do ponto de vista computacional) para determinar
autovalores de operadores lineares sobre espagos vetoriais reais de
dimensao finita do que aquele que foi empregado no EXEMPLO 8.64.

SECAO 96
( Outros espacos vetoriais

avté este momento investigamos brevemente espagos vetoriais reais.
Mas existem outros espacos vetoriais. Para que possamos qualificar
isso, precisamos saber o que é um corpo, o qual é definido através de
um predicado conjuntista, nos moldes da Secao 71.

DEFINIGAO 8.22. Uma quintupla ordenada
R=(K,+,-0,1)

€ um corpo se as sequintes formulas sdo teoremas.
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K1: K # & (seus elementos diferentes de 0 e 1 sdo denotados
por letras gregas minisculas);

K2: +: K x K — K é uma fungio tal que +(a, ) = a + f3;

K3: - : K x K - K ¢é uma fungio tal que -(o,5) = - f3
(podemos também escrever simplesmente a5 no lugar de o -

B);
K4: 0e KA1 e K;
Kb:a+p8=0+a
K6: af = pa;
K7: (a+8)+y=a+(8+7);
K8: (af)y = a(8);
K9: a+0=q;
K10: -1 =a;

K11: VgadgfB(a + 5 = 0); S é o simétrico aditivo de «,
denotado por —a;

K12: Vga(a # 0 = Jxf(ap = 1); B é o simétrico multi-

plicativo de «, denotado por a=*;

K13: a(f+7v) =af + ay.

Usamos quantificadores relativizados (Defini¢do 7.6) em K11 e
K12. Por exemplo, K11 se 1é ‘para todo « pertencente a K existe
pertencente a K tal que a + 8 é o neutro aditivo 0 (ver K9).

EXEMPLO 8.68. ﬁl De acordo com Secao 31,
<Q7 +7 K 07 1>

¢ um corpo, onde + € a adi¢ao entre racionais, - é a multiplicagdo
entre racionais, 0 é o neutro aditivo entre os racionais e 1 é o
neutro multiplicativo entre os racionais.

EXEMPLO 8.69. ﬁl De acordo com Secao 39,
<R7 +7 ) Oa ]->

é um corpo, onde + € a adicao entre reais, - é a multiplicacao
entre reais, (0 ¢ o neutro aditivo entre os reais e 1 € o neutro
multiplicativo.
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ExeEmMPLO 8.70. ﬁl De acordo com Secao /0,
<(C> =+, 07 1>

€ um corpo, onde + € a adicao entre complexos, - € a multipli-
cacao entre complexos, 0 é o neutro aditivo entre os complezros e
1 € o neutro multiplicativo entre os complexos.

EXEMPLO 8.71. De acordo com Sec¢do 29,
<W, +7 ) 07 ]'>

nao € um corpo, sendo + a adicao entre naturais, - a multipli-
cagdo entre naturais, 0 o neutro aditivo entre os naturais e 1 o
neutro multiplicativo entre os naturais.

Com efeito, axiomas K11 e K12 ndo sao teoremas nesta in-
terpretacao.

EXEMPLO 8.72. De acordo com Segdo 30,
<Zu +7 ) 07 ]->

nao € um corpo, sendo + a adicao entre inteiros, - a multiplicacdo
entre inteiros, 0 o neutro aditivo entre os inteiros e 1 o neutro
multiplicativo entre os inteiros.

Com efeito, azioma K12 ndo € teorema nesta interpretacao.

ExEMPLO 8.73. De acordo com Secao 39,
<]I7 +, -, Oa 1>

nao é um corpo, se I é o conjunto dos reais irracionais, + €
a adigdo entre reais irracionais, - € a multiplicacdo entre reais
irracionais, 0 € o neutro aditivo entre os reais e 1 € o neutro
multiplicativo entre os reais.

Com efeito, axiomas K2, K3 e K4 nao sdo teoremas nesta
interpretacao. Por exemplo, além de 0 e 1 ndo serem irracionais,
o irracional \/2 somado do irracional —/2 nao é um irracional.

Vimos acima trés EXEMPLOS de interpretagoes de corpo que sao
modelos de corpo e trés que nao sao. As trés primeiras sao os exem-
plos mais comuns de corpos, no estudo de espacos vetoriais. A ideia
¢ admitir escalares que nao sejam necessariamente ntimeros reais,
como vemos adiante. Mas, antes, é interessante mais um EXEMPLO.
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ExXEMPLO 8.74. Seja
F4 - <{07 17 2a 3}7 +a ) Oa ]->

uma interpretacao de corpo onde as operacoes + e - sao definidas
pelas tabelas abaixo.

| +EMF, | | -EMF; |
+10[1|2]3 1011123
0(011(2|3 0(0[{0|0]0
1[1(013]2 110(1(2(3
2121301 2101231
3312|110 31013112

1@3 Para fins de ilustracao, 3+2=1¢e¢2-2=3.

Neste caso Fy é um corpo finito, no sentido de que o conjunto
{0,1,2,3} conta com apenas quatro elementos.

z@' Cabe ao leitor verificar que os postulados da Defini¢ao
8.22 sao teoremas.

Por exemplo, levando em conta que ambas as tabelas dadas sao
simétricas em relacdo a diagonal principal, comutatividade da
adicao K5 e comutatividade da multiplicacao K6 sao imediatos.

Observar que, no EXEMPLO acima,

e ( ¢é neutro aditivo e 1 é neutro multiplicativo;

e 0 simétrico aditivo de n é o préprio n, se n € {0,1,2,3};
e (0 nao admite simétrico multiplicativo;

e 0 simétrico multiplicativo de 1 é o proprio 1;

e 0 simétrico multiplicativo de 2 é 3;

e 0 simétrico multiplicativo de 3 é 2.

@ ﬁ‘ Muitos outros exemplos de corpos finitos podem ser apre-
sentados, os quais sao também conhecidos como corpos de Galois. A
ordem de um corpo finito (K, +,-,0,1) é o niimero de elementos de
K. Se o corpo tem ordem n, entdo n é um primo ou uma poténcia
de um primo (Defini¢ao 4.2). No EXEMPLO acima a ordem de Fy é
22,

Finalmente podemos definir espagos vetoriais quaisquer.
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DEFINIGAO 8.23. Um conjunto
V=(V,%,0,0)

¢ um espago vetorial se as sequintes formulas sao teoremas (o0s
comentdrios entre parénteses nao fazem parte dos postulados).

V1: V # @ (os elementos de V' sao chamados de vetores);

V1': R éum corpo (K, +,-,0,1) (os elementos de K sao chama-
dos de escalares);

V2: @:V xV =V éuma fungdo, onde abreviamos &(u,v)
como u @ v, sendo u e v elementos de V' (chamamos & de
adigao de vetores);

V3: ©: K xV =V éuma fungio, onde abreviamos ®(«, u)
como o ®u ou, simplesmente, au, sendo o um elemento de
K e u um elemento de V (chamamos © de multiplicacao
de escalar por vetor);

V4: 0 €V (0 € o vetor nulo);

V5: Se u pertence a 'V, entio u® 0 = u;

V6: Seu e v sao elementos de V', entdo u@ v =v @ u;

V7: Seu, v ew pertencem a'V, entdo (udv)Bw = ud(vow);

V8: Seu pertence a' V', entdo existe v pertencente a 'V tal que
u®v =0 (v € chamado de simétrico aditivo de u e denotado

por —u);
V9: Se a pertence a K e u e v pertencem a V', entdao
a®(udv)=(aGu)®(adv);
V10: Se a e B pertencem a K e u pertence a V', entao

(a+B)Qu=(a@u)® (8O u);

V11: Se a e 8 sao escalares e u é um vetor, entdo
(@-B)Ou=a6(Bou)

V12: Se 1 é o neutro multiplicativo de 8 e u pertence a V,
entao 1 © u = u.

Novamente adotamos a seguinte convencao: todos os vetores di-
ferentes do vetor nulo sao denotados por letras latinas minusculas,
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enquanto os escalares sao sempre denotados por letras gregas mintis-
culas, desde que nao sejam 0 ou 1.

Se um espago vetorial admite como tnico vetor o nulo, ele é dito
um espago vetorial trivial.

Se o corpo R é o corpo R dos reais (ver EXEMPLO 8.69), entao o
espaco vetorial é chamado de espaco vetorial real, conforme Secao 80.
Se o corpo K é o corpo Q dos reais racionais (ver EXEMPLO 8.68),
entao o espacgo vetorial é chamado de espago vetorial racional. Se o
corpo R é o corpo C dos complexos (ver EXEMPLO 8.70), entao o
espaco vetorial é chamado de espaco vetorial complezo.

ExXEMPLO 8.75. De acordo com EXEMPLO 8.33, o espago ve-
torial real
<R7 R? =+, O>
tem uma dimensdo. Isso porque qualquer base dele admite um
inico elemento. A base candnica é {1}.

Porém, o espaco vetorial racional
V= <R7Qa +7 ©y 0>

nao admite base com apenas um vetor. Com efeito, supor que
eziste base
b={r}

para V. Neste caso, v € real racional ou real irracional. Afinal, 0s
vetores de V' sao numeros reais quaisquer, enquanto os escalares
SG0 apenas reais ractonais.

Se r for real racional, nenhum vetor s de R que seja real ir-
racional pode ser obtido por combinagdo linear dos elementos
de {r}. Com efeito, qualquer escalar o do corpo Q é um real
racional e, por isso, a-r € real racional e, portanto, diferente de
s.

Por outro lado, se r for real irracional, nenhum vetor s de
R que seja real racional pode ser obtido por combinacao linear
dos elementos de {r}. Afinal, qualquer escalar o do corpo Q é
um real racional e, por isso, o - r € real irracional e, portanto,
diferente de s.

No EXEMPLO acima foi provado que a reta dos reais sobre o corpo
dos racionais nao tem uma dimensao, apesar da mesma reta dos
reais — mas desta vez sobre o corpo dos reais — ter uma dimensao.

PAGINA 412



MATEMATICA PANDEMICA PARTE8 SECAO 97

E possivel provar que o espago vetorial racional acima nao admite
qualquer base finita e, portanto, nao tem dimensao finita.

Para lidarmos com o conceito de dimensdo infinita em um espago
vetorial real, ou qualquer outro, precisamos estender o conceito de
base, como fazemos adiante, na Secao 97.

Um conceito de importancia estratégica é o de espaco de Hilbert.
Um espaco de Hilbert é um espago vetorial complexo munido de
produto interno (devidamente definido de maneira a generalizar a
Defini¢gao 8.11) de modo que a norma induzida por este produto
interno defina um espaco métrico completo. Por sua vez, um espaco
métrico (Definicao 8.10) é completo se toda sequéncia de Cauchy
definida nele (relativamente & métrica) for convergente.

Espacos de Hilbert sao a principal base matemética para o estudo
de mecanica quantica nao relativistica. Fisica quantica, por sua
vez, ¢ responsavel por grandes fatias do PIB de paises desenvolvi-
dos, servindo de suporte tedrico de tecnologias para a concepgao e
fabricagdo de computadores, smartphones, televisores, instrumentos
de telecomunicacgoes, lasers, aparelhos de GPS, relégios atomicos,
magquinas de ressonancia magnética, entre muitos outros.

Portanto, espagos vetoriais impregnam o cotidiano do leitor,
independentemente de seu interesse sobre o assunto.

@l Um exercicio interessante ¢ investigar a possibilidade de definir
espagos vetoriais sobre corpos finitos, como Fy, do EXEMPLO 8.74.

SECAO 97
( Espacos vetoriais de dimensao infinita

omo sabemos, nem todo espacgo vetorial tem base finita.

DEFINIGAO 8.24. Seja V = (V, R, ®,®,0) um espago vetorial
sobre um corpo & = (K,+,-,0,1). Um vetor v de V é combi-
nacao linear de vetores vy, vo, ---, v, $Ss existem escalares aq,
s, + -+, a, pertencentes a K tais que

n
V= Z ;U;.
1=1
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Em outras palavras, a definicao acima generaliza Defini¢ao 8.4, no
sentido de permitir escalares de um corpo qualquer.

DEFINIGAO 8.25. Seja V = (V, R, ®,®,0) um espago vetorial
sobre um corpo K. Um conjunto finito
xr = {,U171027H' JUTL}
de vetores de V' é linearmente independente sss nenhum dos ve-

tores de x é combinacao linear dos demais elementos de x. Caso
contrario, dizemos que x ¢ linearmente dependente.

DEFINIGAO 8.26. Seja V = (V, R, ®,®,0) um espago vetorial
sobre um corpo K. Um conjunto x de vetores de V ¢ linearmente
independente sss qualquer subconjunto finito de x € linearmente
independente, de acordo com Definicio 8.25. Caso contrdrio,
dizemos que x € linearmente dependente.

EXEMPLO 8.76. Seja V = (V,R, &, ®,)), onde

IV ={yeC™|y é polinomial com dominio R},

I: @ € restrigio de + (no espago C*> usual) a V x V,

II: ® € restrigio de - (no espago C*™ usual) a R X V', e
v: O € a fungdo real identicamente nula, com dominio R.

Este ¢ um espago vetorial real similar daquele do EXEMPLO
8.39. A diferenca reside apenas nos dominios das fungoes poli-
nomiais pertencentes a C*. Seja

b={p; €V |p;: R = R é uma fung¢io dada por
pi(x) = 2', ondei € w}.

Em outras palavras, b é o conjunto das fung¢oes monomiais com
coeficientes iquais a 1 e grau i, onde i € um natural.

Escrevendo de outra maneira, b = {1,z, 2% 23,z ---}, onde
cada ©* € uma abreviacdo para uma funcdo monomial com coe-
ficiente 1. Uma vez que w € infinito e b é equipotente a w (ver
Secio 33), entao b € infinito.

Teorema Fundamental da Algebra (Secao 43) garante que qual-
quer subconjunto finito de b € linearmente independente. Logo,
b € linearmente independente, conforme Definicao 8.26.
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O ultimo EXEMPLO ilustra o grande alcance da Definicao 8.26,
no sentido de conceituar independéncia linear (e, consequentemente,
dependéncia linear) para conjuntos finitos e conjuntos infinitos de
vetores de um dado espago vetorial sobre um corpo qualquer.

DEFINIGAO 8.27. Sejam V = (V, &, ®,®,0) um espago veto-
rial, sobre um corpo K, e s C V um conjunto nao vazio. Seja
ainda

c={z € p(s) | € linearmente independente}.

Se ¢ for nao vazio, dizemos que um elemento mazimal de ¢ (ver
Defini¢io 4.20) é um subconjunto de s maximal linearmente in-
dependente.

Em outras palavras, dado um espaco de vetores V', um subconjunto
s de V é maximal linearmente independente se, e somente se, para
qualquer vetor v de V' diferente de todos os demais pertencentes a s
temos que s U {v} é linearmente dependente.

No caso particular de espagos vetoriais reais V de dimensao finita,
uma base b de V é um conjunto L.I. que gera o espago de vetores de
V (Definigao 8.7). Nem todo conjunto L.I. gera um espago, como ja
vimos (EXEMPLO 8.26). Mas toda base b de V é maximal linear-
mente independente. Qualquer outro vetor adicionado a b implica
que o novo conjunto ¢ L.D. Essa simples ideia permite generalizar o
conceito de base de um espago vetorial qualquer, seja real ou nao.

DEFINIGAO 8.28. Seja V = (V, R, ®,®,0) um espago vetorial
sobre um corpo R. Dizemos que b é uma base de V sss b é um
subconjunto de V' maximal linearmente independente.

ExXEMPLO 8.77. O conjunto b do EXEMPLO 8.76 € uma base
do espaco vetorial do mesmo EXEMPLO. Afinal, qualquer outra
funcao polinomial acrescentada a

b={1,z,2* 2° 2% -}
produz um conjunto linearmente dependente.
@l Outra possivel base para aquele espaco é o conjunto

d={p; €V |p; : R = R é uma fung¢io dada por

pi(z) = —382", ondei € w}.
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Uma infinidade de outras bases podem ser exibidas para o espago
vetorial real das fungoes polinomiais com dominio R. Porém, é teo-
rema que todas as possiveis bases sao equipotentes entre si.

z@] O leitor deve observar que Defini¢cao 8.7 é um caso particular
da Definicao 8.28. E um exercicio edificante provar isso.

SEQAO 98
Resumo da dpera

o contrario do que uns e outros dizem por ai, vetores nao sao
segmentos de reta orientados ou ‘entes’ com ‘modulo’; ‘direcao’ e
‘sentido’, o que quer que signique essa nomenclatura maluca. Um
vetor ¢ tao somente um elemento de um espago de vetores. Para
saber o que é um espaco de vetores é necessario qualificar o con-
ceito de espago vetorial (Definicao 8.23). Fizemos isso usando um
predicado conjuntista (Defini¢ao 7.1) formulado na linguagem de ZF.

Neste contexto, vetores podem ser pares ordenados de nimeros
reais, os quais sao consistentes com conceitos de geometria euclidi-
ana, conforme Sec¢ao 90. Mas podem ser também n-uplas ordenadas
de reais ou de complexos, fungoes reais ou fungdes complexas, bem
como matrizes e até mesmo transformacoes lineares entre espagos ve-
toriais. Se nao for definida uma norma em um espaco vetorial, nao
pode haver o tal do ‘médulo’ propagado por certos professores. Uma
vez que cada possivel produto interno induz uma norma diferente, é
preciso muito cuidado para qualificar sobre o que se esta falando.

Um dos possiveis modelos de espago vetorial real é o plano carte-
siano, desde que munido de produto interno canénico. Uma vez que
o plano cartesiano ¢ modelo de plano euclidiano, esse fato justifica
interpretar tais casos muito particulares de vetores como segmentos
orientados de reta. Mas, se um vetor é uma matriz real, tal matriz
nao é um segmento de reta. Se um vetor é a funcdo exponencial,
esta também nao é um segmento de reta.
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SEgAO 99
Notas histoéricas

<lluito dificil pontuar em qual momento surgiram as primeiras
ideias que conduziram & atual visao sobre espagos vetoriais. A partir
da geometria analitica de René Descartes e Pierre de Fermat, Giuso
Bellavitis concebeu a nocao de segmentos orientados. Em meados
do século 19 Arthur Cayley introduziu a notagao matricial. Mas foi
Hermann Grassmann o primeiro a perceber a necessidade de tratar
de estruturas algébricas com objetos abstratos e nao necessariamente
matrizes ou pares ordenados de reais. Os conceitos de independén-
cia linear, dimensao e produto interno surgiram com Grassmann.
Giuseppe Peano delineou a atual definicdo de espago vetorial em
1888.

DA ESQUERDA PARA A DIREITA, XINING ZHANG, PETER DENTON E
STEPHEN PARKE, OS PRINCIPAIS DESCOBRIDORES DA [AA

Fonte: Brookhaven National Laboratory.

Apesar do estudo de espacos vetoriais ser antigo e bem estabele-
cido, em 2021 foi publicado um resultado bésico até entao desco-
nhecido sobre o tema. Trata-se da Identidade entre Autovetores e
Autovalores (IAA), a qual é dada por uma férmula com grande im-
pacto sobre aplicagoes. Autovalores de um operador linear sao faceis
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de calcular, enquanto autovetores consomem um esfor¢co computa-
cional muito maior. No entanto, gracas a IAA, esse quadro mudou
radicalmente, pelo menos para operadores lineares hermitianos que
atuam sobre espacos vetoriais de dimensao finita. Detalhes em [13].

7" N
b Y
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PARTE 9

Probabilidades

Nesta parte discutimos sobre um dos assuntos mais importantes
da atualidade: probabilidades.

— SECAo 100
Motivacao
SUMARIO
= INDICE
JE<m 1898 Morgan Robertson publicou Futility, histéria fic- REDE

cional sobre o navio de passageiros Titan que, em uma noite
de abril, colide contra um iceberg e naufraga. Em 1912, em uma
noite abril, Titanic colide contra um iceberg e afunda.

Numa sexta-feira de 1865, Abraham Lincoln foi assassinado no
Teatro Ford, com um tiro na cabega, em frente a esposa. Numa
sexta-feira de 1963, John Kennedy foi assassinado em um carro
Ford (uma limousine Lincoln), com um tiro na cabega, em frente
a esposa. Ambos tiveram sucessores com o sobrenome Johnson.

Em setembro de 2009 a loteria da Bulgaria sorteou exatamente
0s mesmos seis nimeros em dois jogos consecutivos. Uma comis-
sao foi designada pelo Ministro dos Esportes para investigar o
caso, mas nenhuma fraude foi detectada.
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Uma questao natural sobre os trés exemplos histéricos dados acima
¢é a seguinte: quais sdo as chances de ocorréncias de tais coincidén-
cias?

Como bem argumenta David J. Hand em seu famoso livro [21],
‘devemos esperar o inesperado’.

Enquanto alguns percebem o caso Titan-Titanic como evidéncia de
uma profecia, o caso Lincoln-Kennedy como uma macabra conexao
entre dois presidentes distantes por um século, e o caso da loteria
biilgara como evidéncia de crime, o que realmente esta em jogo aqui
¢ um conflito entre realidade e modos de percepc¢ao da realidade.

Matematica nao existe como proposta para compreender a reali-
dade. Mas matematica é uma ferramenta muito ttil para mapear
fenomenos do mundo real. E claro que mapas podem informar di-
regoes equivocadas. Porém, neste caso, o problema nao reside no
emprego de mapas, mas em quem criou o mapa.

Uma das ferramentas mateméaticas mais utilizadas para mapear
chances de ocorréncias de eventos é o conceito de probabilidade. A
partir da proxima Secao fazemos isso, novamente utilizando predica-
dos conjuntistas no contexto de ZF.

Na Secao 105 discutimos sobre os casos Titan-Titanic, Lincoln-
Kennedy e loteria da Bulgaria.

SEgAO 101
o-algebra

{2 robabilidade é uma funcdo. Logo, demanda um dominio. Tal

dominio é uma algebra de eventos, também conhecida como o-dlgebra.

Portanto, precisamos conhecer este conceito antes de qualificarmos
o que é uma funcao de probabilidades. Mas, antes de conceituarmos
o-algebras, precisamos de um conceito preliminar.

DEFINIGAO 9.1. Um conjunto x é enumeréavel sss x € equipo-
tente a algum subconjunto de w.

Sobre o conceito de equipoténcia (denotada por ~), ver Definigao
4.17. Sobre w, este é o conjunto dos ntimeros naturais, conforme
Definicao 3.5.
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Em outras palavras, x é enumeravel se, e somente se, existe bijecao
frxz—m,

onde r C w.

EXEMPLO 9.1. I: O conjunto w dos numeros naturais é enu-
merdvel. Com efeito, w ~ w.

1: O conjunto {w, S(w)} é enumerdvel, onde S(w) € o sucessor
de w (Definicao 3.4). Com efeito,
{w, S(w)} ~2,
lembrando que 2 C w, onde
2={2,{}},

conforme Secao 23. Alids, o leitor deve perceber que todo
ordinal finito € elemento e subconjunto de w.

11: O conjunto R dos nimeros reais nao é enumerdvel. Afinal,
R ndo é equipotente a qualquer subconjunto de w, conforme
Secao 3.

DEFINIGAO 9.2. Seja x um conjunto. Dizemos que ¥ € uma
o-algebra de x (ou, simplesmente, uma o-algebra) sss

I ¥ C p(x), onde p(x) é a poténcia de x;
II: se s pertence a Y, entao x — s pertence a X,
nr: x € X;

IV: sey € um conjunto enumerdvel de elementos de X2, entao
Us
sey
é um elemento de 3.

Em outras palavras, os elementos de uma o-édlgebra (lé-se ‘sigma-
algebra’) de um dado conjunto = sdo subconjuntos de z, de modo
que o proprio x é um deles. Além disso, se um dado s pertence
a og-algebra, seu complementar relativamente a x também pertence,
sendo que o complementar de s relativamente a x é o conjunto de
todos os termos pertencentes a x, exceto aqueles que pertencem a s.
Por 1ltimo, qualquer uniao finitaria de n elementos da o-algebra é um
elemento da o-algebra; e qualquer uniao arbitraria de uma quantia
enumeravel de elementos da o-algebra ¢ um elemento da o-algebra.
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EXEMPLO 9.2. ﬁl

1. Sejam {m} e {n} conjuntos, onde chamamos {m} de cara
e {n} de coroa. Logo, p({m,n}) é uma o-dlgebra do par
{m,n}. Observar que cara e coroa sio subconjuntos de
{m,n}.

I: Seja x um conjunto qualquer. Logo, s = {&,x} é uma
o-dlgebra de x. Observar que, no caso particular em que
x = O, temos s = p(x). Para os demais casos, s # p(x).
Isso prova que nem toda o-dlgebra de um conjunto x € a
poténcia de x.

ut: Seja y = {a,b,c} um conjunto com trés elementos. Logo,
o conjunto t = {{a},{b,c}, @, y} € uma o-dlgebra de y. Ob-
servar que t # p(y).

TEOREMA 9.1. A poténcia de x é uma o-dlgebra de x.

DEMONSTRACAO: Basta provarmos que todos os quatro itens
da Defini¢ao 9.2 sao teoremas para o caso do enunciado.

Sobre item 1, observar que p(x) C p(x) (Teorema 3.5).

Sobre item 11, se s é subconjunto de x (i.e., pertence a
poténcia de ), entdo x — s é subconjunto de x e, portanto,
pertence a poténcia de x.

Sobre item 111, z € p(z), uma vez que todo conjunto é
subconjunto dele mesmo (Teorema 3.5).

Finalmente, sobre item 1v, observar que, se y é um con-
junto de subconjuntos de z (seja enumeravel ou nao), entao
a uniao arbitraria de todos os elementos de y é um subcon-
junto de z e, portanto, um elemento da poténcia de z.

@ A reciproca do ultimo teorema nao é um teorema. O conjunto
b de todos os conjuntos de Borel de R é uma o-algebra de R, apesar
de b # p(R). No entanto, foge aos nossos propésitos o estudo de con-
juntos de Borel. Queremos aqui apenas introduzir e discutir nogoes
elementares sobre probabilidades. Neste contexto, o que interessa
saber, pelo menos por enquanto, é que existem o-algebras diferentes
das poténcias de conjuntos, além dos casos envolvendo conjuntos
finitos dos itens 11 e 111 do EXEMPLO 9.2.
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TEOREMA 9.2. O conjunto vazio pertence a o-adlgebra de qual-
quer conjunto.

DEMONSTRAGAO: Seja x um conjunto qualquer. Se ¥ é sua
o-algebra, entdo item 111 da Defini¢ao 9.2 garante que x € 3.
Mas item 11 garante que x — x também pertence a . Uma
vez que

r— =,
entao a substitutividade da igualdade implica que @ € .

TEOREMA 9.3. A intersecao entre duas o-dlgebras quaisquer
de um conjunto x é uma o-dlgebra de x.

@l Deixamos a demonstracao deste tltimo como um divertido
exercicio para o leitor.

EXEMPLO 9.3. Seja x = {a,b,c} um conjunto com trés ele-
mentos. Logo, 0s conjuntos

s ={{a},{b,c}, @, z}
t ={{b},{a,c},,x}

sao o-dlgebras de x. Além disso, sNt = {x, D} € uma o-dlgebra

de x, conforme item 11 do EXEMPLO 9.2.

No entanto, observar que

r=sUt={{a}, {b},{a,c}, {b,c}, @, z}
nao é uma o-dlgebra de x. Com efeito, {a} U {b} = {a,b} ¢
uma unido enumeravel de elementos de r, apesar de {a,b} nao

pertencer a r. Logo, item 1V da Definicao 9.2 nao é teorema para
este caso.

O 1dltimo EXEMPLO deixa claro que unido arbitraria de o-algebras
nao ¢é necessariamente uma o-algebra. Obviamente, no caso parti-
cular da unido de p(x) com qualquer outra o-algebra de = é uma
o-algebra de x.

;@I O ultimo teorema pode ser generalizado para intersecoes arbi-
trarias de o-adlgebras. Intersecao arbitraria de termos de x pode ser
definida a partir do Axioma da Uniao e do Esquema de Separacao,
como se segue.
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DEFINIGAO 9.3.

ﬂtz{réUt!Vz(szérEz)}

tex tex

&9 Neste caso, intersecao finitaria (Definicdo 3.10) é um caso
particular de intersecao arbitraria

A ideia intuitiva de intersecao arbitraria é simples. A intersecao
arbitraria de todos os elementos de um dado x é um subconjunto
da uniao arbitraria de x cujos elementos sao apenas aqueles que sao
comuns a todos os elementos de x.

O lado esquerdo da igualdade acima se 1é ‘intersecdo de todos os
conjuntos t pertencentes a x’.

SEgAO 102
( Espaco de probabilidades

‘inalmente podemos conceituar probabilidades.

DEFINIGAO 9.4. Um espaco de probabilidades p € uma tripla
ordenada

p=(Q,%,p)

tal que as sequintes formulas sdo teoremas.
Pl: X € uma o-dlgebra de €,
P2: p: ¥ — R € uma fungio, onde p(e) > 0, para todo e € 3;
pP3: p(Q) =1;

P4: sey € um conjunto enumerdvel de elementos de Y3, dois a
dots disjuntos (ou seja, para quaisquer r e s pertencentes a
y, temos quer #£s=1rMNs= @), entao

p (U 8) = p(s).

EIS] SEY

Se p = (2,3, p) é um espago de probabilidades, chamamos o
conjunto €2 de espagco amostral.
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Os elementos da o-dlgebra ¥ de um espago de probabilidades
sao chamados de eventos.

Logo, todo evento é um subconjunto do espago amostral. Em
particular, o espaco amostral é um evento, de acordo com item 111
da Definigao 9.2.

A fungdo p, em um espago de probabilidades (€2, 3, p), é chamada
de funcao de probabilidade ou, simplesmente, probabilidade. Se s
é um evento, lemos p(s) como ‘probabilidade de ocorrer o evento
s’ ou ‘probabilidade do evento s’.

Neste contexto, axioma P1 diz que eventos contam com uma es-
trutura algébrica definida pelo fechamento de unioes arbitrarias enu-
meraveis. Ou seja, qualquer uniao enumeravel de eventos é um
evento.

Axioma P2 diz que a probabilidade de qualquer evento é um niimero
real maior ou igual a zero.

Postulado P3 afirma que a probabilidade do evento €2 é 1.

Observar que €2 é a unido arbitraria (enumeravel ou nao) de todos
os elementos de qualquer o-algebra de 2. Neste contexto é impor-
tante o leitor perceber que uma o-algebra nao precisa necessaria-
mente ser um conjunto enumeravel.

@ Segue um resultado surpreendente. Se uma o-algebra é
enumeravel, ela é obrigatoriamente finita.

Em outras palavras, se > é uma o-algebra infinita, entdao qual-
quer funcgao injetora f : w — > é nao sobrejetora. Logo, nen-
huma o-algebra é equipotente a w.

Dois eventos r e s distintos entre si e tais que r N's = @, sao
ditos mutuamente excludentes ou, simplesmente, disjuntos.

Axioma P4 afirma que a probabilidade da unido arbitraria de even-
tos mutuamente excludentes é a soma das probabilidades individuais
de tais eventos.

Observar que o termo

> o(s)

sey
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é um somatoério se y for um conjunto finito. Além disso, o mesmo
termo é uma série, se y for enumeravel e infinito. No 1ltimo caso,
P4 garante que a série é necessariamente convergente.

Gragas ao Teorema 9.2, o conjunto vazio é um evento em qual-
quer espago amostral e, consequentemente, em qualquer espago
de probabilidades. Por conta disso, ele merece um nome espe-
cial. O conjunto vazio é chamado de evento impossivel. Ademais,
se (2,%,p) é um espago de probabilidades, dizemos que Q é o
evento inevitdvel

TEOREMA 9.4. A probabilidade do evento impossivel, em qual-
quer espaco de probabilidades, é zero.

DEMONSTRAGAO: Seja p = (2,3, p) um espago de probabi-
lidades. Teorema 9.2 e item 111 da Definicao 9.2 garantem
que ambos €2 e & sdo eventos. Postulado P4 da Definicao
9.4 garante que

p(QU ) =p(Q) + p(2),
uma vez que NI = @. No entanto, postulado P3 garante
que p(2) = 1. Logo,
1 =1+ p(2).
Isso implica que
p(@) =0.

Uma consequéncia imediata do tltimo teorema e de P3 é que o
espaco amostral jamais é vazio, em um espaco de probabilidades.

TEOREMA 9.5. Qualquer conjunto nao vazio pode ser o espago
amostral de um espaco de probabilidades.

DEMONSTRAQAO: Seja x um conjunto nao vazio. Como visto
no item 11 do EXEMPLO 9.2, s = {&,z} é uma o-dlgebra
de z. Logo, basta definir a fungdo p : s — [0, 1] dada por

p(z) =1 e p(2) = 0.

TEOREMA 9.6 (MONOTONICIDADE). Ser e s sdo eventos em
um espago de probabilidades (Q, %, p), entdo

rCs=p(r)<p(s).
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DEMONSTRACAO: Ser C s, sejat = s—r, ou seja, o conjunto
dos termos pertencentes a s que nao pertencem a r. Logo,
rNt =@. Além disso, r Ut = s. Portanto, axioma P4
garante que

p(rut) = p(r) + p(t).
Mas p(r Ut) = p(s). Logo,

p(s) = p(r) + p(t).

Lembrando que todas as probabilidades sao maiores ou iguais
a zero, entao p(s) > p(r).

O 1ltimo teorema é conhecido como monotonicidade da probabili-
dade. Como vemos adiante, sua reciproca nao é teorema.

TEOREMA 9.7. Se e é um evento em um espaco de probabili-
dades com probabilidade p, entao

0 <ple) <1

DEMONSTRAQAO: Todo evento e é elemento de uma o-dlgebra
e, portanto, um subconjunto do espago amostral 2. Logo,
a monotonicidade da probabilidade, garantida pelo teorema
anterior, implica que p(e) < p(Q).

Uma vez que axiomas P2 e P3 da Defini¢ao 9.4 garantem
que p(e) > 0 e p(2) = 1, respectivamente, entao p(e) €
[0,1], onde [0,1] é o intervalo fechado dos ntimeros reais
entre 0 e 1, incluindo 0 e 1.

TEOREMA 9.8. Se r e s sao eventos em um espago de proba-
bilidades (2, %, p), entdo

p(rUs) =p(r)+p(s) —p(rns).

DEMONSTRAGAO: Sabemos que rN(s—7r) = erU(s—r) =
rUs. Logo, P4 implica que

p(rUs) =p(r) +p(s —r).

Mas o evento s —r é também idéntico a s — (rNs). Logo,
a ultima equacgao em destaque pode ser reescrita como

p(ruUs)=np(r)+ps—(rns)).
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No entanto, s = (s — (rNs)) U (rNs), sendo que
(s—(rns))N(rns)=g.
Logo, P4 implica que
p(s) =p(s — (rNs)) +p(rns).
Uma vez que o termo p(s — (r N's)) é comum a tltima e
a antepenultima equacao em destaque, entao
p(rUs) =p(r) +p(s) —p(rNs).

Levando em conta que unido finitaria é definivel a partir da dis-
juncao, e intersecao finitaria é definivel a partir de conjuncao, o teo-
rema acima estabelece o seguinte:

A probabilidade de ocorrer o evento r ou o evento s € a
probabilidade de ocorrer o evento r mais
a probabilidade de ocorrer o evento s menos
a probabilidade de ocorrer o evento r e o evento s.

EXEMPLO 9.4. No EXEMPLO 9.2 vimos que, se {m} e {n} sao
conjuntos (chamados, respectivamente, de cara e coroa), entao

o({m,n}) = {2, {m}, {n}, {m,n}}
¢ uma o-dlgebra do par {m,n}.
Podemos, portanto, definir um espaco de probabilidades
{m,n},{@,{m},{n},{m,n}}, p),

onde p é uma fung¢io com dominio {&,{m},{n},{m,n}} dada,
por exemplo, por
p(@) =0

p({m}) =
p({n}) =

p({m, n}) = 1.

Neste caso, a probabilidade de ocorrer o evento cara é %,
probabilidade de ocorrer o evento coroa € %, a probabilidade de
ocorrer o evento cara e coroa € 0 e a probabilidade de ocorrer o

evento cara ou coroa € 1.

Y

N RN~

a
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EXEMPLO 9.5. ﬁl Sequindo o ultimo EXEMPLO, se

{m,n},{@,{m}, {n}, {m,n}}, q)

¢ uma tripla ordenada, onde q é uma funcao com dominio

{@,{m},{n},{m,n}}
dada por
q(2) =0

q({m}) =
q({n}) =

q({m,n}) =1,
entao tal tripla ordenada também € um espaco de probabilidades.

bl

W NW| =~

EXEMPLO 9.6. L@h Sequindo os dois ultimos EXEMPLOS, se

({m,n},{@,{m}, {n}, {m,n}} r)

¢ uma tripla ordenada, onde r € uma fungcdo com dominio

{@,{m},{n},{m,n}}
dada por
r(@) =0,
r({m
r({n

)
}
}

~— ~—

L,
=0

r({m,n}) =1,

entao tal tripla ordenada também € um espaco de probabilidades.

Neste caso, a probabilidade de ocorrer coroa € zero, enquanto
a probabilidade de ocorrer o evento cara € um.

Os trés ultimos EXEMPLOS sao contraexemplos para a reciproca
do Teorema 9.6 da Monotonicidade de Probabilidades.

O evento impossivel @ é a intersecao entre eventos mutuamente
excludentes. Sua probabilidade, como ja mostrado, é sempre zero.
No entanto, no ultimo EXEMPLO temos um evento nao vazio com

. . S -
probabilidade zero. Se definirmos uma restri¢ao r’ da fungao r sobre
o dominio {&,{m},{m,n}}, com o propésito de ‘nos livrarmos’ do
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evento nao vazio com probabilidade zero, perceberemos que o novo
conjunto {@&, {m},{m,n}} ndo é uma o-algebra. Com efeito, o pos-
tulado 11 da Definicao 9.2 ndo é teorema nesta interpretagao. Logo,
r’ nao é uma probabilidade.

Se ainda insistirmos na ideia de nos livrarmos do evento nao vazio
com probabilidade zero, a melhor estratégia é redefinir o espaco
amostral como, no caso do EXEMPLO acima,

{m,n} —{n} = {m}.

Em seguida definimos uma restri¢ao da probabilidade r para o novo
espago amostral.

Porém, precisamos também aprender a conviver com eventos nao
vazios de probabilidade zero. O problema, nao obstante, é o impeto
natural de pessoas interpretarem probabilidade nula como sinénimo
de impossibilidade de ocorréncia do evento (em um sentido intuiti-
vo). Vemos no préximo EXEMPLO que a interpretacao intuitiva de
probabilidades é um pouco mais ardilosa do que isso.

EXEMPLO 9.7. @ Seja b = ([0, 1], ([0, 1]), p), onde
p:9([0,1]) = [0, 1]

¢ uma funcdo definida da sequinte maneira.

b—a  sex é o intervalo real [a,b] ou
(a,b) ou la,b) ou (a,b],
ondea € [0,1]Abe[0,1]]Aa<b

0 sex é o intervalo degenerado |a, a),
onde a € [0, 1]

Ysey P(s5) se ewiste conjunto enumerdvel y tal que
seus elementos sao intervalos dois a dois
disjuntos contidos em [0,1] ex C U, s

i

para 08 demais casos.

O simbolo % designa o fato de que o leitor precisard de muitas
xicaras de café para uma plena compreensio deste EXEMPLO,
uma vez que nao apresentamos aqui todos os detalhes. Como
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dizia Paul Erdds, ‘matemdtico € wma mdquina que transforma
café em teoremas’ Mas nao se desespere! O que realmente inte-
ressa aos nossos propositos elementares é detalhado aqus.

Ezxiste uma conhecida o-dlgebra ¥ definida sobre [0, 1], de modo
que 3 C ©([0,1]). Trata-se do conjunto de todos os conjuntos de
Borel contidos em [0,1]. Para efeitos ilustrativos deste EXEM-
PLO, basta que o leitor saiba as sequintes informagoes:

I: qualquer intervalo, degenerado ou nao, contido em [0,1], é
um conjunto de Borel;

II: qualquer unido enumerdvel de conjuntos de Borel é um con-
junto de Borel.

Uma vez definido o dominio da probabilidade p como p([0,1]),
item @ nos diz que, se x é elemento de p([0,1]) mas ndo é
um conjunto de Borel, entao p(x) = 0. No entanto, hd conjun-
tos de Borel com probabilidade zero também. Qualquer intervalo
fechado degenerado é um conjunto de Borel com probabilidade
nula. Até mesmo o conjunto de todos os reais racionais perten-
centes a [0, 1] € um conjunto de Borel. Isso porque esse conjunto
é enumerdvel (conforme Segio 34) e, além disso, é a unido arbi-
traria de todos os intervalos degenerados [r,r], onde r é um real
racional. Por conta disso, tal conjunto tem probabilidade zero (o
que implica que a probabilidade do evento x definido por todos
0s reais irracionais pertencentes a [0,1] € 1).

Neste caso, b € um espago de probabilidades. Em particular,

p([0,1))=1-0=1, p(l\f\fb =0 e

<<1 1]u<23)>—1 1,3 23
P\\3°2/ \3°4)) "27 371 37 12

De acordo com a Segdo 24, € possivel definir uma funcao
¢:{[0,1]} — [0, 1]

tal que ¢([0,1]) = r, onde r é um elemento escolhido pelo Azio-
ma da Escolha de ZFC, sendo r um real do intervalo [0,1]. Tal
funcao ¢ é conhecida como funcao escolha. Neste caso, o real r
permite definir o singleton {r} que, por sua vez, € o intervalo
fechado degenerado [r,r]. O Azioma da Fscolha escolheu um
evento do espaco de probabilidades acima com probabilidade nula.
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Se pensarmos numa analogia meramente intuitiva, podemos inter-
pretar o espaco amostral [0, 1] do dltimo EXEMPLO como um alvo.
Neste contexto, o Axioma da Escolha pode ser interpretado como
um dardo langado em direcao ao alvo. A probabilidade do dardo
acertar o alvo é um. Isso porque p([0,1]) = 1. A probabilidade do
dardo acertar a regido (3, 3]U(3,32) do alvo ¢ . Em contrapartida,
a probabilidade do dardo acertar um ponto {s} especifico (onde s
¢ um real pertencente ao alvo e, portanto, {s} é um evento da o-
algebra) é zero. Apesar disso, o dardo acerta de fato um ponto {r},
cuja probabilidade é nula.

DEFINIGAO 9.5. Seja p = (Q,%,p) um espago de probabili-
dades no qual Q € equipotente a um ordinal finito n (ou seja, Q
tem n elementos). Dizemos que p € um espago equiprovavel sss
para todo evento unitdrio {x} de ¥ tivermos

p(fa)) =

EXEMPLO 9.8. EXEMPLO 9.4 se refere a um espago equipro-
vavel. EXEMPLOS 9.5 E 9.6 se referem a espagos nao equipro-
VAVELS.

— SEgAO 103
Probabilidade condicional

N conceito de espago de probabilidade apresentado na tiltima Sec¢ao
encontra ampla aplicabilidade. Do ponto de vista matematico, uma
funcao de probabilidade é um caso muito particular de medida, tema
de expressivo interesse em varios ramos da matematica e da mate-
matica aplicada.

Se trocarmos o axioma P3 da Defini¢ao 9.4 pela féormula

p(@) =0,
a tripla ordenada (£, ¥, p) daquela definigdo passa a ser um es-
pago de medidas e a funcao p é uma medida definida sobre .

[1] Ou seja, o-algebras nao sao usadas apenas no estudo de proba-
bilidades, mas também na investigacao de medidas. No tltimo caso,
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medidas servem de fundamentacao para o conceito de integral de
Lebesgue [29]. Outra aplicacao de o-dlgebras é em estatistica, na
qualificacao de estatistica suficiente.

No entanto, historicamente, probabilidades nasceram como pro-
postas para teorias fisicas. Tal tradicao histérica obviamente persiste
até os dias de hoje, justamente por conta do grande sucesso dessa
ferramenta.

Tal contexto histérico é responsavel pela confusao muito comum
entre os conceitos de medida e medi¢do. Afinal, toda probabilidade é
uma medida, enquanto probabilidades sdo também fortemente mo-
tivadas por problemas do mundo real.

Medidas sao func¢oes p em um espago de medidas, conforme a
definicdo acima. Medicoes, por sua vez, sao processos fisicos de com-
paracao entre objetos ou eventos do mundo real com outros objetos e
eventos do mundo real. Em intimeros contextos socio-linguisticos as
palavras ‘medida’ e ‘medi¢ao’ sdo sinonimos. Mas, no que se refere
a um discernimento entre matematica e fisica, é preciso ter muito
cuidado.

No sentido acima exposto, a definicao de espago de probabilidades
funciona muito bem para aquilo que chamamos de uma tentativa.
Jogando uma moeda, é possivel modelar matematicamente a proba-
bilidade de ocorrer o evento cara ou o evento coroa em uma Unica
tentativa. Se a medida de probabilidade para o evento cara é %,
experimentos no mundo real devem apontar que a medi¢ao de ocor-
réncias de cara, para uma moeda nao viciada, é aproximadamente

50% (para uma quantia ‘suficientemente grande’ de tentativas).

Em um baralho de cartas misturadas, em principio, é possivel de-
terminar a probabilidade de alguém escolher um dois de copas em
uma Unica tentativa. Basta usarmos a Definicao 9.4, no sentido de
definir uma o-algebra que mapeie todos os possiveis eventos e uma
funcao de probabilidades.

No entanto, aplicacdes de probabilidades exigem mais. E de in-
teresse respondermos qual é a probabilidade de um evento, se um
evento anterior ja ocorreu. O que esta implicito neste discurso é que,
em uma primeira tentativa, ha a probabilidade de ocorréncia de um
evento. Em uma proxima tentativa, a probabilidade de um evento
pode depender do que ja ocorreu. O que ja ocorreu é uma tentativa.
O que ocorre a seguir ¢ uma nova tentativa.

PAGINA 433



MATEMATICA PANDEMICA PARTE9 SEQAO 103

No caso de um jogo de cara-ou-coroa, a probabilidade de uma
moeda nao viciada resultar em cara, apds uma primeira tentativa,
é % Em uma segunda tentativa, ao se jogar a mesma moeda, a
probabilidade de ocorrer o evento cara continua sendo % Este é¢ um
exemplo bem conhecido de eventos que sao independentes entre si.
Porém, no caso do baralho de cartas misturadas mencionado acima,
se as cartas escolhidas nao forem devolvidas ao baralho, as probabi-
lidades de cada evento dependem da ocorréncia de eventos em ten-
tativas anteriores. Temos aqui uma situagao de eventos dependentes
daquilo que ja ocorreu ou daquilo que poderia ter ocorrido, depen-
dendo da interpretacao que se promova para fins de mapeamento do

mundo real.

Logo, a pergunta natural é como mapear matematicamente o con-
ceito de uma tentativa. Mais importante, como mapear a ideia de
que tentativas ocorrem sequencialmente, no sentido de que devemos
discernir tentativas anteriores de tentativas posteriores?

Pois bem. Mais uma vez ZF conta com aparato suficiente para
lidar com essa situacao: trata-se do conceito de produto cartesiano
(Definigao 3.7) e, consequentemente, de par ordenado. Com efeito,
um par ordenado (m,n) é igual a um par ordenado (p,q) sssm =p
e n = q (Teorema 3.4). Isso significa, para efeitos préticos, que a or-
dem em que os termos ocorrem em um par ordenado é relevante para
fins de identificagdo do mesmo. Neste sentido, podemos interpretar
a primeira entrada m de um par ordenado (m,n) como primeira ten-
tativa, e a segunda entrada n como segunda tentativa. Uma vez que
pares ordenados permitem definir r-uplas ordenadas, onde r é um
ordinal finito, isso significa que podemos lidar com quantas tentati-
vas quisermos, desde que (por enquanto) seja uma quantia finita de
tentativas.

Outra questao importante é a seguinte: qualquer que seja a pro-
posta para a definicao de uma probabilidade condicional a eventos
de tentativas anteriores, ela deve ser consistente com a existéncia de
eventos independentes entre si, bem como com a existéncia de even-
tos dependentes. Obviamente os conceitos de eventos dependentes e
eventos independentes sdo meras arbitrariedades matematicas. Mas,
uma vez que probabilidades foram concebidas para mapear fend-
menos do mundo real, é altamente desejavel que elas fagam isso de
forma bem sucedida do ponto de vista experimental. A discussao
sobre o sucesso de probabilidades ¢é feita na Secao 105.
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De agora em diante, por uma questao de mera conveniéncia, even-
tualmente podemos nos referir a uma o-algebra como uma dlgebra
de eventos.

DEFINIGAO 9.6. Sejam x e y conjuntos nao vazios e ¥ uma
o-dlgebra de x x y. Ser; Cx ery Cy, definimos e, e e,, como
se seque.

Vit (t ene U {tk)}e em)

{(t,k)}ex

Vit (t erne |J {kt}e em) :
{(k,t)}ex
Dizemos que m é ‘evento’ de x correspondente a e,, de ¥, e

r9 € ‘evento’ de y correspondente a e,, de X. Equivalentemente,
er, € correspondente a r; e e,, € correspondente a 7.

Os subscritos 1 e 2 em e,, € e,, sao usados para discernir primeira
entrada de segunda entrada em um par ordenado pertencente a um
evento de Y.

Importantissimo notar o emprego de aspas nos conceitos de ‘evento’
de z e ‘evento’ de y. Os motivos para isso sdo os seguintes:

I: Estamos falando de um conjunto x xy munido de uma o-algebra.
Logo, nao estamos tratando (ainda) de um espago de probabi-
lidades, uma vez que sequer mencionamos qualquer fungao de
probabilidades. Obviamente nossa meta é empregar esses con-
ceitos para tratar de certos tipos especiais de espacos de proba-
bilidades. Mas eventos se referem apenas a espagos de proba-
bilidades, e nao necessariamente a elementos de uma o-algebra.
Com efeito, o-adlgebras sao empregadas em muitas outras situa-
¢oes, além de probabilidades.

11: Muito mais importante é o fato de estarmos falando de sub-
conjuntos de x e de y. Portanto, ndo estamos tratando apenas
de subconjuntos de = x y na tltima defini¢do. Se usarmos x X y
como espaco amostral e > como algebra de eventos, para definir-
mos um espago de probabilidades (acrescentando uma fungao
de probabilidades com dominio ¥), apenas os elementos de %
sao eventos deste espaco, os quais sao subconjuntos de z X y.
Nenhum elemento de uma o-algebra de x X y é elemento ou
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subconjunto de x ou sequer elemento de uma o-algebra de x.
Além disso, observar que o produto cartesiano de o-algebras
nao é uma o-algebra de conjunto algum. Dai a necessidade de
cuidados especiais!

Notar também que o emprego de bicondicionais na defini¢ao acima.
Todo ‘evento’ m; de = corresponde a um e apenas um elemento e,,
de X, e todo elemento e,, de X corresponde a um e apenas um
subconjunto r; de . Comentario analogo vale para ‘eventos’ de y.

O que a ultima definigao estabelece é que um evento e,, da algebra
de eventos de = X y é o conjunto de todos os pares ordenados (¢, k)
de X tais que ¢ pertence a r; (lembrando que r; é um subconjunto
qualquer de z). Analogamente, e,, da algebra de eventos de z Xy é o
conjunto de todos os pares ordenados (k,t) de X tais que t pertence
a ry (lembrando que 75 é um subconjunto qualquer de y).

A defini¢ao acima nao é usual em textos sobre sobre probabilidades.
Em geral, a literatura nao é clara sobre esses conceitos, apelando
muitas vezes a uma visao meramente intuitiva sobre probabilidades
condicionais. Neste livro, porém, nos comprometemos ao esclareci-
mento sobre como ZF e ZFC permitem fundamentar grande parte
da pratica matematica. Dai a necessidade da tltima definicdo, antes
que possamos qualificar o que é uma probabilidade condicional.

Antes de irmos ao ponto principal desta Segao, se a g-dlgebra X
de =z x y for p(x X y), naturalmente cada ‘evento’ de x ou de y é
elemento das o-algebras p(x) e p(y), respectivamente.

DEFINIGAO 9.7. Seja (x Xy, 3, p) um espago de probabilidades.

Seja
pe: X x X —[0,1]

uma fungdao definida como
plerNes)

p(ez)
onde p(e2) # 0 e p.(e1,e2) € denotada abreviadamente como
pe(er | e2).

Se r € um ‘evento’ de x correspondente ao evento e., de X, e
r9 € um ‘evento’ de y correspondente ao evento e, de 3, dizemos

que a probabilidade de r; condicionada a ry € p.(e,, | €.,). Além
disso, a probabilidade de ry condicionada a ry € p.(e,, | €,).

pe(er, e2) =
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A funcao p. € chamada de probabilidade condicional. Ewvento
eq, € chamado de condicionante em p.(e,, | €.,), enquanto e,, é
o condicionante em p.(e,, | €-,).

Por abuso de linguagem, podemos nos referir a p.(e,, | €,,) como
a probabilidade de e, condicionada a e,,, e p.(e., | €, ) como a
probabilidade de e,, condicionada a e,,.

Por conta da monotonicidade da probabilidade (Teorema 9.6),

pler Ney) < pleg).
Logo,
pe(er | €2) <1,
para quaisquer pares ordenados (e, ) de eventos de X.

No entanto, notar que a probabilidade condicional nao é uma fun-
¢ao de probabilidade, apesar de ser definida a partir de uma. Com
efeito, seu dominio nao é uma &algebra de eventos, mas um produto
cartesiano de uma algebra de eventos por ela mesma. Como ja foi
destacado, o produto cartesiano entre uma algebra de eventos e ela
mesma nao é uma algebra de eventos.

Apesar disso, para efeitos praticos, a probabilidade condicional
opera como uma probabilidade de ocorréncia de um evento, desde
que condicionada a ocorréncia de outro evento. Justificamos essa
ultima afirmacao no proximo paragrafo.

Dado um evento e,,, as imagens p.(e, | e.) da probabilidade
condicional p. sao imagens de uma funcdo de probabilidade p.,, com
dominio Y. Logo, podemos definir o conjunto Pec.,, cOmMo a uniao
arbitraria de todas as probabilidades p.,,, para todos os possiveis e,, .
Comentario andlogo vale para a probabilidade de e,, condicionada a
er,. Isso faz da funcdo de probabilidade condicional p. a unido do
conjunto pe,, de todas as probabilidades p,, com o conjunto Pe.,,
de todas as probabilidades pe,. .

Ou seja, uma probabilidade condicional p.(e | €') tem as mesmas
imagens de uma funcao de probabilidades aplicada sobre o evento e,
desde que o evento €’ de ¥ seja fixado.

Outra observagao relevante é o fato de que a probabilidade de
um evento condicionada a um condicionante pode ser interpretada
como um fator de correcao aplicado a probabilidade de ocorréncia
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do condicionante. Com efeito, basta observar que
pler Nea) = plea)pe(er | e2) = pler)pelez | e1).
Logo,
p(e2) _ pe(e2 | e1)
pler)  peler| e2)

A igualdade acima é o célebre Teorema de Bayes, assunto a ser
discutido na préxima Secao.

EXEMPLO 9.9. Em um jogo com uma moeda nao viciada, qual
¢ a probabilidade de ocorrer cara apds ocorrer coroa?

Podemos definir o conjunto x = {m,n}, onde {m} é o ‘evento’

cara, e {n} € o ‘evento’ coroa. Uma vez que a sequnda tentativa
usa a mesma moeda empregada na primeira tentativa, devemos
definir uma dlgebra de eventos para o espago amostral

TXT= {<m’m)= (m’n>7 (n7m)7 (n7 n)}v
a qual é p(x X ). Notar que p(x X ) tem 16 elementos. Cada
um desses elementos € um evento.

Assumir que a moeda é nao viciada equivale a afirmar que a
probabilidade com dominio p(z X x) € dada da sequinte maneira:

ple) = niimero de elemento de x X x’
i.e., (X, p(xxx),p) éum espago equiprovavel (Definicio 9.5).

numero de elementos de e

O evento condicionante ey, correspondente ao ‘evento’ coroa,
é{(m,n),(n,n)}.

O evento ey sobre o qual queremos determinar a probabilidade
condicional é {(m,n),(m,m)}.

Logo, e; Ney = {(m,n)}. Isso implica que

1
plerNeg) = i
enquanto
2
ple2) = 1
Logo,
1
4
pc(el | 62) = % = 3
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DEFINIGAO 9.8. Sejam (x X y,3,p) um espago de probabili-
dades e p. uma probabilidade condicional com dominio Y X 3.
Dizemos que o evento e; é independente do evento ey sss

peler | e2) = p(er).

Caso contrario, dizemos que e1 e ey sao eventos dependentes.

ExXEMPLO 9.10. EXEMPLO 9.9 ilustra evento ey independente
do evento es. Uma vez que o espago de probabilidades é equipro-

vdvel,
2 1

ple)=71=73

Mas este € exatamente o mesmo valor de p.(e;1 | e3).

ExEmMpPLO 9.11. Consideremos dois dados de seis faces, nu-
meradas de 1 a 6, nao viciados. Digamos que um dos dados é
azul e o outro € vermelho. Qual € a probabilidade de ocorrer uma
face numerada 2 no dado azul, se a soma das faces numeradas
de ambos os dados for menor do que 67

Neste caso, podemos definir o conjunto x = {1,2,3,4,5,6},
onde cada evento unitdrio é uma ocorréncia de uma face nume-
rada de um dado qualquer. Definimos uma dlgebra de eventos
para o espago amostral

% X 3,

a qual é
p(z x ).
Notar que x x x tem 36 elementos e p(x X x) tem 2% ele-

mentos (i.e., mais de 68 bilhoes de elementos). Cada um desses
elementos é um evento.

O que permite discernir as tentativas, neste caso, € a discerni-
bilidade dos dados, uma vez que um € azul e o outro € vermelho.

Assumir que os dados sdo nao viciados equivale a afirmar que a
probabilidade com dominio p(z X x) € dada da sequinte maneira:

numero de elementos de e

e) = ,
p(e) numero de elemento de x X x

ou seja,
(x x z,p(z X x),p)
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€ um espaco equiprovdvel.

O evento condicionante es, correspondente ao ‘evento’ ‘a soma
das faces é menor do que 67, é

{(1,1),(1,2),(1,3), (1,4), (2,1),(2,2),(2,3), (3,1),(3,2), (4, 1)}.

O evento ey sobre o qual queremos determinar a probabilidade
condicional €

{(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)},
onde o ‘evento’ {2} se refere ao dado azul, aqui retratado na
primeira entrada dos pares ordenados acima.

Logo, ey Ney ={(2,1),(2,2),(2,3)}. Isso implica que

3
plerNeg) = 36
enquanto
(e2) 10
ez) = —.
bié2 36
Logo,
3 3
peler | e2) = 3§ = —-
3% 10
Notar que
6 1 3
) =35=5710

Logo, e; e ey sao eventos dependentes.

TEOREMA 9.9. Dois eventos e; e e3 em um espago de proba-
bilidades com probabilidade p e probabilidade condicional p. sao
independentes sss p(ex Nez) = pler)p(es).

DEMONSTRAGAO: ﬁl Basta usar a defini¢ao de eventos inde-
pendentes dada a partir de probabilidade condicional (De-
finigdo 9.8), bem como o préprio conceito de probabilidade
condicional (Defini¢ao 9.7).

Aqui é cabivel um alerta. E uma pratica comum na literatura
a ‘definicao’ de probabilidade condicional da seguinte maneira:

pler Ney)
p(eg)
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sem deixar claro qual é o dominio da nova funcao introduzida. O
proprio emprego da mesma letra p usada para duas fungoes diferen-
tes (uma probabilidade e uma probabilidade condicional) também
pode colaborar para dificuldades nos estudos. Com efeito, apesar da
probabilidade condicional depender de uma algebra de eventos, seu
dominio nao ¢ uma algebra de eventos.

SECAO 104
( Teorema de Bayes

m uma noite de nevoeiro, um taxi é envolvido em um grave
acidente, com vitima fatal. Mas o motorista fugiu no mesmo veiculo,
sem prestar socorro.

Uma tnica testemunha prestou relatério as autoridades. Em seu
depoimento, ela afirmou que o téxi era azul. Como parte da investi-
gacdo, a policia testou a confiabilidade da testemunha, submetendo-a
a condigoes semelhantes de visibilidade. Afinal, naquela cidade havia
apenas duas operadoras de taxis. Em uma delas os veiculos eram to-
dos azuis. Em outra, eram todos verdes. Dependendo das condigoes
de luminosidade, nao é de espantar que alguém confunda uma cor
com a outra.

Apébs varios testes, foi finalmente avaliado que a testemunha era
capaz de dizer corretamente a cor do taxi em oitenta por cento das
simulagoes. Logo, temos um depoimento com elevado grau de confia-
bilidade, apesar das condi¢oes adversas. A questao agora é a seguin-
te: o que mais provavelmente aconteceu naquela dramatica noite? A
vitima foi atropelada por um taxi azul ou por um taxi verde?

O problema acima foi formulado pela primeira vez por Amos Tver-
sky e Daniel Kahneman [20]. O objetivo desses psicologos israelenses
era avaliar uma tendéncia natural de pessoas julgarem fatos com
rapidez e eficiéncia, mas sem dados completos que exijam tempo e
energia para pensar racionalmente. O testemunho confidvel certa-
mente nio é o bastante para lidar com o problema proposto. E neste
momento que entra em cena um exemplo muito simples de aplicagao
do Teorema de Bayes, tema desta Secao.

A ideia é a seguinte. Uma informagao é a probabilidade do taxi
ser azul, se a testemunha relata a cor azul. Outra, é a probabilidade
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da testemunha relatar a cor azul, se o taxi é azul. Estes nao sao
necessariamente o mesmo nimero.

TEOREMA 9.10 (TEOREMA DE BAYES). Sejam

(z X y, 2, p)
um espago de probabilidades e p. uma probabilidade condicional
com dominio X X 3. Logo,
pc(ez | ex)p(er)

p(e2)

pe(er | e2) =

se e # ey e p(eg) # 0.

)

DEMONSTRAGAO: A demonstracao ja foi feita no ultimo para-
grafo que antecede o EXEMPLO 9.9.

O resultado acima ¢é devido ao reverendo presbiteriano Thomas
Bayes, apesar deste jamais ter publicado seu mais famoso trabalho.
Foi gracas a Richard Price que hoje conhecemos o autor do célebre
teorema. Price editou o texto original de Bayes em Philosophical
Transactions, o primeiro peridodico da historia a ser dedicado exclu-
sivamente a ciéncia.

THiLosomﬂlc,fL }‘
TRANSACTIONS: :

GIVING SOME

ACCOMPT

OF THE PRESENT
Undertakings , Studies , and Labours

O T HE

INGENIOZUS

IN MANY
CONSIDERABLE PARTS
OF THE "

W OR L D

Vol 1.
For Amo 1665, and 1666.

In the SAVOT, ]

Printed by T. N. for Fohn Martyn at the Bell, a little with+ A

ouc Temple-Bar , and Fames Alleftry in Dyck-Eane ;'
Printers to the Royal Suciery,

Drosontedd. by the Author Ma].soﬂ‘j 66y

CAPA DO PRIMEIRO VOLUME DE PHILOSOPHICAL TRANSACTIONS
Fonte: Wikipedia.
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ExXEMPLO 9.12. No problema proposto por Tversky e Kahne-
man, colocado no inicio desta Segdo, a probabilidade da teste-
munha relatar a cor corretamente é importante, sem sombra de
duvida. Mas devemos considerar também a probabilidade de um
taxi ser de fato azul.

Chamemos de { A} e {V} os ‘eventos’ ‘tdxi azul’ e ‘tdzi verde’,
respectivamente. Também chamemos de {T A} e {TV} os ‘even-
tos’ ‘testemunha afima que tazi era azul’ e ‘testemunha afima que
taxi era verde’, respectivamente.

Consideremos dois possiveis cendrios.

CENARIO I: A probabilidade p({V}) de um tdzi ser verde é
maior do que a probabilidade da testemunha relatar corre-
tamente a cor do veiculo. Para fins de ilustracdo, digamos
que p({V}) = 0,85.

CENARIO 1I: A probabilidade p({V}) de um tdzi ser verde é
menor do que a probabilidade da testemunha relatar corre-
tamente a cor do veiculo. Para fins de ilustragdo, digamos

que p({V}) = 0,5.
Comecamos com o CENARIO I.

De acordo com o problema proposto, a probabilidade da teste-
munha relatar cor azul, no caso em que o tdxi tem cor azul, é
0,80. Logo,

p.({T A} | {A}) = 0,80.
O que queremos responder € a probabilidade do tdxi ser azul,

diante do fato da testemunha afirmar que o veiculo era azul. Ou
seja, precisamos calcular

pe({A} [{TA}).

Teorema de Bayes estabelece que

_ p({T A} [ {ADP({A})

Uma vez que tdzis verdes e tdxis azuis sao eventos mutuamente

excludentes, sabemos que p({A}) =1 — p({V}).

Isso, no CENARIO 1, implica que p({A}) = 0,15. Mas como
conhecer p({T A})?
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p({T A}) € a probabilidade da testemunha relatar que o tdxi
era azul. Mas sé existem duas possibilidades: (i) a testemunha
diz que € azul, sendo o taxi azul; (ii) a testemunha diz que € azul,
sendo o tdxi verde. Lembrando que tdzis azuis e tdxis verdes sao
mutuamente excludentes, logo,

{A}N{TA} e {V}In{TA}
sao mutuamente excludentes.

Portanto,
p({TA}) = p({A} N{TA}) + p({V} N{T A}).

Aplicando o Teorema de Bayes sobre as duas parcelas a direita
da igualdade na ultima equagdo, temos

PUTA}) = p({ADP{TA} [ {A}) + p({VDp({T A} [ {V}),

lembrando que p.({TA} | {V}) = 0,2, uma vez que os eventos
‘dizer a cor corretamente’ e ‘dizer a cor errada’ sado mutuamente

excludentes e p.({T A} | {A}) =0,8.
Podemos agora finalmente determinar p.({A} | {T.A}):

~0,15(0,80)
pe(lAH H{TAY = §350.50) 1 0,850, 9)

Isso nos da um valor aprozimado de 0,41.

Ou seja, no CENARIO 1, hd 41% de chances do tdxi ter sido
azul, apesar do relato afirmar que era azul. Isso implica que
mais provavelmente a vitima foi atropelada por um tdzi verde,
com 59% de chances de ser o caso.

ﬁl CENARIO 1II fica como exercicio para o leitor.

O EXEMPLO acima da suporte a uma famosa declaracao de Carl
Sagan:

Alegagoes extraordindrias demandam evidéncias
extraordindrias.

Se uma pessoa afirma ter visto uma nave extraterrestre, existe uma
probabilidade de seu depoimento estar certo. No que se refere a tal
probabilidade, dificilmente é aceitavel que seja 1. Com efeito, pessoas
podem interpretar erroneamente o que veem. Se a probabilidade de
nao ocorréncia de naves extraterrestres em nossos quintais for maior
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do que a probabilidade de acerto em um depoimento dessa natureza,
o que mais provavelmente ocorreu é que nenhuma nave extraterrestre
visitou o quintal da testemunha.

O que foi dito no tltimo paragrafo nao é uma tentativa de desa-
creditar testemunhos, espalhados pelo mundo, de eventos extraordi-
narios, como avistamentos de lobisomens ou fantasmas. Mas é um
alerta das severas limitagoes para lidarmos com depoimentos de tais
eventos.

SECAO 105
Mapeamento com probabilidades

¥omo ja comentado, o conceito de probabilidade nasceu da neces-
sidade humana de identificar padroes matematicos especificos que
parecem ocorrer em certos fendmenos do mundo real. Se admitirmos
que ¢ possivel mapear tais fenomenos através de predicados conjun-
tistas, a questao a ser respondida é a seguinte: quais fenomenos
podem ser mapeados por probabilidades?

Neste sentido, estamos falando de possiveis interpretacoes pre-
tendidas para probabilidades, probabilidades condicionais e outros
conceitos relacionados, como distribuicao de probabilidades, varidveis
aleatorias, probabilidades fuzzy, probabilidades em espagos topologi-
cos, geometria estocdstica, processos estocdasticos, processos de Mar-
kov, teoria das decisoes, mecanica estatistica, logica indutiva, infe-
réncias Bayesianas etc.

Se nos concentrarmos apenas em probabilidades e probabilidades
condicionais, as interpretagoes pretendidas mais comuns para esses
conceitos podem ser divididas em trés grandes grupos.

PROBABILIDADE COMO SUPORTE EPISTEMOLOGICO: Neste caso,
probabilidades servem ao propésito de fornecer medidas objeti-
vas de evidéncias de relagoes entre fendmenos. Por exemplo,
levando em conta as atuais taxas de consumo de recursos natu-
rais em parceria com avangos tecnologicos, a probabilidade de
colapso irreversivel da civilizacao nas préximas décadas é acima

de 90% [7].
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PROBABILIDADE COMO GRAU DE CRENGA: Por exemplo, ‘nao te-
nho certeza que o mundo como o conhecemos deixara de existir
em 2040, mas provavelmente sera o caso’.

PROBABILIDADE COMO CONCEITO FfSico: Neste caso, probabi-
lidades sao aplicaveis a varios sistemas fisicos, independente-
mente de avaliagoes subjetivas. Nao importa o que uma pessoa
pensa sobre uma moeda nao viciada, se ela for jogada dez mil
vezes, em aproximadamente cinco mil vezes resultard em coroa.

Os poucos exemplos aqui explorados se referem ao terceiro grupo.
A literatura sobre probabilidades é suficiente para consumir o tempo
de uma vida e ainda assim ficar muito longe de esgotar o tema.

Para finalizar esta brevissima introducgao ao assunto, retomemos a
provocacao colocada na Secao 100.

Sobre o caso Titan-Titanic, o mero acaso explica as coincidéncias
entre o romance Futility e o naufragio do Titanic? Afinal, assim como
podemos obter duas coroas seguidas por mero acaso em um jogo de
cara-ou-coroa, podemos atribuir o mesmo acaso ao romance? Ou
estamos diante de uma intrigante evidéncia de profética previsao do
futuro?

Pois bem. Infelizmente, teoria de probabilidades, por si s6, nao
permite responder a essa questdo. E necessario um espaco de proba-
bilidades que mapeie o mundo real. Logo, como propor um espagco
amostral para fins de avaliacdo? Esse espago amostral deve incluir
todos os romances ja escritos e todos os eventos reais ja ocorridos? Se
a meta é comparar ficcdo com realidade, qual é o periodo de tempo
a ser considerado? Décadas? Séculos? Milénios? Essa questao é
relevante o bastante para ser digna de pesquisa?

Situacao andloga ocorre com o caso Lincoln-Kennedy. Por exem-
plo, Lincoln teve quatro filhos. Kennedy teve trés. Logo, nao ha
coincidéncia entre ambos, no que se refere a nimero de filhos. Quais
outros aspectos devem ser levados em consideragao para que seja
definido um espaco amostral? Devemos considerar apenas os presi-
dentes dos Estados Unidos ou todos os estadistas que ja existiram?

Com relagao a loteria da Bulgaria, esta ja existia ha mais de cin-
quenta anos, antes do inusitado evento das mesmas dezenas em dois
sorteios consecutivos. Além disso, ndo é a tunica loteria do mundo.
Se escolhermos como espago amostral o conjunto de todas as loterias
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espalhadas pelo planeta, é tao inusitado assim que, em uma delas,
ocorra tal coincidéncia? Afinal, os registros mais antigos de loterias
datam da época da Dinastia Han, na China, ha mais de dois mil
anos.

A mesma mente humana, capaz de reconhecer padroes na natureza
e transforma-los em matematica, também é capaz de interpretar co-
incidéncias como atos divinos ou até mesmo milagres. Nao é por
acaso que Georg Cantor percebia na teoria de conjuntos uma forma
de conhecer a mente de Deus [57].

SEGAO 106
( Resumo da épera

»aualificamos probabilidades e probabilidades condicionais na lin-
guagem de ZFC. Neste contexto, mostramos que

e probabilidades sao casos muito particulares de medidas;

e qualquer conjunto nao vazio pode ser espaco amostral em um
espago de probabilidades;

e probabilidades foram concebidas para resolver problemas do
mundo real;

e a interpretacao intuitiva de probabilidades é um problema ex-
traordinariamente dificil;

e probabilidades condicionais nao sao probabilidades, mas uma
concatenacao de probabilidades.

SEgAO 107
( Notas historicas

\e It’/
R 2

“~m 1900 David Hilbert apresentou no Congresso Internacional de
Matematicos, de Paris, uma historica palestra que, posteriormente,
resultou em uma lista de 23 problemas que, em sua opiniao, eram
as principais questoes legadas pelos matematicos do século 19 aos
do século 20. Os problemas por ele enunciados serviram, e ainda
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servem, para direcionar relevantes trabalhos nos campos da mate-
matica pura e da matematica aplicada. Em sua lista, é de especial
interesse aqui, o sexto problema:

Investigagoes sobre os fundamentos da geometria sugerem o

problema: tratar do mesmo modo, por meio de ariomas, as

ciéncias fisicas nas quais a matemdtica desempenha papel

importante: sao prioritarias a teoria de probabilidades e a
mecanica.

ANDREY KOLMOGOROV

Fonte: https://www.kolmogorov.com/.

Claramente o texto acima mostra que teoria de probabilidades era
um ramo das ciéncias fisicas. Foi somente em 1933 que Andrey
Kolmogorov apresentou uma solugao parcial ao Sexto Problema de
Hilbert, ao publicar um livro onde sao introduzidos essencialmente
0s mesmos axiomas que o leitor encontra na Defini¢ao 9.4.

Mais do que um teodrico, Kolmogorov colaborou com as forgas
armadas russas durante a Segunda Guerra Mundial, para prote-
ger Moscou dos bombardeiros alemaes. Sua arma: estatistica. O
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matematico russo desenvolveu uma engenhosa distribuicao estocas-
tica de baloes barragem.

Por conta de sua vasta obra, hoje o nome Kolmogorov esta entre
os mais citados em matemaética, incluindo homologia de Kolmogorov,
espagos de Kolmogorov, paradoxo de Borel-Kolmogorov, critério de
Kolmogorov, equagio de Fisher-Kolmogorov e complexidade de Kol-
mogorov, entre algumas dezenas de outras referéncias, incluindo, na-
turalmente, os axiomas de Kolmogorov para probabilidades.

/‘ar )\
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PARTE 10

Informacoes complementares

Nesta parte discutimos sobre alguns assuntos complementares.

SEGAO 108
( Newton-Raphson

NBeja f: R — R uma funcao diferenciavel tal que existem valores
em um intervalo [a,b] onde f(x) muda de sinal. A existéncia de pelo
menos um ¢ € [a, b], tal que f(c) =0, é garantida pelo fato de f ser
continua (Teorema 5.25). Isso é consequéncia do Teorema do Valor
Intermediario, mencionado muito brevemente na Secao 59.

Supor que existe apenas um ¢ € [a, b] tal que f(c¢) = 0. Logo, pode-
mos introduzir o método de Newton-Raphson, se certas condigoes
forem atendidas. Detalhes em um bom livro sobre anélise numérica.

Se x,, é uma entrada de f(x,), z,11 é obtido da seguinte maneira:

Tp — Tny '
A derivada f'(z,) é o coeficiente angular de uma reta definida por

(ZEm f(l’n)) € (xn—l-la O)v

conforme a imagem a seguir.
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WY
@) | :
Logo,
Ty — Tpy1 — f(xn)
n n+ f,(xn) o
Finalmente,
f(xn)

T = T G,
A férmula acima descreve o método de Newton-Raphson. Observar
que, se f(x,) =0, entdo x,1 = z,, para todo n natural. Além disso,
se f'(x,) =0, o método de Newton-Raphson nao é aplicavel.

ExemMpPLO 10.1. Como calcular a raiz quadrada x de um nimero

real a > 07

Por um lado temos x = \/a. Logo, x
> —a = 0.

2 = a, o que implica que

Logo, a raiz quadrada x de a é um zero de f : R — R dada por
f(z) =2° —a.

O método de Newton-Raphson permite obter aproximagoes com

precisio arbitrdria para x = \/a. A fungio recursiva é dada por
2 —a
Tn+1 = Tpn —
2%,

)
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sendo xg # 0 uma estimativa inicial para a raiz quadrada de a.

A funcdao recursiva pode ser reescrita como

2 2
2z, ¥, —a

Tpt1 = —
" 2%, 2%,
Logo,

e

Lp+l = 9

Observar que esta é a mesma sequéncia introduzida na Sec¢ao 39,
no caso em que xro ¢ um numero racional e a = 2. Naquela Segao
ha exemplos ilustrativos da sequéncia recursiva acima para valores
de g = 2 e xg = 5 com o propdésito de obter aproximagoes racionais
para = /2.

Uma curiosidade historica é que a equagao
Ty + =
Tpt1 = t
2
reproduz o Método Babilonico para o Calculo de Raiz Quadrada, con-
cebido hé mais de quatro mil anos. Os matematicos babilonicos nao
eram capazes de justificar o método acima por meio de calculo dife-
rencial, que s6 foi concebido no século 17. Mas empregavam a mesma
ideia: aproximacoes de raizes quadradas por médias aritméticas.

O EXEMPLO acima pode ser estendido para aproximacoes de z =
{/a, onde m é um inteiro positivo maior do que 1:

(m— Dz, + ﬁ“—l

m

Tnt1 =

Ou seja, médias aritméticas de m termos (notar que todos os m
termos ocorrem no numerador) podem ser usadas para obtermos
aproximagoes de %/a, ideia essa que, aparentemente, jamais passou
pela cabeca dos pensadores do Império Babilonico.

A representacao decimal dessas aproximagoes permite estabelecer
um critério de parada em funcdo do numero de casas de precisao
desejada. No entanto, este método nao exige que xy seja racional
ou que f seja polinomial. Logo, pode ser aplicado a fungbes f en-
volvendo exponenciais, logaritmos, senos, co-senos, entre outras (in-
cluindo composigoes néao triviais), desde que (entre outras condigoes)
sejam localmente diferenciaveis em um intervalo aberto onde ha um
zero de f.
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EXEMPLO 10.2. Um dos zeros de seno € w, conforme Se¢cdo 57.
Portanto, para obter aproximacoes de w, basta aplicar o Método
de Newton-Raphson, uma vez que seno € diferencidvel.

Se f: R — R é uma funcio dada por f(x) = sen(zx), entdo

sen(x,,)

Tn1 = Tn — COS((L’n) .

Falta agora uma semente xq, para obter xq, xo, T3 etc.

Podemos usar, como inspiragdo, alguma referéncia historica.

Afinal, € divertido.
De acordo com Arquimedes de Siracusa, ™ estd entre
223 22
71 ¢ T
ou seja, entre
3,140845070422535 e 3,142857142857142,
com precisao de 15 digitos apds a virqula.

QOutra referéncia historica é a Biblia Sagrada. No Primeiro
Livro de Reis, Capitulo 7, Versiculo 23, lé-se o sequinte:

Fez o tanque de metal fundido, redondo, medindo qua-
tro metros e meio de diametro e dois metros e vinte
e cinco centimetros de altura. Era preciso um fio de
treze metros e meio para medir a sua circunferéncia.

A wversao acima, entre dezenas de tradugoes para o portugués
brasileiro feitas desde o final do século 19, € de https://www.
bibliaon.com/ . Logo,

13+ 3
—2 =3

4+ 3

Mas o metro nao era padrao adotado hd 2700 anos. No original

em hebraico classico o tanque tem dez cbitos curtos de diametro
e trinta cubitos curtos de circunferéncia, o que corresponde a

30
= — = 3.
"0
Na literatura especializada em historia biblica hd extensas dis-
cussoes sobre o cubito curto e o cubito longo, entre outras dezenas

de unidades de medicao empregadas no Antigo Testamento. Mas,

m =
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0 que nos interessa € a proporcao de valores. Logo, afirmar que o
Primeiro Livro de Reis estabelece que m = 3, é uma tese sequra,
com pouco espago para debate.

Observar que sen(3) é um real estritamente positivo, o qual
pode ser calculado com precisdio arbitrdria a partir do trunca-
mento da série de poténcias discutida na Segdo 54. Além disso,
sen(%) ¢ um real negativo, que pode ser calculado da mesma
maneira. Neste caso, w estd em algum lugar do corpo totalmente
ordenado dos numeros reais, entre a estimativa biblica 3 e uma

22

das aprozimagoes de Arquimedes, = .

Apesar da proposta sagrada nao ser tdao precisa quanto a es-
timativa de Arquimedes, escolhemos ela como semente xq, para
fins de uma avaliagdo superficial do desempenho do Método de
Newton-Raphson.

Logo,
xo = 3,000000000000000 x; = 3,142546543074278

xo = 3,141592653300477 x5 = 3,141592653589793
x4 = 3,141592653589793

Com apenas quatro ileragoes, consequimos uma aprorimacao
de m com quinze digitos apos a virgula. O critério de parada € o
fato de que, com uma precisao de quinze digitos, existe n natural
tal que

ZTpi1 — T, = 0,000000000000000.

Esse valor n é 3. Logo, o processo recursivo € interrompido
em x4. Esse exemplo ajuda a ilustrar a eficiéncia do Método de
Newton-Raphson.

SECAO 109
( Método de Euler
SUMARIO
N INDICE
{P=ltétodos numéricos implementaveis em maquinas nao servem ape- REDE

nas ao proposito de determinar zeros de certas fungoes reais dife-
renciaveis. E possivel também estimar fungoes que sejam solugoes
aproximadas de equacoes diferenciais.
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Seja z : R — R uma funcao z(t) real tal que

d?*z
— =
dt? ’
sendo o um numero real qualquer. Logo,
dx
— =at+ D,
dt p

sendo 8 € R. Portanto,

t2

onde v € R.

Se usarmos ¢ para mapear tempo em segundos e x(t) para mapear
posicao em metros de uma particula em R, dependente de tempo,
temos que

d’x

dt?
é a aceleragdo constante da particula em metros por segundo por
segundo, e

=

dx

dt
¢é a sua velocidade instantanea em metros por segundo. Observar que
x(0) = 7. Logo, v pode ser usada para mapear posigao xy metros no
instante 0 segundos. Além disso,

dz

Et:OZﬁ’

o que significa que podemos usar [ para mapear velocidade instan-
tanea vy no instante ¢t = 0. Logo, 8 = vg e 7 = x( sdo condic¢des de
contorno da equacao diferencial

d*x
dt?

Outra maneira de examinarmos o problema acima é através da
substituicao de ‘Cil—f por v(t), uma fungdo de velocidade instantanea.

2 5 .
Logo, £2 = a é equivalente a

y a2
dv
E = .
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A forma integral dessa ultima equagao diferencial é

v tp
/ dv = / adt.
V0 to

t
tF. Logo, vp — vy = a(tp — ty), o que implica em
0

Logo, v = at

0

vp = vg + aftp — to).

Se substituirmos ty por 0 e tg por t, temos a mesma igualdade

dx
— =t
py at + 3,

ondeﬂ:voevpzfl—f.

A forma integral da ultima equacao diferencial é

e = /tF(at + B)dt.

xo to

t
Logo, x‘iF = (a% + Bt)‘:. Isso implica em
0 0

P to?
Tp — To = a— + Btp — — — Bio.
2 2
Logo,
t2
x(t) = oy + Bt + o,
se substituirmos ¢y por 0 e ¢z por t.

No contexto de mecénica classica [17], o estado de uma particula
sujeita as leis de Newton pode ser representado por um par ordenado

(z(t), v(t))
(posicao e velocidade em cada instante de tempo t), se a particula
tiver uma massa constante em relacao a tempo. A ideia intuitiva é
simples: o estado da particula deve descrever onde a particula esta
e em qual velocidade se encontra a cada instante de tempo.

Suponha que uma particula com massa m constante (em relagdo
ao tempo) mude seu estado (x(t),v(t)) de acordo com a Segunda Lei

de Newton:
dv

= ma’
onde F(t) é uma fungao que descreve forca resultante sobre a parti-
cula.

F(t)
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A forma integral desta equacao diferencial é

(o tF
/ mdv = / F(t)dt.
0 to

Sendo m uma constante em relacdo a ¢, a integral do lado esquerdo
pode ser facilmente calculada a partir do Teorema Fundamental do
Célculo. Mas a integral do lado direito da igualdade é algo bem
diferente, pelo fato de depender da fungao-forca F'(t).

Se F(t) for uma fungao constante, a aplicagdo do Teorema Funda-
mental do Célculo ¢é vidvel, uma vez que func¢oes constantes admitem
primitivas dadas por func¢oes elementares.

Existe vasta variedade de fungoes elementares F'(t) que admitem
primitivas dadas por funcoes elementares, como polinomiais, trigo-
nométricas, exponenciais e logaritmicas. No entanto, nem sempre
isso ocorre. Por exemplo,

Ft)=e",

1
F(t)=—
®) Int

e

o=t
F(t)=—
==

sao funcgoes elementares que nao admitem primitivas elementares.
Para detalhes, consultar o Algoritmo de Risch [39].

Para casos envolvendo fungoes elementares que nao admitem pri-
mitivas elementares, uma opc¢ao é o emprego de métodos numéricos
a partir de fungoes recursivas. O Método de Euler é o mais simples
para esse proposito.

O Método de Euler foi concebido por Leonhard Euler no século 18
(ou seja, muito antes do advento de tecnologias digitais) para ofere-
cer solugoes aproximadas de equacoes diferenciais nas quais ocorrem
uma derivada de primeira ordem mas nenhuma derivada de ordem
superior, desde que uma condicao de contorno seja dada.

No caso ilustrado acima, podemos reescrever a forma diferencial

dv
como uma equacao a diferencas finitas na qual uma derivada é tra-
tada de fato como uma razao entre nimeros reais, como mostrado

F(t)
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abaixo. Por conta disso, o Método de Euler fornece apenas uma
solugao aproximada da equacao diferencial. Neste caso, temos:

mintl —Un F(t,),

-
sendo que
tn—‘rl = tn Ak
onde 7 ¢é o passo de integracio numérica. Logo,
TF(t
Un41 = Up ( n)
m
e
tn—‘,—l = tn —+ 7.

A partir de uma condigdo de contorno F(tp) e um passo de in-
tegracao 7 adequadamente escolhido, em principio é possivel obter
pontos (t,,v,) que correspondem a uma restricdio de uma aproxi-
magao da primitiva de F'(t), uma vez que qualquer maquina somente
é capaz de processar uma quantia finita de informacoes .

[1] Ha& generalizacoes do Método de Euler, como os Métodos de
Runge-Kutta. Recomendamos ao leitor que procure informagoes so-
bre o tema.

SEgAO 110
( Predicados conjuntistas para teorias fisicas

N omo ressaltado na Segao 107, o Sexto Problema de Hilbert coloca
a seguinte questao:

Investigagoes sobre os fundamentos da geometria sugerem o

problema: tratar do mesmo modo, por meio de axiomas, as

ciéncias fisicas nas quais a matemdtica desempenha papel

importante: sao prioritdrias a teoria de probabilidades e a
mecanica.

Kolmogorov resolveu esse problema para a teoria de probabilidades
(Parte 9). No entanto, mecénica se revelou assunto um pouco mais
complicado.
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A primeira metade do século 20 testemunhou o nascimento da
fisica moderna, a qual foi definida pela mecanica quantica e pelas
teorias da relatividade (restrita e geral) de Einstein. Posteriormente
surgiram as teorias quanticas de campos. Logo, aquilo que Hilbert
chamava de mecanica é algo que hoje pode ser chamado de mecanica
classica nao relativistica.

Apresentamos a seguir a pioneira formulagdo que John Charles
Chenoweth McKinsey, Alvin Sugar e Patrick Colonel Suppes intro-
duziram para a mecanica classica nao-relativistica de particulas, em
1953. O sistema proposto reflete aspectos essenciais da mecanica
newtoniana. Além disso, oferece uma axiomatizacao, via predicado
conjuntista, suficientemente rica para uma discussao filosofica a res-
peito de outros topicos, como as mecanicas de Hertz [46] e de Mach

[47].

Nesta Secao, R? denota o espaco vetorial real usual de triplas or-
denadas de reais, munido das operacoes usuais de adicao de triplas
ordenadas de reais e de multiplicacdo de real por tripla ordenada
de reais. Também assumimos a base canonica para R3 e que este
mesmo espaco ¢ munido do produto interno canonico. Intuitivamen-
te falando, identificamos R? com o espaco fisico. Espaco fisico, por
sua vez, se refere a uma potencial totalidade de possiveis posigoes e
direcoes relativas de objetos do mundo real.

A seguir, alguns conceitos preliminares.

Seja f : T — R3 uma funcao, onde 7' é um intervalo de niimeros
reais. Dizemos, neste caso, que f é uma funcdo vetorial em R3.

Set €T, temos que

f(8) = (2(t),y(®), 2(¢)),
onde z, y e z sdo fungoes reais com dominio 7.

Neste contexto,

d" dr d" d”
%f(t) = (dt”x(t)’ %y(y), dt"z(t)> :

ExeMpro 10.3. £ 4 fungdo f: R — R3 dada por
f(t) = (cost,sent, 3t)

descreve uma helicoidal em R3.
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Neste caso particular,
L 1(t) = (—sent,cost,3) ¢ 2 f(t) = (= cost, ~sent, 0)
— = (—sent,cost,3) e — = (—cost, —sent,0).
dt dt?

Rigorosamente falando, a ultima igualdade na tltima definicdo nao
¢ a definicao de derivada de funcdo vetorial em R®, mas um teo-
rema que pode ser demonstrado a partir da definicio de derivada
de funcoes vetoriais. Nao apresentamos os detalhes porque, para os
atuais propositos, sao desnecessarios.

A seguir uma adaptagao do trabalho de McKinsey, Sugar e Suppes.

DEFINIGAO 10.1. P = (P, T,s,m,f,g) é um sistema nao re-
lativistico de particulas sss:

MCP1: P é um conjunto finito nao vazio;
MCP2: T € um intervalo de nimeros reais;

MCP3: s: PxT — R? é uma funcdo cujas imagens s(p,t) sdo
denotadas por s,(t);

MCP4: Para todo t € T existe

dQSp (t) .
dt2 "’

MCP5: m : P — R € uma fungao tal que m(p) > 0 para todo
peEP;
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MCP6: f: P x P xT — R? é uma funcdo tal que

f(p, q, t) = _f(Q7p7 t);

MCP7: g : P x T — R3 é uma fungio, cujas imagens sio
denotadas por g(p,t);

MCP8: Sep € P e q € P, entdo, para todo t pertencente a T,
f(p,q,t) € uma combinagio linear de s,(t) — s,(t);

MCP9: Sepe P,qe P et e T, entdo

)T = 5 6(p.0.1) + 80.0).

qeP

e Os elementos de P sao chamados de particulas.

e Os elementos de T sao instantes de tempo ou, simplesmente,
nstantes.

e Cada imagem s,(t) da fungdo s é a posicio da particula p no
instante t.

e Cada imagem m(p) da fungdo m é a massa da particula p.

e Cada imagem f(p, q,t) da funcao f é a for¢ca da particula q sobre
a particula p no instante t.

e Cada imagem g(p,t) da func¢do g é a forca perturbativa sobre a
particula p no instante t.

Axioma MCP1 diz que todo sistema nao relativistico de particulas
tem pelo menos uma particula. Além disso, o conjunto de particulas
nao pode ser infinito.

Postulado MCP2 apenas estabelece um conjunto 7' como parametro
para definir fungoes de posicao, forca e forgca perturbativa. A inter-
pretacao pretendida é que T seja um intervalo de tempo.

Férmula MmcP3 garante que cada particula p, em cada instante de
tempo ¢, pode ser localizada por uma posi¢do s,(t) no espago R?.
A helicoidal no EXEMPLO 10.3 descreve uma possivel trajetoria de
uma dada particula em um dado intervalo de tempo.

Axioma MCP4 impoe que as posi¢oes de particulas sao dadas por
funcoes duas vezes diferenciaveis em relacao a tempo. Naturalmente,
a interpretacdo pretendida é que a derivada primeira descreva ve-
locidade de cada particula em cada instante de tempo, e a derivada
segunda descreva aceleracao.
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MCP5 diz que toda particula tem massa real estritamente positiva.

Uma vez que R? é munido de produto interno canénico, isso garante
que podemos definir a norma induzida pelo produto interno. Neste
sentido, postulado MCP6 estabelece que a forga da particula g sobre
a particula p tem a mesma intensidade (dada pela norma) da forga
da particula p sobre a particula ¢, em cada instante ¢. Além disso,
ambos os vetores tém a mesma diregdo, mas ‘sentidos opostos’ (um
é simétrico aditivo do outro). A interpretagao pretendida é que este
postulado mapeie uma versao fraca da Terceira Lei de Newton.

Para efeitos praticos, é desejavel a existéncia de forcas perturbati-
vas. Esta é a razao do axioma MCP7.

Postulado MCPS8, em parceria com MCP6, deve mapear a Terceira
Lei de Newton: a forca que a particula g exerce sobre p é um vetor
com a direcao da posicao de p relativamente a posi¢ao de q. Esse
axioma previne ambiguidades na determinacao da direcao de forcas.

Finalmente, MCP9 deve mapear a Sequnda Lei de Newton para
particulas com massa constante relativamente ao parametro tempo.
O lado direito da igualdade é o que se chama de forca resultante
sobre a particula p.

Naturalmente, postulado MCP9 é uma equacgao diferencial. Re-
solver tal equacao diferencial significa determinar o estado de cada
particula em cada instante de tempo, sendo que o estado de uma
particula p no instante ¢ é o par ordenado

(5000 500

TEOREMA 10.1. A forca que uwma particula exerce sobre ela
mesma, em um sistema nao relativistico de particulas, € sempre
nula.

DEMONSTRAGAO: De acordo com MCPG6,
f(p7p7 t) - _f(p7p7 t)

Logo,
f(p,p,t) + £(p, p, ) = (0,0,0).
Logo,

f(p,p,t) = (0,0,0).
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TEOREMA 10.2. Primeira Lei de Newton.

DEMONSTRACAO: De acordo com MCP9, se a forca resultante
sobre uma particula p é nula, entao

d*sy(t)
dtQ — (07 07 0)7
uma vez que m(p) > 0.
Logo,
dsp(t) _
dt — (O{, ﬁ? 7)7

onde «, [ e v sao constantes reais.
Logo,
sp(t) = (at + a, Bt + b, vt + ¢).
Mas esta é exatamente uma trajetéria retilinea, se «, 3

ou 7 forem diferentes de 0, ou um estado de repouso, se «,
B e 7 forem todos nulos.

ExeMPLO 10.4. £ 4 fungdo f: R — R3 dada por
flt)y=2t+1,t—3,3t +2)

descreve uma trajetéria retilinea em R3.

/

40

/

20

10
20 5
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Neste caso particular,
d
e P
-z f() = (0,0,0).

Uma limitagdo 6bvia do sistema axiomatico acima é o fato das
particulas terem massas invariantes em relacao a tempo. Mas esta
¢ uma limitacao facilmente contornavel se modificarmos adequada-
mente os axiomas MCP5 e MCP9.

No entanto, ha uma limitacgdo muito mais severa: o fato de que
essa formulacao assume explicitamente um tnico papel para forgas:
mudar o estado de uma particula ao longo do tempo. E bem sabido
que forgas, no contexto de mecanica classica, contam com outro papel
relevante: deformar corpos.

Apesar disso, o sistema concebido por McKinsey, Sugar e Suppes
foi pioneiro no emprego de técnicas modernas de axiomatizacao para
teorias fisicas. Desde entao, muitas outras propostas surgiram na
literatura. Algumas delas se refeream a sistemas axiomaticos para a
mecénica dos meios continuos, para teorias de campos (cldssicas ou
quénticas) e para a termodindmica, entre muitos outros exemplos de
teorias fisicas.

Sobre o impacto dessas ideias, ver [12]. O que mostramos aqui
é uma porc¢ao insignificante sobre o que o método axioméatico pode
fazer pela fisica tedrica.

SECAO 111
Modelos de ZF

omo enfatizado na Secao 1, a linguagem & de ZF é desprovida
de semantica. Apesar das vantagens ja discutidas sobre essa carac-
teristica, ha dificuldades inerentes a ZF que exigem algum tipo de
consideracgao de carater semantico.

Como ja foi dito, matematicos sdo cacadores de teoremas nao tri-
viais. Neste contexto, considere o seguinte fato:

2P {Axioma do Par} AXioma do Par.
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O que estd escrito acima é o seguinte: em ZF — {Axioma do Par}
(a qual é uma teoria formal com todos os postulados de ZF, exceto
o Axioma do Par) o Axioma do Par é teorema, como se verifica a
seguir.

TEOREMA 10.3. Fzr_{Asioma do Pary Azioma do Par.

DEMONSTRAGAO: Axioma do Vazio e Teorema 3.2 garantem
a existéncia e unicidade do conjunto vazio @. Axioma da
Poténcia garante a existéncia do conjunto

t =p(p(2)) ={2,{2}}.
Sejam r e s conjuntos quaisquer e F(x,y) a férmula
(x=F=y=r)AN(z#I=y=2:s).

Logo, aplicando o Esquema de Substituicao sobre ¢, usando
a férmula F(z,y), obtemos o par {r, s}.

Resumidamente, o que foi provado acima é que o Axioma do Par
¢ desnecessario, desde que tenhamos os postulados Vazio, Poténcia
e Substituigdo. A teoria formal axiomética ZF — {Axioma do Par}
é equivalente a ZF, no sentido de que todos os teoremas de uma sao
teoremas da outra. Por conta disso, alguns autores simplesmente
omitem esse postulado em certas formulagoes de ZF e ZFC.

Se F é um postulado de ZFC, dizemos que F é independente dos
demais axiomas de ZFC sss

Vzro—(Fy F.
Caso contrario, dizemos que F é dependente.

Logo, o ultimo teorema é equivalente a seguinte proposicao.

PROPOSICAO 10.1. O Axioma do Par é dependente dos de-
mais postulados de ZF.

Consequentemente, é natural questionar se fendomeno analogo o-
corre com outros axiomas de ZF e ZFC. Afinal, mateméaticos querem
genuinamente conhecer essa teoria formal.

No entanto, nao é tao facil assim responder se outros postula-
dos podem ser simplesmente omitidos, mantendo todos os teoremas.
Provar a dependéncia de um postulado é, em principio, facil. Basta
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exibir uma demonstracao. Provar a independéncia, porém, é algo
que exige ferramentas metamatematicas. Afinal, se um matemaético
nao consegue exibir uma demonstracao, isso nao implica que tal de-
monstragao nao exista. O Axioma da Escolha é um exemplo histérico
bem conhecido.

A primeira pessoa a trazer alguma luz sobre o tema foi Kurt Godel,
apesar de Abraham Fraenkel e Andrzej Mostowski terem apresentado
resultados relacionados ao Axioma da Escolha para uma variacao de
ZF conhecida como ZFU [22].

Godel criou um modelo de ZF, hoje conhecido como L, ou, universo
construtivel de Gadel. Para isso ele precisou qualificar qual é um
possivel universo de discurso L de ZF.

Em outras palavras, uma vez que os axiomas de ZF empregam
quantificadores logicos, o que podem significar férmulas como

‘para todo x, isso ou aquilo acontece’?

O que é ‘para todo’? Obviamente, esse ‘para todo’ nao pode incluir
objetos como elefantes, calgas desbotadas ou molas de grampolas. E
neste momento que um modelo de ZF cumpre o papel de estabelecer
um possivel universo de discurso para uma teoria como ZF.

O que Godel propos foi um universo de discurso L minimamente
necessario para satisfazer todos os axiomas de ZF. A ideia, intuiti-
vamente, é a seguinte.

Um conjunto y é definivel a partir de um conjunto z se existe
uma féormula @ tal que ¢ pertence a y sss t pertence a x e t satisfaz
a formula ®. Uma vez estabelecido o que é um conjunto definivel
a partir de outro, é possivel introduzir um universo de conjuntos
hierarquicamente definiveis a partir do conjunto vazio como se segue.

I: Admite-se a existéncia de um conjunto vazio chamado de L;

I1: Se existir formula ® que permita definir um novo conjunto a
partir de Lg, este novo conjunto é elemento de um conjunto L;

11: De fato, é possivel definir um conjunto x a partir de Ly da se-
guinte forma: t pertence a x sss t pertence a Ly e ® (seja qual for
a férmula @, neste caso muito particular); com efeito, nenhum
t pertence a vazio; logo, neste caso muito especial, qualquer
formula funciona; logo, = é novamente o vazio; a partir disso
¢ definido o conjunto L; cujos elementos sdo todos os conjun-
tos definiveis a partir de Lg, ou seja, o proprio Lg; em outras
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palavras, L; conta com um unico elemento, a saber, Lg; escreve-
mos Ly = {Lo};

IV: Se existir formula ® que permita definir um novo conjunto x
a partir de Ly, este novo z é elemento de um conjunto Ls; logo,
os elementos de Ly sdo apenas Ly e Ly, definiveis pela escolha
apropriada de férmulas; ou seja, Ly = {Lo, {Lo}};

Vv: Se existir formula ® que permita definir um novo conjunto
x a partir de Lo, este novo z é elemento de um conjunto Ls;
logo, os elementos de L3 sdo apenas quatro, definiveis a par-
tir de féormulas apropriadas para este fim: Lo, Li, Ly e um
conjunto que tem como Unico elemento Li; escrevemos L3 =

{L(]u {L0}7 {LO, {Lo}}a {{Lo}}};

VI: Repetimos o processo acima para Ly, Ls, Lg € assim por diante,
até cobrir todos os ordinais finitos;

vil: Chamamos de L, o conjunto que satisfaz a seguinte condigao:
um conjunto x pertence a L, sss x pertence a algum L,, onde
n € um ordinal finito;

vIil: Chamamos de L,.; o conjunto dos conjuntos definiveis a
partir de L,; L2 0 conjunto dos conjuntos definiveis a partir de
L1, e assim por diante, até novamente cobrir todos os ordinais
finitos;

1X: Chamamos de Lo, 0 conjunto que satisfaz a seguinte condigao:
um conjunto x pertence a Lo, sss x pertence a algum L, ,,, onde
n € um ordinal finito;

X: Chamamos de Lg, .1 0 conjunto dos conjuntos definiveis a par-
tir de Lo,; Lo,12 0 conjunto dos conjuntos definiveis a partir
de Ly,11, € assim por diante, até novamente cobrir todos os
ordinais finitos;

XI: Chamamos de L3, o conjunto que satisfaz a seguinte condicao:
um conjunto x pertence a Lg, sss x pertence a algum Loy, ,,
onde n é um ordinal finito;

X1r: Repetimos o procedimento acima para Ly, Ls,, € assim por
diante.

X1i1: Finalmente, dizemos que um conjunto x pertence a L sss x
pertence a algum L,, onde p é um ordinal finito n ou p é mw+n.

No contexto acima, um conjunto é qualquer x que pertence a L.
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Pois bem. O que Godel provou é que todos os axiomas de ZFC sao
satisfeitos em L.

Por exemplo, o Axioma do Vazio é satisfeito gragas a existéncia de
Lg, o qual é um elemento de L. O Axioma do Par é satisfeito gracas
ao seguinte fato: dados = e y pertencentes a L, existem L, e L, tais
que z pertence a L, e y pertence a L,, para algum p e algum ¢ da
construcao acima; logo, existe algum L, tal que r é maior do que
ambos p e ¢ e tal que o conjunto {z,y} pertence a L,; logo, o par
{z,y} pertence a L, ou seja, é um conjunto.

Uma vez que todos os axiomas de ZFC sao satisfeitos em L, Godel
provou com isso que os axiomas de ZF nao permitem inferir a negacao
do Axioma da Escolha como teorema. Ou seja, apesar de até hoje
nao existir prova de que ZF é consistente, pelo menos Godel provou
que, se ZF for consistente, entao ZFC também é.

Observar que o universo construtivel L de Godel oferece uma pos-
sivel interpretacao para o conceito de conjunto. Neste sentido, uma
formula qualquer de ZFC ¢é verdadeira em L sss essa férmula for sa-
tisfeita em L. Caso contrario, a férmula ¢é falsa em L. Logo, todos
os axiomas de ZFC sao verdadeiros em L, enquanto a negacao do
Axioma da Escolha é falsa em L.

No entanto, todo esse esfor¢o de Godel nao foi suficiente para res-
ponder se o proprio Axioma da Escolha é teorema ou nao de ZF.
Quem respondeu a essa questao foi Paul Cohen, na segunda metade
do século 20.

Cohen criou uma técnica hoje conhecida como forcing, a qual per-
mite criar outros modelos de ZF a partir, por exemplo, do universo
L de Godel. Gracas a forcing é possivel criar um modelo M de ZF
no qual L estd contido mas tal que L # M. Em um dos modelos
M Cohen provou que todos os axiomas de ZF sao verdadeiros, mas
o Axioma da Escolha é falso. Logo, ZF é consistente tanto com o
Axioma da Escolha quanto com a negac¢ao do Axioma da Escolha.
Portanto, o Axioma da Escolha nao pode ser demonstrado a par-
tir dos demais postulados de ZF. Com efeito, se pudesse, qualquer
modelo de ZF seria também modelo de ZFC.

Qualquer modelo de ZF ou ZFC oferece possiveis interpretacoes
para conjuntos e para a pertinéncia €. Neste sentido, modelos de
ZF e de ZFC qualificam o que é ‘para todo’. Com efeito, ao enunciar
‘para todo conjunto z’ estamos falando apenas dos x pertencentes
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a um universo de discurso particular que opera como modelo de ZF
ou ZFC. Teorias como ZF e ZFC podem ter muitos universos de
discurso. Esta é a ambiguidade inerente aos quantificadores logicos
V e 4. Nao existe um tnico possivel universo de discurso para ZF
ou ZFC, ou seja, nao existe uma tnica possivel interpretacao para a
totalidade de conjuntos de ZF ou ZFC.

Além disso, os conceitos de verdade e falsidade sao relativos a mo-
delos. Ou seja, dada uma féormula ® de ZF, como saber se essa
formula é verdadeira ou falsa? Para responder a essa questao é
necessario qualificar o modelo que esta sendo usado. No modelo
L de Godel o Axioma da Escolha é verdadeiro. No modelo M de
Cohen, a mesma férmula é falsa.

Logo, os conceitos semanticos de verdade e falsidade em uma lin-
guagem formal como a de ZF tém uma conotagao muito diferente dos
conceitos de verdade e falsidade em uma linguagem natural como o
portugues.

Uma questao natural é a seguinte: se existe modelo para ZF e
ZFC, por que esse modelo ndo permite provar a consisténcia dessas
teorias? A resposta é simples. Qualquer modelo, por exemplo, de
7ZFC qualifica apenas um tnico possivel universo de discurso para a
teoria. Mas ZF e ZFC sao muito mais do que qualquer modelo possa
revelar. Uma vez que a consisténcia de ZF ou ZFC nao pode ser
teorema da propria teoria [28], modelos ndo sdo capazes de responder
sobre consisténcia.

SECAO 112
( Principio de Particao

. Principio de Partigio (PP) é a seguinte férmula:

Para toda fungdo sobrejetora f : x — y existe uma fungdo
injetora g : y — x.

ExXEmMPLO 10.5. Seja
f:{1,2,3,4,5,6} — {1,2,3}
dada por f(1) = f(2) =1, f(3) = f(4) =2, f(5) = f(6) = 3.
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Cada elemento do contradominio de f é imagem de algum ele-
mento de seu dominio. Isso garante que [ é sobrejetora. Neste
caso particular certamente existe

g:{1,2,3} = {1,2,3,4,5,6}
injetora. Por exemplo, g pode ser dada por
g(1) =1, 9(2) =2 e ¢g(3) = 3.

No EXEMPLO acima PP é teorema. Naturalmente, se f for finita,
PP sempre é teorema. O problema, no entanto, é provar tal formula
para toda e qualquer funcao sobrejetora.

TEOREMA 10.4. Fzpc Principio de Partigcdo

DEMONSTRAQAO: Seja f : x — y sobrejetora. Para cada
elemento s de y existe subconjunto u, de x tal que
Vr(r € us = f(r) =s).
Uma vez que f é fungao, entao
s#8 = usNuy = 2.
O conjunto de todos os ug, para todos os s pertencentes
a y, define uma particdo p, de = (Definicao 3.16). Logo,
podemos aplicar o Axioma da Escolha sobre p,. O Axioma
da Escolha ‘escolhe’ um e apenas um elemento ¢, perten-

cente a cada ug da particao p,. Portanto, podemos definir
uma fungao injetora ¢g : y — x dada por

g(s) = cs.

ExeEmpLO 10.6. Seja f:{1,2,3,4,5,6} — {1,2,3} dada por
fO=f2)=1, f@3)=f(4) =2, f(5)=f(6)=3,
exatamente como no EXEMPLO 10.5.
Neste caso, a particao de {1,2,3,4,5,6} induzida por f é

b= {{17 2}7 {37 4}’ {5’ 6}}

Se aplicarmos o Azxioma da Escolha sobre p podemos obter, por
exemplo, o conjunto escolha

{1,3,5},

entre outras possibilidades.
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Se for o caso, a injetora g : y — x € dada por

g(1) =1, g(2) =3 e g(3) =5.

Obviamente a funcao injetora do EXEMPLO anterior ndo pode
ser obtida por emprego do Axioma da Escolha, pelo menos nos
moldes da prova da ultimo teorema. Mas, seja como for, a es-
tratégia adotada na demonstragdo do Teorema 10.4 funciona para
toda e qualquer sobrejecao f :x — y.

Porém, a questao agora é a seguinte: sabendo que o Axioma da
Escolha implica em PP, podemos garantir a reciproca de tal teorema?
Formalmente,

Fzr+ippy Axioma da Escolha?

Quando Ernst Zermelo propos o Axioma da Escolha ha mais de
um século, ele o fez para garantir PP no contexto da teoria de con-
juntos proposta pelo préprio Zermelo. No entanto, nunca foi capaz
de responder se PP implica em AE (Axioma da Escolha). Até os
dias de hoje esta ¢ uma questao em aberto.

Todos os modelos de ZF, até hoje concebidos, nos quais o Principio
de Particao é verdadeiro, o Axioma da Escolha também é verdadeiro.
Este fato parece sugerir que PP implica em AE. No entanto, nao
existe qualquer classificacdo de todos os possiveis modelos de ZF.
Consequentemente, a atual teoria de modelos tem se mostrado insu-
ficiente para resolver esse problema.

Em [44] ha uma prova de que o Axioma da Escolha é independente
do Principio de Particdo em uma variacdo de ZF conhecida como
ZFU (Zermelo-Fraenkel com atomos).

SEGAO 113
( O que omitimos

TR

@ lluitos assuntos relevantes, relacionados aos temas aborda-
dos, foram omitidos neste livro. Fazemos abaixo uma breve lista de
apenas alguns deles. Paralelamente, recomendamos leituras comple-
mentares.

TEORIAS FORMAIS: A linguagem de ZF (a qual é a mesma de
ZFC) é um caso particular de linguagem de primeira ordem.

PAGINA 472

SUMARIO

INDICE
REDE



MATEMATICA PANDEMICA PARTE10 SECAO113

Linguagens de primeira ordem, por sua vez, sao casos parti-
culares de linguagens formais. Ambos os assuntos podem ser
estudados em [38], livro extraordinariamente didatico. As tlti-
mas edigoes sao as melhores. Na mesma obra ha uma detalha-
da discussao sobre a teoria de conjuntos NBG (von Neumann,
Bernays, Godel). Esta é uma teoria de conjuntos que garante
a existéncia de classes proprias, termos que admitem elementos
mas que nao sao conjuntos. Em [8] ha uma boa discussao sobre
a teoria de Zermelo-Fraenkel em uma linguagem de segunda or-
dem, também conhecida como ZFy. Em [56] hd um exemplo de
teoria de conjuntos cuja linguagem formal prescinde de varia-
veis, quantificadores logicos e até mesmo conectivos 16gicos.

TOPICOS DE TEORIA DE CONJUNTOS: Se a pessoa nao estd inte-
ressada em aspectos formais de teoria de conjuntos, uma opgao
é o estudo de teoria ingénua (também conhecida como teoria
intuitiva de conjuntos). Neste sentido recomendamos [50]. Para
um primeiro estudo detalhado sobre teoria de Zermelo-Fraenkel
ver [28]. No entanto, ndo é recomendével a leitura deste tltimo
antes de um seguro conhecimento sobre os contetdos iniciais de
[38]. Os modelos para ZF em [28] podem ser um tanto dificeis de
compreender para o iniciante. E recomendével uma cuidadosa
leitura de [1] para entender os propésitos de teoria de modelos.
Sobre o Axioma da Escolha, ver [27].

CARDINALIDADES: Ordinais finitos podem ser estendidos para ou-
tra classe de objetos, a saber, os ordinais. Todo ordinal finito
¢ um ordinal, mas a reciproca nao é teorema. Além disso, a
pertinéncia define uma boa ordem em qualquer ordinal. Logo,
qualquer ordinal admite um menor elemento relativamente a
pertinéncia. Isso permite definir cardinalidade de um conjunto
(intuitivamente falando, a quantia de elementos do conjunto).
A cardinalidade de um conjunto x é o menor ordinal (relativa-
mente a pertinéncia) equipotente a x. O estudo de cardinali-
dades encontra enorme impacto sobre assuntos como teoria da
medida, entre outros [28] [30].

ANALISE MATEMATICA: Assim como a Secao 39, sobre ntimeros
reais, apresenta um modelo de corpo (no sentido das discussoes
nas Segoes 71 e 96), também é possivel provar que a mesma
interpretacao para nimeros reais ¢ um modelo de corpo orde-
nado completo [34]. De maneira andloga, as discussoes sobre
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complexos na Se¢ao 40 apenas exibem um modelo para corpo
topoldgico algebricamente fechado [58]. Corpos ordenados com-
pletos e corpos topolégicos algebricamente fechados sao casos
particulares de corpo.

GEOMETRIA SINTETICA: Avaliar a independéncia dos postulados
da geometria euclidiana é essencial para a qualificacdo de ou-
tras geometrias, como a absoluta, as nao euclidianas e as nao
Paschianas. Detalhes na obra de Castrucci [10].

ALGEBRA MATRICIAL: Operacdes definidas sobre espacos de ma-
trizes (incluindo posto, determinante, escalonamento, entre ou-
tras) sao essenciais para o estudo de representacao matricial de
operadores lineares definidos sobre espacos vetoriais de dimen-
sao finita. Detalhes em [35].

CALCULO PADRAO: Muitas aplicacoes de derivadas foram omiti-
das. Técnicas de integragao (como substituicio de varidveis,
substituicoes trigonométricas, integracao por partes, entre ou-
tras) sdo essenciais para a aplicabilidade de cdlculo diferencial e
integral padrao. Para uma abordagem intuitiva, [55]. Para um
tratamento mais préximo da anélise matematica, [19].

MECANICA CLASSICA: Entre as aplicagoes mais usuais de calculo
padrao estao as teorias fisicas, como mecanica classica. Texto
padrao sobre mecénica classica: [17]. Tratamento para a meca-
nica cldssica como uma teoria de campos: [2]. Para uma visao
historica e filoséfica sobre o conceito de massa em diferentes
teorias da fisica: [26].

LEITURAS COMPLEMENTARES: Em [54] hd uma extensa andlise
do emprego de linguagens de teoria de conjuntos no estudo de
probabilidades, mecénica classica, linguistica e outras areas. Em
[57] ha uma fascinante discussao sobre a abordagem de Bolzano
para o conceito de infinito, ressaltando até mesmo o papel da
religido sobre a concepcao da teoria de conjuntos. O artigo de
divulgagdao cientifica [52] oferece uma extraordindria visao sobre
parte do impacto de teoria de conjuntos em analise matematica.
Em [31] h& uma proposta para privilegiar o emprego de fungoes
no estudo de matematica.
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PARTE 11

Por que tantos nomes em
matematica?’

Nesta tltima Parte discutimos sobre as motivagoes para o emprego
de nomes em matematica, bem como seu impacto.

SEgAO 114
( Nomes como arbitrariedades

\ matematica carrega algo de hermético em sua pratica. Se-
gundo Joannes Philoponus, filésofo neoplatonico cristao do século 6,
na porta de entrada da Academia de Platao lia-se a frase

Ninguém deve entrar se for ignorante em geometria.

Nao se sabe se a lenda procede. Mas essa famosa frase nao deixa
de encerrar em si uma visao comumente nutrida ha milénios. Como
j& mencionado, Poincaré afirmou que o matematico nasce, nao se
cria. Independentemente de quaisquer consideracoes sobre a visao
do grande matematico francés, um exemplo que ajuda a ilustrar a
separacao entre matematicos e nao matematicos é exatamente ZF,
como se discute a seguir.
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ZF é conhecida como uma teoria de conjuntos. No entanto, seus
conceitos primitivos sao dois predicados binarios usualmente denota-
dos pelos simbolos = e €. Em ZF nao se define o que ¢ um conjunto.
Sequer existe a necessidade de qualificar o que sdo conjuntos. Logo,
ZF nao é uma teoria sobre objetos chamados de conjuntos.

Se um leigo espera aprender algo sobre conjuntos, ao estudar ZF,
apenas aprenderd sobre pertinéncia e igualdade. Isso porque ZF é
uma teoria sobre as relacoes entre pertinéncia e igualdade. Neste
sentido, uma pessoa com pouca familiaridade com matematica pode
se sentir desorientada. Afinal, por que matematicos se referem a ZF
como uma teoria de conjuntos? Por que nao chamar ZF de ‘Teo-
ria da Pertinéncia Extensional’? O primeiro postulado préprio de
ZF é o Axioma da Extensionalidade, o qual estabelece de imedia-
to o proposito de identificar um conjunto z a partir de todos os y
que pertencem a x. Gracas ao Axioma da Extensionalidade é pos-
sivel garantir a unicidade de qualquer uniao arbitraria, de qualquer
poténcia, de qualquer par. Todos os demais axiomas proprios ‘con-
fiam’ na rigidez do Axioma da Extensionalidade. Qualquer objeto x
que possamos conceber precisa da Sagrada Lei da Fxtensionalidade
para garantir que x é um conjunto de ZF.

Para que o leitor possa compreender melhor essa questao, pro-
movemos uma pequena mudanca de nomenclatura, apenas para fins
de breve ilustracao.

Em primeiro lugar, chamemos os termos de ZF de ‘homens’

Em seguida, chamemos a pertinéncia de contemplacao. No lugar
de dizermos que ‘o conjunto x pertence ao conjunto y’ diremos que ‘o
homem z contempla o homem y’. Além disso, chamemos a igualdade
de fidelidade. No lugar de dizermos que ‘o conjunto x é igual ao
conjunto y’, dizemos que ‘0 homem x ¢é fiel ao homem v’

Como préximo passo, impomos na forma de postulado a Sagrada
Lei da Fidelidade (nome que substitui a expressao ‘Substitutividade
da Igualdade’): todo homem z é fiel apenas a si mesmo. Logo, ao
afirmarmos que z ¢ fiel a y, estamos apenas dizendo que = pode ser
chamado de y, assim como y pode ser chamado de . Mas, no final
das contas, x e y sao apenas nomes de um unico homem, uma vez
que todo homem ¢é fiel apenas a si mesmo.

Neste contexto, a Sagrada Lei da Extensionalidade (nome que subs-
titui a expressdo ‘Axioma da Extensionalidade’) afirma o seguinte.
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Se todo homem t que contempla o homem x é também um homem
que contempla o homem y e, além disso, todo homem ¢ que contempla
o homem y é também um homem que contempla o homem x, entao
o0 homem x é fiel ao homem y.

Se um leitor qualquer contestar a Sagrada Lei da Fidelidade, suge-
rindo que ele mesmo consegue ser fiel a outras pessoas, tal leitor nao
estara entendendo o ponto principal: o nome ‘fidelidade’ é apenas
um nome, assim como o nome ‘igualdade’ é apenas um nome, nada
além disso.

Se chamamos € de pertinéncia ou contemplacdo, isso é irrelevante
do ponto de vista matematico. Relevante é apenas aquilo que os
postulados demandam sobre os predicados € e =. Neste sentido,
os nomes ‘pertinéncia’ e ‘igualdade’ sao meras arbitrariedades, nao
identificaveis com situagoes ordinarias do cotidiano de nao-matema-
ticos.

Porém, a pratica mostra que nomes dados a predicados, termos ou
formulas devem, pelo menos em principio, refletir uma interpretagao
pretendida a tais conceitos. Ao chamarmos os termos de ZF de
conjuntos, isso deve refletir a intuicdo de que um termo qualquer
deve, de alguma forma, refletir a interpretacao pretendida de uma
colecao de objetos. Por conta disso o nome dado ao predicado €
deve estar de acordo com tal interpretacao pretendida. Um nome,
em principio, adequado é ‘pertinéncia’.

Logo, os nomes adotados para conceitos acabam impactando sobre
a propria pratica matematica, como se percebe na préxima Secao.

SEGAO 115
Nomes como arbitrariedades impactantes

.omes desempenham dois papeis relevantes na matematica.

I: TORNAM A PRATICA MATEMATICA VIAVEL. Por exemplo, di-
gamos que nao fosse usado o nome ‘nimero natural’ ou qualquer
outro nome para nos referirmos aos ordinais finitos. Além disso,
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II:

digamos que nao exista uma unica definicdo explicita abrevia-
tiva que permita conferir nomes a termos, predicados ou férmu-
las. Em outras palavras, digamos que nao sejam definidos os
seguintes conceitos:

e conjunto vazio,

e conjunto indutivo,

e sucessor de um conjunto,

e unido finitaria e, claro,

e conjunto w dos niimeros naturais.

Como poderiamos nos referir a um termo n qualquer como
numero natural? Neste caso, seria necessario dizer

Yw((Ym((VYp(—(p € m))) = m € w) AVt € w =
Vr((Vs(ser< (setVs=t))) =recw))) =ncw).

O que estd escrito acima é que o termo n (o tnico de ocorréncia
livre na férmula) é elemento comum a todo e qualquer conjunto
indutivo w.

Levando em conta que niimeros inteiros sao definidos a partir
de classes de equivaléncia de pares ordenados de naturais (Segao
30), racionais sdo definidos a partir de classes de equivaléncia
de pares ordenados de inteiros (Segdo 31), e reais sao definidos
a partir de classes de equivaléncia de sequéncias de Cauchy de
racionais (Segdo 39), o leitor ja pode imaginar a grande difi-
culdade para escrever algo como ‘seja 1 o neutro multiplicativo
dos reais’, caso nao adotassemos qualquer nome para o neutro

multiplicativo dos reais ou para os demais conceitos usados para
defini-lo.

CONFEREM PODER DE CONTROLE COGNITIVO SOBRE CON-
CEITOS. Exemplo bem conhecido foi a extraordinaria habilidade
de Alexander Grothendieck para atribuir nomes provocativos a
conceitos, antes mesmo de uma plena compreensao sobre os mes-
mos. Esquemas, os quais generalizam variedades algébricas, sao
um caso bastante famoso. Outro exemplo histérico marcante
foi a atitude de Cantor, ao afirmar que em matematica existem
diversos tipos de infinitos. Um dos nomes escolhidos por Can-
tor foi ‘infinito enumeravel’. Por consequéncia, isso abriu espago
para o ‘infinito ndo enumeravel’. Tal controle cognitivo exerce
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um poder de criagao: coisas passam a existir quando recebem
nomes, como bem insistiu Henri Poincaré. No excelente artigo
[18], Loren Graham compara esse ato de criacao com o Génesis
do Antigo Testamento: ‘Faga-se a luz! E a luz foi feita’. O nome
‘luz’ surgiu antes da prépria luz.

No entanto, nas palavras de Nikolai Luzin [18], nomes fazem com
que se perca ‘as partes nebulosas e escuras que nossa intui¢ao sus-
surra para nos’. Neste sentido, nomes podem restringir nossos modos
de percepcao sobre conceitos matematicos.

Por exemplo, ao nos referirmos aos termos de ZF como conjuntos,
podemos deixar de perceber que conjuntos podem ser interpretados
como objetos que nada tém a ver com colegoes de outros objetos,
como ocorre nos modelos parciais de Abian e LaMacchia [1].

Principalmente para aqueles que iniciam seus estudos em mate-
matica, nomes usualmente encontrados na literatura especializada
podem facilmente confundir. Citamos a seguir alguns exemplos pon-
tuais.

SEgAO 116
Inércia historica

“4teopold Kronecker chegou a dizer que

Deus criou os inteiros, o resto é obra dos homens.

Independentemente do significado desta famosa frase, niimeros na-
turais, inteiros, racionais, irracionais, transcendentes, algébricos, re-
ais e complexos sdo apenas casos especiais de termos, se formulados
na linguagem de ZF. Termos, por sua vez, sao conceitos abstratos
desprovidos de significado. O nimero natural 2015, portanto, nao
existe no mundo real. Ainda que uma pessoa creia ser capaz de
contar 2015 canivetes de bolso, apenas os canivetes de bolso sao ob-
jetos reais. O ntmero natural 2015 nao é qualquer objeto do mundo
real que esteja intrinsecamente associado a 2015 canivetes de bolso.
Uma pessoa pode errar a contagem de canivetes de bolso sem que os
canivetes em si informem de imediato esse erro de contagem.
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A palavra ‘natural’, em contrapartida, se refere a natureza, po-
dendo até mesmo ser sinénimo de banal, comum. Na qualidade de
desesperados advogados do diabo, assumamos temporariamente que
numeros naturais foram concebidos com o propésito de contar ob-
jetos do mundo real, algo que parece perfeitamente natural, banal,
comum. Quantos nimeros naturais podemos realmente usar para
este propoésito?

Estima-se haver algo entre 10™ e 1082 4tomos no universo. Em
1920, um garoto de nove anos de idade nomeou o nimero natural
1019 como ‘googol’, a pedido de seu tio, o matemético Edward Kas-
ner. Logo, um googol é maior do que o nimero de atomos em todo
o universo observavel.

E claro que podemos imaginar situacdes potencialmente reais en-
volvendo nimeros naturais bem maiores. Por exemplo, segundo
Claude Shannon, o ntimero total de possiveis variagdes no jogo de
xadrez ¢ algo entre 10 e 10'?3, uma quantia muito maior do que
um googol. Porém, um googolplex é obviamente muito maior. Com
efeito, um googolplex é 101" ou seja, o numero 1 seguido de um
googol de zeros.

Nao importa quantos objetos desejemos contar — entre canivetes
de bolso, atomos no universo observavel ou variagoes no jogo de
xadrez — sempre ha niimeros naturais muito maiores. Isso porque
o conjunto dos nimeros naturais ¢ infinito, algo que nao ocorre na
natureza. Portanto, niimeros naturais nao sao naturais, nas acepgoes
usuais do termo.

Um aspecto mais alarmante sobre a nao banalidade do conjunto w
dos ntimeros naturais se refere ao conjunto de todos os subconjuntos
de w, i.e., sua poténcia. No universo construtivel L de Godel os
subconjuntos de w sao todos definiveis. Porém, em qualquer extensao
nao trivial de L, via forcing, ha subconjuntos de w que nao sao
definiveis. Se nao ha banais cole¢oes infinitas na natureza, o que
poderia haver de banal em uma cole¢ao infinita nao definivel?

Para finalizar, o que ha de banal ao afirmar que n é niimero natural
se, e somente se,

Vw((Vm((Vp(=(p € m))) = m € w) AVt € w =

Vr((Vs(ser< (setVs=t)))=recw))) =ncw)?
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Um nedfito que esteja iniciando seus estudos de matematica pode
desfrutar de equivocada tranquilidade ao saber que estd estudando
numeros naturais. Afinal, é natural contar. Mas contar frutas em
uma cornucopia pouco tem a ver com o conceito de niimero natural,
a nao ser pelas origens historicas do termo. Ha muito mais entre
nimeros naturais, além de um, dois e muitos.

Comentarios analogos podem ser feitos sobre os niimeros inteiros,
racionais, irracionais, reais, transcendentes e complexos. Numeros
reais, por exemplo, ndo sao objetos reais. Afinal, sdo conjuntos. O
que seria transcendido por ntimeros reais transcendentes? O que ha
de complexo em numeros complexos, uma vez que todo complexo
nao passa de um par ordenado de reais? O que ha de tao especial na
unidade imaginaria, uma vez que ela nao ¢é o tinico conjunto definivel
em ZF? Apenas a unidade imaginéria apela a imaginacao? Numeros
irracionais sao niimeros incapazes de raciocinar? Os racionais racioci-
nam?

As origens historicas desses nomes nao podem ser confundidas com
as concepgoes atuais sobre tais conceitos. As fungoes circulares seno
e co-seno ilustram este ponto muito bem. Historicamente, o termo
‘seno’ deriva do latim sinus, que pode ser traduzido como ‘baia’,
‘seio’ ou ‘dobra’, dependendo do contexto. Seja como for, as ori-
gens historicas do termo seno derivam de um apelo visual a formato.
Porém, nos dias de hoje a fun¢ao seno é definida como solugao de uma
equacao diferencial, dadas condi¢des de contorno. Essa defini¢ao
pode ser estendida para incluir o seno de nimeros complexos e até
mesmo matrizes. Logo, a atual visao matematica da funcao seno
pouco tem a ver com qualquer intuicao de apelo visual.

SEgAO 117
Nomes que confundem

==\ guns nomes empregados na matematica denunciam questionavel
escolha de vocabulario entre certos profissionais. Um exemplo mar-
cante é o conceito de simbolo de um operador diferencial linear D. O
simbolo de D é tao somente um polinémio p obtido pela substituicao
de derivadas parciais (um caso especial de operador diferencial) por
termos que ocorrem em p. Uma vez que toda a mateméatica emprega
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simbolos, na acepcao da discussao na Se¢ao 7, obviamente o simbolo
de um operador diferencial ¢ um simbolo, apesar de nem todo sim-
bolo ser o simbolo de um operador diferencial. A palavra ‘simbolo’
aqui admite duas acepc¢oes nao equivalentes entre si. Uma é o sim-
bolo D usado para se referir a um dado operador diferencial linear;
outra é o polindomio p correspondente ao operador linear D.

Outro exemplo digno de nota é o Principio de Particao (PP), dis-
cutido na Se¢ao 112. De acordo com PP, se f : z — y é uma funcao
sobrejetora, entao existe funcao injetora g : y — x. Toda funcao
sobrejetora f : x — y define uma partigdo p do dominio = de f (ver
Teorema 10.4), de modo que, se z é elemento de p, entdo f restrita
a z ¢ uma funcao constante. Se estivermos tratando de ZFC, pode-
mos usar o Axioma da Escolha para garantir a existéncia da funcao
injetora g : y — x de maneira que g é a inversa de uma fungao es-
colha bijetora ¢ cujo dominio é subconjunto de z e cujo co-dominio
¢ y (Teorema 10.4). Exemplos sao discutidos na Se¢ao 112. Porém,
PP nao exige que a funcao injetora g : y — x seja a inversa de
qualquer fungao escolha c¢. Portanto, em principio, PP é indiferente
a particao p de x induzida pela funcao sobrejetora f. Isso mostra
que o nome ‘Principio de Particio’ ¢ infeliz. E um nome que sugere
atencao especial a uma informagcao irrelevante.

Muitos outros exemplos podem ser mencionados sobre potenciais
confusoes de leitura. Mas, para finalizar, comentamos sobre um dos
mais graves: demonstracdo por indugao.

Demonstracoes por inducao — como aquelas empregadas nos Teo-
remas 4.2 e 4.6, entre outros — sao feitas por infinitas aplicagoes de
Modus Ponens, o qual é um argumento dedutivo, nao indutivo. Ar-
gumentos dedutivos, como discutido na Segao 9, sao relagoes entre
férmulas, de modo que uma tnica formula é consequéncia imediata
de outras. Argumentos indutivos, por sua vez, sao relagdes entre
formulas nas quais se atribui um grau de suporte para inferir uma
formula a partir de outras. Neste sentido, a inferéncia indutiva nao
é necessariamente unica. A abordagem mais usual para expressar
graus de suporte é através do emprego de fungoes de probabilidade
condicional, conforme Secao 103. Detalhes podem ser vistos na Secao
105, bem como no livro de Ian Hacking [20]. No EXEMPLO 9.12 foi
ilustrado que mais provavelmente a vitima foi atropelada por um
taxi verde. O grau de suporte dessa inferéncia indutiva em especial
é de 59%.
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Portanto, a palavra inducdo é um exemplo de polissemia em ma-
tematica. Mais de um sentido é atribuido a mesma terminologia.

SEGAO 118
Neologismos e polissemia

\parentemente o matematico persa Sharaf al-Din al-Tus1 foi o
primeiro a sugerir a ideia intuitiva de termos dependentes de outros,
no século 12. Isso sugere que al-Tus1 foi o primeiro a sugerir algo
semelhante ao atual conceito de funcdo. Ha quem defenda que o
pensador persa chegou a introduzir rudimentos de calculo diferencial
e integral [25]. Mas, se insistirmos que somente coisas com nomes
podem existir, entao fica bem mais facil determinar quando nasceu
o importantissimo conceito de funcao em matematica: foi no século

17.

Gottfried Leibniz foi o primeiro a usar o termo ‘funcao’, para se
referir a dependéncia de uma variavel relativamente a outras. Mas,
obviamente, o que Leibniz entendia por fungdes nao coincide neces-
sariamente com os atuais conceitos para tal termo. Afinal, em ZF,
funcoes sao casos particulares de conjuntos. A Teoria ZF, por sua
vez, nasceu apenas no século 20.

Isaac Newton, contemporaneo de Leibniz, ndo usava o termo ‘fun-
¢ao’ No lugar disso, ele se referia a varidveis independentes como
fluentes e variaveis dependentes como relata quantitas. Apesar da
grande influéncia da obra de Newton, foi a terminologia de Leibniz
que se estabeleceu, o qual introduziu também as palavras ‘constante’
e ‘parametro’ ao vocabulario matematico.

Mas alguns mateméaticos claramente demonstram grande preocu-
pacao com a introducao de neologismos nesta area do saber. Um
deles foi Ralph Philip Boas Jr. Em seu artigo de 1981 [6], Boas faz
varios alertas. Listamos apenas alguns.

I: NAO TENTE DESFAZER ERROS DO PASSADO. Se alguém acredi-
ta ser capaz de criar um novo nome mais adequado para um con-
ceito matematico usual, possivelmente este alguém esta certo.
No entanto, matematica é uma atividade social que envolve um
esforco coletivo de milhares de pessoas. Convencé-las a mudar
terminologia é possivelmente uma perda de tempo. Com efeito,
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matematicos preferem se preocupar com matematica, nao com
nomes.

II: EXAMINE A LITERATURA, ANTES DE INTRODUZIR NOVA TER-
MINOLOGIA. Palavras como distribuicdo, fungdo caracteristica,
norma e modulo, assumem diferentes significados, dependendo
do ramo matematico em contexto.

11I: NAO CRIE NOVOS NOMES PARA CONCEITOS QUE SAO USA-
DOS UMA UNICA VEZ. Apesar de nomes serem tteis para fins
de concisao de afirmagoes, os conceitos matematicos sao mais
importantes do que seus nomes.

Uma excelente discussao sobre a histéria dos nomes em mateméatica
pode ser encontrada no link http://www.economics.soton.ac.uk/staff/
aldrich/Mathematical %20Words.htm.

[tem 1 acima aponta para uma contradicao inerente entre matemati-
cos: matematica é mais urgente do que nomes, apesar de nomes
exercerem impacto sobre a matemédtica. Mas essa atitude é com-
preensivel. Com efeito, matematicos sdo seres humanos e, portanto,
seres inconsistentes.
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métrica euclidiana na reta dos reais,
376

modelo de espaco vetorial real, 329

modelo de um predicado conjuntista,
292

Modus Ponens, 31

mondémio, 172

monotonicidade da probabilidade, 427

Monsieur Jourdain, 292

mudancga de base de logaritmos, 279

multiplicacao de escalar por vetor,
327, 411

multiplicacao de real por matriz real,
335

multiplicacao entre complexos, 155

multiplicacao entre inteiros, 101

multiplicacao entre racionais, 111

multiplicagdo entre reais, 152

multiplo de um inteiro, 298

natural impar, 84
natural composto, 96
natural par, 84
natural primo, 96
NBG, 21, 473
Newton-Raphson, 452
normalizacao de vetores, 379
nicleo de uma transformagcao linear,
399
numerador, 110
ntimero complexo, 155
Numero de Catalan, 73
Numero de Euler, 271
numero racional, 110
numero real algébrico, 272
nimero real transcendente, 272
ntmeros inteiros, 100
nimeros irracionais, 151
ntimeros primos entre si, 298
nimeros racionais, 110
numeros reais, 127, 151

operador diferencial, 219

operador linear, 401

ordem de um corpo finito, 410

ordem lexicografica do sistema deci-
mal usual, 67

ordem parcial, 87

ordem total, 87

ordinal finito, 123

orientagao de semirreta, 312

orientagdo de uma reta, 315

par, 56
par nao ordenado, 58
par ordenado, 57, 74, 78



Paradoxo de Russell, 64, 66

parametros de reta, 318

parte imaginaria de um complexo,
159

parte real de um complexo, 159

particula, em um sistema nao rela-
tivistico de particulas, 462

particdo de um conjunto, 85

particdo de um dominio de integragao,
240

passo de integracao numérica, 459

plano, 295

plano absoluto, 311

plano absoluto continuo, 316

plano cartesiano, 318

plano de incidéncia, 294

plano euclidiano, 317

plano ordenado, 302

plano quase-ordenado, 297

Poética, 14

polinémio, 172

Polonium-210, 262, 264, 275, 406

ponto de um espago métrico, 364

ponto de um plano de incidéncia, 294

ponto incidente sobre reta, 295

pontos colineares, 295

posicdo, em um sistema nao rela-
tivistico de particulas, 462

postulado das paralelas, 317

postulado dependente, 466

postulado independente, 466

precede, 315

precede estritamente, 315

predicado conjuntista, 288

predicado de Suppes, 288

Primeira Lei de Newton, 464

primitiva de uma funcéo, 236

primos entre si, 298

Principio da Dupla Negacao, 37

Principio da Explosao, 43, 64

Principio de Particao, 79, 470, 472,
482

Principio do Terceiro Excluido, 37

Princess Napraxine, 269

probabilidade, 425

probabilidade condicional, 437

produto cartesiano, 72

495

Programa de Suppes, 287
pseudomatematica, 270

quantificador existencial, 25

quantificador universal, 25

quantificadores relativizados, 133, 296

queda livre, 210

quociente de um conjunto por uma
relagao de equivaléncia, 86

reciproca de uma condicional, 42

reducao ao absurdo, 54

reductio ad absurdum, 54

regra de inferéncia dedutiva, 30

regras de sinais, 106

relacdo, 80

relacdo < entre complexos, 160

relagdo < entre inteiros, 108

relacao < entre naturais, 82

relagdo < entre racionais, 115

relagdo < entre reais, 153

relacdo antissimétrica, 87

relacao de equivaléncia, 83

relagdo de ordem parcial, 87

relacao de ordem total, 87

relagdo em x, 81

relacao reflexiva, 81

relagdo simétrica, 81

relacdo transitiva, 81

Renault, 194

representante de uma classe de equi-
valéncia, 83

restricdo de uma fungao, 92

restricao de uma func¢ao a um dominio,
117

reta no plano cartesiano, 318

reta orientada, 312, 315

reta que passa pela origem de R?
usual, 344

reta que passa por ponto, 295

retas em um plano de incidéncia, 294

segmento aberto, 301
segmento de reta, 301
Segunda Lei de Newton, 463
semiplano, 311

semirreta, 303

semirreta fechada, 304



sentencas, 23

sequéncia, 133

sequéncia racional, 133

sequéncia racional convergente, 134

sequéncia racional de Cauchy, 144

sequéncias constantes, 136

série de poténcias, 222

Sexto Problema de Hilbert, 448, 459

silogismo, 31

simétrico aditivo em espaco vetorial,
411

simétrico aditivo em um corpo, 408

simétrico composicional, 123

simétrico multiplicativo em um corpo,
408

sinal 4, 101

sinal —, 101

sintaxe de G, 24

sinus, 481

sistema nao relativistico de particu-
las, 461

solugdes de uma equacao, 39

soma de Riemann, 242

soma parcial, 212

somatoério, 98

sss, 29

subconjunto, 59

subconjunto maximal linearmente in-
dependente, 415

subconjunto préprio, 59

subespaco de espaco vetorial real, 341

subespago invariante, 402

subespaco trivial, 342

subtracao entre inteiros, 104

tempo, em um sistema nao relativis-
tico de particulas, 462

tentativa, 433, 434

Teorema Binomial, 97

Teorema de Abel-Ruffini, 171

Teorema de Euler, 234

Teorema de Lindemann-Weierstraf,
271

teorema de ZF, 34

teorema do nticleo e imagem, 401

Teorema do Valor Médio para Inte-
grais, 247

Teorema Fundamental da Algebra,
172

Teorema Fundamental da Aritmética,
146

Teorema Fundamental do Célculo,
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Teoria das Historias, 14

Terceira Lei de Newton, 463

termos, 24

Titan, 419

Titanic, 419

transformagao linear, 386

tridngulo, 302

tripla ordenada, 74

unido arbitraria, 62

unido finitaria, 63

unidade imaginaria, 158

universo construtivel de Godel, 467
universo de discurso de ZF, 467

valor absoluto, 134

valor absoluto de um racional, 134

variaveis, 22

verdade, 469, 470

vetor, 327, 411

vetor nulo, 327, 411

vetores linearmente dependentes, 414

vetores linearmente independentes,
414

vetores que geram espaco, 354

vizinhanca de um real, 154

Zermelo-Fraenkel, vii, 7, 10, 13, 21,
22, 289, 473

zeros de fungoes reais, 163
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